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Abstract
Stimuli predicting rewards are more likely to capture attention, even when they are not relevant to our current goals. Individual 
differences in value-modulated attentional capture (VMAC) have been associated with various psychopathological conditions 
in the scientific literature. However, the claim that this attentional bias can predict individual differences requires further 
exploration of the psychometric properties of the most common experimental paradigms. The current study replicated the 
VMAC effect in a large online sample (N = 182) and investigated the internal consistency, with a design that allowed us to 
measure the effect during learning (rewarded phase) and after acquisition, once feedback was omitted (unrewarded phase). 
Through the rewarded phase there was gradual increase of the VMAC effect, which did not decline significantly throughout 
the unrewarded phase. Furthermore, we conducted a reliability multiverse analysis for 288 different data preprocessing speci-
fications across both phases. Specifications including more blocks in the analysis led to better reliability estimates in both 
phases, while specifications that removed more outliers also improved reliability, suggesting that specifications with more, 
but less noisy, trials led to better reliability estimates. Nevertheless, in most instances, especially those considering fewer 
blocks of trials, reliability estimates fell below the minimum recommended thresholds for research on individual differences. 
Given the present results, we encourage researchers working on VMAC to take into account reliability when designing studies 
aimed at capturing individual differences and provide recommendations to improve methodological practices.
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Introduction

Classical theories of attentional orienting often describe 
two primary sources of attentional control. Attention can be 
directed by our goals, intentions, or specific task demands 
(Folk et al., 1994; Folk & Remington, 1998), or by the physi-
cal features of stimuli (Theeuwes, 1992, 1994). However, 
not all effects related to attentional orienting fit well with 
this classification and it has been suggested that the distinc-
tion between goal-directed and stimulus-driven attentional 

control1 is in fact a 'failed theoretical dichotomy' (Awh et al., 
2012). There is compelling evidence that our learning his-
tory with stimuli can modulate attentional priority in ways 
that are neither clearly goal-directed or stimulus-driven. This 
constitutes a third source of attentional control, which is 
often referred to as “selection history”. The concept of selec-
tion history comprises a set of phenomena in which atten-
tion is biased towards stimuli with which we have previous 
experience, which are no longer relevant to our goals, but 
are not necessarily salient either, so they cannot be framed in 
the traditional theoretical dichotomy outlined above (Ander-
son et al., 2021; Awh et al., 2012; Theeuwes, 2018). Selec-
tion history is a broad overarching construct that includes  * Francisco Garre-Frutos 
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different influences over attentional control based on implicit 
learning mechanisms. Examples of selection history include, 
for instance, our ability to search for a target (or ignore a 
distractor) exploiting regularities across trials (Chun & 
Jiang, 1998; Geng & Behrmann, 2002; Wang & Theeuwes, 
2018), the fact that it is easier to search for a stimulus when 
has been selected for response in preceding trials (Found 
& Müller, 1996; Maljkovic & Nakayama, 1994, 1996), or 
automatic attentional biases towards arbitrary features of 
a stimulus that are associated with the prospect of reward 
(Anderson et al., 2011b; Della Libera & Chelazzi, 2009; Le 
Pelley et al., 2015).

The latter instance of selection history is known as reward 
history. One of the earliest demonstrations of this attentional 
bias was reported by Anderson et al. (2011a). For their study, 
they designed an experimental paradigm based on the Addi-
tional Singleton task (Theeuwes, 1992), where participants 
were first presented with a visual display and had to find one 
of two colors, which were associated with different reward 
magnitudes during a training phase. During a subsequent test 
phase, participants were asked to find targets based on their 
shape, therefore rendering color irrelevant. Crucially, the 
colors that had been targets in the training phase were now 
presented as distractors. Their results showed that there was 
an increment in response times (RTs) when the high value 
stimulus acted as a distractor, compared to when the low 
valued stimulus was present. This effect was later termed 
value-modulated attentional capture (VMAC).

These results show that irrelevant features of stimuli 
that have been associated with rewards are more likely to 
capture attention, even when they are no longer predictive 
of rewards. Although this effect could not be attributed to 
physical salience or task goals, the study by Anderson et al. 
(2011a) did not prove that the VMAC effect is independent 
of previous task relevance, because color, while not task-
relevant in the test phase, was relevant during the train-
ing phase. In other words, the effect could be driven by an 
automated instrumental response to the features that were 
relevant during the training stage, regardless of their asso-
ciations with reward. To demonstrate that VMAC is indeed 
independent of task relevance, Le Pelley et al. (2015) intro-
duced a slight modification to Anderson et al.'s (2011a) para-
digm. Specifically, they removed the training phase where 
color is the target defining feature and introduced reward 
feedback that depended on distractor color in the test stage. 
In other words, the stimulus predicting the reward always 
played the role of a singleton color distractor that partici-
pants had to ignore to search for the shape defined target, 
from the beginning of the experiment. With this alternative 
procedure, Le Pelley et al. (2015) showed that VMAC could 
still emerge in conditions where color is an irrelevant feature 
during the whole task. Furthermore, Le Pelley et al. (2015) 
found that the high-value distractor still captured attention 

even under conditions where fixating the eyes on it actually 
prevented the delivery of the reward. This led to participants 
earning fewer rewards than they potentially could have.

Le Pelley et al. (2015) showed that the acquisition of the 
VMAC effect cannot be attributed to previous task relevance. 
However, while in Le Pelley et al. (2015) color was task 
irrelevant in the sense that color acted as a distractor, color 
did nevertheless provide participants with useful information 
about how much reward they could expect to obtain from 
each trial. This opens the possibility that the observed atten-
tional capture effects derive from an explicit strategy rather 
than automatic attentional capture by high-reward predictive 
stimuli. To establish that the VMAC effect is not depend-
ent on informational value, Watson et al. (2019a) combined 
the two paradigms previously mentioned. In their study, the 
paradigm of Le Pelley et al. (2015) served as an initial train-
ing phase, to observe how the VMAC effect emerged and 
developed throughout the task. In a later phase, participants 
were explicitly informed that color would not be associated 
with reward anymore, and then continued the task without 
reward feedback, like the test phase in the Anderson et al. 
(2011a) paradigm. This adaptation by Watson et al. (2019a) 
showed that the VMAC effect persisted even when color was 
no longer predictive of reward. In other words, Watson's ver-
sion of the task confirms that VMAC can be observed even 
when paying attention to reward-related stimuli has never 
been instrumental for successful performance in the task 
and these stimuli no longer provide useful information about 
the size of the reward. These two features render Watson's 
paradigm ideal to isolate the core components of VMAC.

Since Anderson et al.’s (2011a) seminal work, this type 
of attentional bias has been observed in both overt and 
covert attention measures (Anderson, 2015; Bucker et al., 
2015; Le Pelley et al., 2015; Theeuwes & Belopolsky, 
2012; Watson et al., 2020; Watson et al., 2019b); it seems 
to be robust to extinction (Anderson & Yantis, 2013) and 
resistant to cognitive control (e.g. explicit instructions to 
ignore distractors, Pearson et al., 2015). Given these char-
acteristics, some researchers have linked the VMAC effect 
with a form of human sign-tracking, or a tendency to endow 
a Pavlovian signal of reward with incentive salience (Ber-
ridge et al., 2009), eliciting automatic attentional approach 
responses to the associated feature (Flagel & Robinson, 
2017; Robinson & Flagel, 2009). Given that individual dif-
ferences in propensity to sign-tracking behavior are theo-
retically related to behavioral disorders (Colaizzi et al., 
2020; Flagel et al., 2009) and that attentional biases are 
believed to play a critical role in psychopathological condi-
tions such as substance abuse (Field & Cox, 2008), there 
have been numerous attempts in the literature to establish a 
link between the VMAC effect and different psychopatho-
logical conditions (Anderson, 2021). For instance, indi-
vidual differences in various aspects of VMAC effect have 
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been linked to depressive (Anderson et al., 2014, 2017) 
and obsessive-compulsive symptoms (Albertella et al., 
2020a, 2020b; Basel & Lazarov, 2022) in non-clinical 
samples, attention deficit hyperactivity disorder (ADHD) 
symptoms in children (Sali et al., 2018), substance abuse 
(Albertella et al., 2017, 2019, 2021; Anderson et al., 2013; 
Liu et al., 2021), risk-taking behavior in individuals with 
HIV (Anderson et al., 2016) and individual differences in 
working memory capacity and cognitive control (Anderson 
et al., 2011b, 2013, 2016; Anderson & Yantis, 2012).

Given how often different studies have associated this 
effect with diverse psychopathological conditions, we would 
be tempted to consider the VMAC effect as a valid measure 
of sign-tracking. However, a measure cannot be valid if it 
is not reliable (Loevinger, 1957). Traditionally, the use of 
cognitive-behavioral measures has tended to overlook issues 
of measurement error, thus neglecting the impact of reliabil-
ity on inferences drawn from individual differences studies 
(Hedge et al., 2018). In fact, when reported, the reliability 
of cognitive measures of attentional bias to reward predic-
tive stimuli tends to be low (Ataya et al., 2012), a fact that 
has significant consequences on potential inferences from 
these measures. These consequences range from attenuated 
correlations with other measures to unpredictable effects on 
statistical power depending on the ratio between true vari-
ance and error variance (De Schryver et al., 2016; Zimmer-
man & Zumbo, 2015) or incomparable effect sizes between 
populations or even different studies (Cooper et al., 2017).

To the best of our knowledge, only a handful of studies 
have investigated the reliability of the VMAC effect. Ander-
son and Kim (2019) assessed the test–retest reliability of the 
attentional capture in Anderson's paradigm. Their participants 
underwent a training phase to learn color reward contingen-
cies, followed by a test phase immediately after training and 
a delayed test 1 week later. While the test reliability of the 
effect was quite good when measured with eye movements (r 
= .80), reliability was disappointingly low when using RTs as 
dependent measure (r = .12). With regards to the Le Pelley’s 
paradigm, a recent study by Freichel et al. (2023) reported that 
the test–retest reliability, measured with RTs, was again quite 
low (r = .09). These two studies suggest that measures based 
on RTs may not be suitable for studying individual differences 
(see Draheim et al., 2019 for a discussion). Most importantly, 
these two studies have explored the test–retest reliability of 
VMAC, that is, the temporal stability of the effect. However, 
some researchers argue that defining reliability as temporal 
stability is not particularly informative in learning paradigms, 
where measures are expected to change over time. In such 
contexts, internal consistency, or the degree to which different 
parts of the same test measure the same thing, may be more 
informative (Farkas et al., 2023). Unfortunately, the internal 
consistency of the VMAC effect has not yet been assessed in 
either of the two paradigms mentioned above.

In light of the above, the present study has two main aims. 
First, we sought to replicate and extend the results of Watson 
et al. (2019a). As explained above, Watson et al. (2019a) 
combined the two paradigms used by previous studies. In 
this variant of the task, the VMAC effect can be measured 
while learning is still in progress (i.e., the rewarded phase, 
equivalent to the learning phase in Le Pelley’s paradigm), 
and also once the associated feature no longer holds infor-
mational value (i.e., the unrewarded phase, equivalent to the 
test phase in Anderson’s paradigm). In the original study by 
Watson et al. (2019a), the unrewarded phase was relatively 
brief compared to the rewarded phase (only two blocks of 24 
trials compared to 12 blocks in the rewarded phase). Here, 
we increased the length of the unrewarded phase to match 
the length of the rewarded phase. This allowed us to explore 
whether the VMAC effect persists once reward feedback is 
eliminated. The second aim of this study was to test the 
internal consistency of VMAC scores in both stages of Wat-
son et al.'s procedure, which combines Anderson's and Le 
Pelley's paradigms. In addition, given that many correla-
tional (Albertella et al., 2020a, 2020b, 2021; Liu et al., 2021) 
and experimental studies (Le Pelley et al., 2022; Watson 
et al., 2020) have been conducted online, which is especially 
useful when large samples are needed, we decided to run an 
online version of the task. Finally, sometimes researchers 
must face the plethora of decisions of possible specifica-
tions over data preprocessing, the so-called garden of fork-
ing paths (Gelman & Loken, 2013). Different combinations 
of data processing pipelines can yield radically different 
results, with dramatic implications on statistical inferences 
and also on the reliability of the measures employed. To 
assess the impact of these arbitrary preprocessing decisions, 
we calculated reliability estimates for different combinations 
of data preprocessing specifications (i.e., specification curve 
or multiverse analysis; Simonsohn et al. 2020; Steegen et al., 
2016).

Method

Participants

Potential participants were contacted through the distribu-
tion lists of the University of Granada. From the group of 
undergraduate students who showed an interest in partici-
pating, 216 participants actually conducted the experiment. 
All of them had normal or corrected-to-normal vision and 
were naive as to the purpose of the experiment. Participants 
were informed that based on performance they could earn 
up to €10. The study was approved by the Ethical Review 
Committee of the University of Granada.

Of the 216 participants who chose to participate in the 
study, 23 did not complete the whole experiment and were 
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removed from the analysis. Of the remaining 193 partici-
pants, we filtered out those with an accuracy lower than 70%. 
The final sample consisted of 182 participants (60 males; 
Mage = 21.9; SDage = 3.3).

Stimuli, design, and procedure

Considering that the eccentricity of items in the search dis-
play is an important factor in this paradigm, to adjust the 
dimensions of the stimuli to participants’ conditions, we 
estimated the distance at which each participant was located 
from the screen using the virtual chinrest procedure devel-
oped by Li et al. (2020). Before starting the experiment, 
participants were instructed to fit an object with a standard 
size (i.e., a credit card or a driver’s license) to a rectangle 
on the computer screen, whose size they could change using 
two buttons from the keyboard. Second, to estimate the loca-
tion of their visual blind spot, participants were asked to 
cover their right eye while looking with their left eye at a 
fixed placeholder that appeared in the center of the monitor. 
Meanwhile, a red circle moved to the left and participants 
were instructed to press the spacebar when they noticed that 
the circle disappeared. Blind spot estimation was based on 
five repetitions of this procedure, where the average of these 
five repetitions was employed to calculate screen distance.

The experimental task was adapted from previous stud-
ies reported in Le Pelley et al. (2015) and Watson et al. 
(2019a), was programed in OpenSesame (Mathôt et al., 
2012) and hosted in JATOS (Lange et al., 2015). A graphi-
cal representation of the procedure is presented in Fig. 1. 
Each trial started with a central fixation cross, followed 
by a search display containing six shapes (2.3° × 2.3° 
visual angle) evenly arranged around an imaginary circle 
(10.1°). Five of the shapes were circles, each containing a 

segment tilted 45° randomly to the left or right. The target 
was a diamond containing a segment oriented randomly 
horizontally or vertically. In most trials, one of the circles 
was colored, while the other shapes were grey. For some 
participants, the colored circles were blue and orange, and 
for others, they were green and pink. The colors of the 
high- and low-reward circles were randomly assigned. The 
location of the target and the distractor were random on 
each trial.

Participants were instructed to indicate, as quickly as pos-
sible, the orientation of the segment inside the diamond, by 
pressing either ‘V’ for horizontal or ‘H’ for vertical, with 
faster responses earning more points. Each block included 24 
trials, comprising ten trials with a distractor in the high-reward 
color (high singleton condition, ten trials with a distractor in 
the low-reward color (low reward condition), and four distrac-
tor-absent trials (absent singleton condition) where all shapes 
were grey. During the first part of the task (rewarded phase) 
participants were awarded 0.1 points for every millisecond 
that their RTs was below 1000 ms on low-reward-distractor 
trials. On high-reward trials, the points were multiplied by 10. 
Responses with RT greater than 1000 ms were awarded no 
points, and errors led to the loss of the same number of points 
that would have been earned. The search display remained 
on screen until the participant responded, or the trial timed 
out after 2000 ms. Feedback was then provided for 700 ms, 
indicating the number of points won or lost for correct and 
incorrect responses, respectively. The inter-trial interval was 
1200 ms. In the last phase of the task (unrewarded phase), 
participants could not earn points based on performance, and 
only accuracy feedback was presented.

After the calibration described above, participants com-
pleted a small practice phase of 24 trials. In this phase, in 
20 trials a singleton appeared in a different color from the 

Fig. 1  Graphical representation of the experimental procedure. 
Example of the sequence of events in the experimental task. In the 
first phase of the experiment (rewarded phase), participants could 
earn points based on performance, and when a high reward singleton 

appeared in the display, points were multiplied by 10. In the second 
phase (unrewarded phase), participants were neither rewarded nor 
punished based on either performance or singleton color, only accu-
racy feedback was provided. Feedback was provided in Spanish
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one used in the main experimental task, while in the rest of 
the trials the singleton distractor was absent. Afterwards, 
instructions informed participants that in the following 
phase of the experiment (i.e., the rewarded phase) they could 
earn points based on their performance. Participants were 
instructed that faster and correct responses would result in 
more points, and when the high-colored singleton appeared 
on the screen there would be a “bonus trial”. Then, partici-
pants completed the rewarded phase with 12 blocks of 24 
trials (288 trials). Once the rewarded phase finished, partici-
pants were instructed that no more points would be avail-
able in the following, unrewarded phase and that they should 
continue responding to the orientation of the line within the 
diamond as quickly and accurately as possible. Participants 
then completed 12 blocks of 24 trials for a total of 288 trials 
in the unrewarded phase.

Results

Experimental analysis

To estimate how VMAC changed over blocks and across 
phases, we used linear mixed models (LMMs). LMMs offer 
several advantages, such as avoiding the need for data aggre-
gation and handling unbalanced data effectively. These mod-
els are particularly well suited for analyzing longitudinal 
data, providing flexibility in capturing nonlinear relation-
ships by allowing transformations of both the response and 
predictors.

As suggested by Barr et al. (2013), we fitted the maximal 
random effect structure that does not result in convergence 
issues (Bates et al., 2015; Matuschek et al., 2017). We refer 
to this model as the maximal feasible model. We fitted dif-
ferent LMMs for each phase starting from the following 
maximal model structure2:

where RTs are log-transformed to approximate normality. 
For both stages, we set the hypothesis matrix for the Sin-
gleton predictor to have coefficients for high-low singleton 
and for low-absent singleton through repeated contrasts, thus 
allowing us to explore both the VMAC effect (high-low) 
and the attentional capture effect (low-absent). Furthermore, 
we centered the block predictor to facilitate interpretability. 
For models regarding each phase, we discarded the first two 
trials of each block and we excluded incorrect responses 

log(RT) ∼ Singleton ∗ Block + (Singleton ∗ Block | Participant)

(rewarded phase: 5.99%; unrewarded phase: 5.50%) and RTs 
below 150 ms or RTs above 1800 ms ( < 1% in both phases).

In the rewarded phase, given that the maximal model 
failed to converge, we dropped the Singleton*Block inter-
action from the random effect structure. We compared the 
linear version of the maximal feasible model with a power 
function (achieved by transforming the block predictor to 
logarithm; Wang et al., 2020). We chose the power function 
model due to its lower AIC ( ∣ΔAIC ∣  = 517.6). Model coef-
ficients are presented in Table 1 and model predictions3 are 
presented in Fig. 2 (left side). As can be seen, the predictor 
for the high-low contrast was significant, with higher RTs for 
high singleton trials (M = 713, 95% CI [698, 729]) than low 
singleton trials (M = 699, 95% CI [683, 715]), showing a 
VMAC effect (Mhigh-low = 14 , 95% CI [8, 20]). The predictor 
for low-absent singleton was also significant, as low single-
ton trials show higher RTs than absent trials (M = 665, 95% 
CI [651, 679]), reflecting attentional capture when the low 
color singleton was presented (Mlow-absent = 34, 95% CI [29, 
39]). Moreover, the block predictor was significant, mean-
ing that RTs reduced over blocks. Of more interest are the 
interactions between block and singleton contrasts, showing 
that while the low-absent singleton contrast decreased over 
blocks, the high-low contrast increased. Figure 3 shows the 
conditional effect of high-low and low-absent through the 
blocks of the rewarded phase. As can be seen, model predic-
tions indicate that the VMAC effect starts to be significant 
after three blocks of trials.

The same analysis was carried out for the unrewarded 
phase. The maximal feasible model was, again, the model 
including only the random slopes of singleton and block. 
Then, we compared the linear model with the power function 
model, where the latter was selected due to its lower AIC 
(∣ΔAIC ∣  = 23). Model coefficients are presented in Table 1 
and model predictions are presented in Fig. 2 (right side). As 
can be observed, the predictor for the high-low contrast was 
significant, with longer RTs for high singleton trials (M = 
649, 95% CI [636, 662]) than low singleton trials (M = 637, 
95% CI [624, 651]), resulting in a VMAC effect (Mhigh-low = 
12, 95% CI [7, 17]). The predictor for low-absent was also 
significant, as low singleton trials exhibit higher RTs than 
absent trials (M = 620, 95% CI [608, 632]), again, indi-
cating attentional capture when the color singleton is pre-
sented (Mlow-absent = 17, 95% CI [13, 21]). Lastly, the block 
predictor was significant, with a progressive reduction of 
RTs across blocks. Finally, neither the high-low or the low-
absent contrasts interacted with block suggesting that neither 

2 The model formula uses the notation implemented by the lme4 
package (Bates et  al., 2015), where the parentheses denote the ran-
dom effect structure and the rest of the right-hand side formula indi-
cates the fixed effects.

3 In the main text and in every figure in the manuscript, we present 
model predictions and conditional effect back-transforming log (RTs) 
to the response scale. Model predictions for singleton conditions are 
computed averaging predictions across all blocks.
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Table 1  Model summaries for the selected models in both the rewarded and unrewarded phase

Bold entries shows statistical significance
p-values were computed using Satterwhite correction. CI = confidence interval; ICC = intraclass correlation coefficient. σ2 = model residuals, τ 
= random effects, ρ = correlation between random effects

Rewarded phase Unrewarded phase

Predictors Estimates CI p Estimates CI p

(Intercept) 6.516 6.495–6.537 < .001 6.431 6.411–6.451 < .001
High-low .021 .012–.030 < .001 .018 .011–.026 < .001
Low-absent .049 .042– .056 < .001 .027 .021–.033 < .001
Block – .063 – .071 to – .056 < .001 – .006 – .011 to – .002 .002
High-low × Block .011 .007–.015 < .001 – .002 – .006 to .003 .449
Low-absent × Block – .009 – .015 to – .003 .002 – .004 – .010 to .001 .134
Random effects
σ2 .046 .045
τ00 .021 .019
τ11 .003 high-low .002 high-low

.001 low-absent .000 low-absent

.002 Block .001 Block

ρ01 – . 102 – . 173
.369 .734
– . 265 .220

ICC .350 .314
N 182 182
Observations 45089 45309
Marginal R2 / Conditional R2 .063 / .391 .005 / .317

Fig. 2  Model predictions for each type of singleton across blocks and 
phases. This figure shows model predictions across types of single-
ton, blocks, and phases, where each phase is modeled independently. 
Lines show the predicted conditional means for each singleton, while 

shaded areas denote 95% CI. Dots indicate the observed means 
across epochs of two blocks, and error bars represent the standard 
error of the mean (SEM)
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the VMAC effect nor the attentional capture effect changed 
throughout the entire unrewarded phase. A paired sample t 
test averaging data from the last two blocks confirmed that 
the VMAC effect was still present at the end of the unre-
warded phase (Mhigh-low = 9.74, 95% CI [.64, 18.83], t(181) 
= 2.11, p = .036; d = .16, 95% CI [.01, .30]).

To test whether the effect actually changed between the 
rewarded and unrewarded phase, in the same vein to the 
original Watson et al. (2019a), we compared the VMAC 
effect of the averaged data of the last two blocks of the 
rewarded phase in comparison to the first two blocks of the 
unrewarded phase. To that aim we ran a repeated measure 
ANOVA with singleton (high, low) and phase (rewarded, 
unrewarded) over RTs. The results showed a significant 
effect of singleton (F(1, 181) = 39.74, MSE = 2312.27, p < 
.001, ηp

2 = .180), but no effect of phase (F(1, 181) = 0.10, 
MSE = 2813.98, p = .757, ηp

2 < .001) nor a singleton*phase 
interaction (F(1, 181) = 1.68, MSE = 1351.12, p = .196, ηp

2 
= .09). These results support the conclusion that the omis-
sion of reward and explicit instructions does not significantly 
modulate the VMAC effect, and directly replicate Watson 
et al. (2019a) main finding.

Finally, to test whether the previous results could have 
been driven by a speed–accuracy trade-off, we fitted two 
models with the same structure as those for the rewarded 
and unrewarded phases to analyze accuracy, using a bino-
mial distribution with a logit link. To overcome convergence 

problems, we dropped the singleton predictor for the random 
structure from the rewarded phase model. As can be seen in 
Table 2, both models reveal a progressive increase in accu-
racy over time. In the rewarded phase (left side of Table 2) 
there is also a significant effect in the low-absent contrast, 
due to the fact that accuracy for low singleton trials (Accu-
racy = .955, 95% CI [.949, .960]) is lower than accuracy 
for absent trials (accuracy = .960, 95% CI [.954, .966]), but 
this difference is numerically small (𝛥Accuracylow-absent = 
– . 005, 95% CI [– . 010, – . 001]). In fact, based on Chen 
(2010), the effect size (odds ratio; OR) for this contrast is 
very small (1/OR = 1.16, 95% CI [1.03, 1.30]). Critically, 
none of the model coefficients regarding high-low nor its 
interaction with block were significant, which suggests that 
the previous results are not contaminated by speed–accuracy 
trade-offs.

Multiverse reliability analysis

As explained above, we generated different datasets with 
specifications under a combination of various factors that 
could potentially affect the internal consistency of the effect 
of interest. First, sometimes participants with near chance 
accuracy are removed from the analysis (Albertella et al., 
2019 2020a, 2020b; Liu et al., 2021). However, given task 
performance is linked to the experimental manipulation, 
we wanted to explore if using different thresholds to select 

Fig. 3  Conditional effect of high-low and low-absent through blocks. 
This figure illustrates the conditional effects of singleton across 
blocks and phases, where each phase represents different mod-
els. Colors distinguish predictions for two contrasts: the high-low 

(VMAC effect) and the low-absent (attentional capture effect). Lines 
show the predicted conditional means for each effect, while the 
shaded areas denote 95% CI. Dots indicate sample means of epochs 
of two blocks, and error bars represent SEM
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participants could have a significant impact on reliability. 
To explore this possibility, we excluded participants whose 
mean proportion of accuracy was lower than either .50 or .70.

Regarding task length, previous studies differ substan-
tially in the number of trials included in the analysis. For 
example, in studies using the Anderson's paradigm, single-
ton absent trials have to be excluded, often resulting in a 
loss of 50% of trials (Anderson et al., 2013, 2014, 2016). In 
the same vein, in the Le Pelley’s paradigm it is common to 
use only a subset of the trials available, due to the fact that 
researchers are often interested in measuring the effect in 
late stages of learning, where the effect is expected to be 
larger (Albertella et al., 2019, 2020b; Liu et al., 2021), or 
because a subsequent test phase is used with a reduced num-
ber of trials (Albertella et al., 2019, 2020a). Typically, this 
strategy would lead to a task length of roughly two or three 
blocks of trials in the present study (40–60 trials). Given that 
the number of trials is usually positively related to reliability 
in behavioral–cognitive measures (Hedge et al., 2018; von 
Bastian et al., 2020), this practice might compromise the 
reliability of VMAC scores. To explore this possibility, we 
manipulated whether different numbers of blocks of each 
phase were included. For the rewarded phase, we used either 
the last two blocks of trials, the last half of the task (six 
blocks) or the whole phase. For the unrewarded phase, we 

selected either the first two blocks of trials, the first half of 
the phase or the whole phase.

Our multiverse analyses also considered different 
approaches to filtering RTs. This filter could be fixed (decid-
ing to eliminate from the analyses RTs that could be con-
sidered too fast or too slow, compared to a fixed RT, which 
represents the construct of interest) or relative (eliminating 
trials where RTs are above or below each participant's and 
condition mean). In the literature, fixed or relative filters are 
often employed, sometimes arbitrarily, under the assumption 
that some extreme RTs may introduce noise in the analysis. 
In contrast, a recent study has shown that using any type of 
filter over RTs induces bias in the estimates, and severely 
reduces statistical power (Miller, 2023). However, although 
the use of procedures of outlier removal may be harmful for 
experimental research, it may have different consequences in 
correlational research. Here, to explore the impact of differ-
ent approaches of outlier removal procedures, we orthogo-
nally varied whether different combinations of either fixed or 
relative filters were applied. First, we manipulated whether a 
fixed filter (i.e., removing RTs below 150 ms or higher than 
1800 ms) was applied or not. Secondly, we also manipulated 
whether a relative filter was applied or not and the sever-
ity of the filter. Specifically, we filtered trials two or three 
standard deviations away from each participant's mean or, 

Table 2  Model summaries for the accuracy analysis

Bold entries shows statistical significance
CI = confidence interval; ICC = intraclass correlation coefficient. σ2 = model residuals,  τ = random effects, ρ = correlation between random 
effects

Rewarded phase Unrewarded phase

Predictors Estimates CI p Estimates CI p

(Intercept) 22.730 20.186–25.595 < .001 23.317 20.573 – 26.428 < .001
High-low 1.033 .948–1.127 .459 1.005 .893–1.131 .934
Low-absent .864 .767–.974 .016 1.043 .890–1.222 .601
Block 1.221 1.142–1.306 < .001 1.066 1.009–1.127 .022
High-low × Block .981 .907–1.061 .639 .985 .900–1.079 .748
Low-absent × Block .958 .862–1.065 .430 .910 .809–1.023 .113
Random effects
  σ2 3.290 3.290
  τ00 .532 .592
  τ11 .087 high-low

.184 low-absent

.103 Block .015 Block

  ρ01 – . 160 – . 099
– . 016
.071

  ICC .162 .161
  N 182 182
  Observations 47807 47821
  Marginal R2 / Conditional R2 .010 / .170 .001 / .162
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alternatively, we did not apply any relative filter. In addition, 
in some studies the first two trials of each block are elimi-
nated on the assumption that these trials produce more noise 
as participants are still not engaged in the task (Le Pelley 
et al., 2015; Watson et al., 2019a). To test whether this deci-
sion can help improve reliability estimates, we manipulated 
whether the first two trials of each block were filtered out 
or not.

Lastly, the most common approach to compute the 
VMAC effect is through a difference of means for the high 
and low singleton trials. Given that the distribution of RTs 
is positively skewed, the mean could be a biased estimate 
of the central tendency of the distribution. For that reason, 
a more robust statistic, such as the median, could be com-
puted. On the other hand, it is possible to take the logarithm 
of the RTs to normalize the distribution. We compared these 
possible approaches, using either the raw RTs or log trans-
formed RTs, and either the mean or the median as the aver-
aging method of the RTs distribution.

To sum up, our multiverse analysis included the possible 
specifications by combinations of the following factors:

• Eliminate participants based on accuracy cut-off: < 50% 
or < 70%.

• Relative filter for RTs: none, 2 SDs or 3 SDs.
• Fixed filter for RTs: none or (RT > 150 and RT < 1800),
• Averaging method: mean or median.
• Log-transform RTs: yes or no.
• Filter the first two trials of each block: yes or no.
• Number of blocks used to calculate the effect: 2, 6, or 12.

The combination of all the possible levels of these factors 
results in 288 possible specific datasets. For each dataset, we 
calculated the reliability separately for each phase (rewarded 
and unrewarded). Furthermore, as the present paradigm also 
allows for the calculation of the attentional capture effect 
(low-absent contrast), we also report the results of a multi-
verse analysis of this effect in the Supplementary Material.

For the computation of reliability estimates, we used 
split-half correlations to estimate internal consistency. 
Instead of employing an arbitrary split-method (such as odd 
vs. even trials, or first vs. second half), we used a permuted 
random split procedure. In this procedure, all the trials were 
randomly split into two halves, always ensuring an equal 
number of trials of each block in each half, and a difference 
score (high-low) was computed for each half. Then, we cal-
culated a Pearson's r correlation for the difference score in 
each half, and applied the Spearman–Brown correction for-
mula (Spearman, 1910) to that correlation. This procedure 
was permuted 10,000 times, and the mean Spearman–Brown 
estimate of the distribution of permutations was taken as the 
reliability estimate, with the 2.5th and 97.5th quantiles as the 
95% bootstrapped CI.

The results of the multiverse analysis for the rewarded 
and unrewarded phases are shown in Figs. 4 and 5, respec-
tively. Both figures show the curve of reliabilities sorted in 
ascending order (top panel) and their respective specifica-
tions (bottom panel). In the rewarded phase, the median of 
all individual estimates is rsb = .59, 95% CI [.41, .7], the 
range of estimates across specifications is [.14, .85], and 
32.6 % of the estimates are above the minimum threshold 
of reliability (.7, following Nunnally, 1978). In the unre-
warded phase, reliability estimates tended to be compara-
tively lower (median rsb = .48, 95% CI [.3, .61], range [.0, 
.77], 6.9% above minimum threshold). Visual inspection 
of both phases shows that specifications that produce bet-
ter estimates tend to include more blocks and use the mean 
instead of the median. In addition, it seems that there exists a 
pattern where filtering more outlier RTs using relative filters 
also leads to better estimates.

To further analyze how different specifications could 
affect reliability we performed a series of permutation 
tests4 (Holmes et al., 1996) considering their complex inter-
actions and dependencies. Generally, the rewarded phase 
showed a higher reliability than the unrewarded phase (𝛥rsb 
= .12, pperm < .001), and the addition of more blocks pro-
gressively improves reliability (6 blocks - 2 blocks: 𝛥rsb = 
.31, pperm < .001; 12 blocks - 6 blocks: 𝛥rsb = .17, pperm < 
.001). Using the mean instead of the median significantly 
improved reliability across specifications (𝛥rsb = .06, pperm 
< .001), but log transformation of RTs did not result in a 
significant reliability improvement (𝛥rsb = – . 01, pperm = 
0.265). When we looked at different methods for outlier 
removal, we found that removing RTs that were beyond 2 
SDs resulted in improved reliability compared to when no 
relative filter was used (𝛥rsb = .05, pperm = .015), but the 
difference between using a 2 SDs or 3 SDs relative filter 
is not significant (𝛥rsb = .02, pperm = .136) nor the differ-
ence between 3 SDs and no relative filter (𝛥rsb = .03, pperm= 
.128). To assess whether, in general, using a relative filter 
improved reliability compared to not using a relative filter, 
we collapsed the 2 SDs and 3 SDs filter specifications to 
compare those specifications regarding not using a rela-
tive filter, and showed that using a relative filter in general 

4 The permutation test is a non-parametric method that involves 
comparing two conditions (i.e., specifications that use the mean vs. 
specifications that use the median) against a null hypothesis distribu-
tion, which is generated by randomly assigning the labels of the two 
conditions to various specifications and calculating the ensuing dif-
ference. The null distribution is obtained by randomly shuffling the 
labels of a given condition 10,000 times. Afterward, the observed dif-
ference is compared with this null distribution. The observed differ-
ence is deemed significant if it falls in the most extreme 5% of the 
null distribution (i.e., if it is more extreme than 95% of the values in 
the null distribution). In the main text, p values for a permutation test 
are referred to as pperm.
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increased reliability across specifications (𝛥rsb = .04, pperm 
= .027). Other outlier removal methods did not affect reli-
ability (removing two trials: 𝛥rsb = .0, pperm = .504; fixed 
filter: 𝛥rsb = .0, pperm= .489). Finally, using a stricter cut-off 
of 70% accuracy significantly reduced reliability compared 
to use the 50% cut-off filter (𝛥rsb = – . 04, pperm = .018).

The previous analyses confirm that reliability in the 
rewarded phase is in general superior to the unrewarded 
phase, and across phases reliability seems to be greatly influ-
enced by the number of blocks used, the averaging method 
and the use of relative filters. To further visualize the impact 
of relevant pipelines over reliability, Fig. 6 shows how 

reliabilities in both phases differ as a function of number of 
blocks, the averaging method and the use of different relative 
filters. The figure shows that for almost every specification, 
the rewarded phase achieves better reliability than the unre-
warded phase, and across phases, using the mean, comput-
ing the effect using 12 blocks and using 2 SDs as relative 
filter seems to give the best specifications. In fact, in both 
phases the specification with maximal reliability is mostly 
the same. When 12 blocks are used, the mean is employed as 
the averaging method, a 2SDs relative filter is used, no fixed 
filter is used, RTs are not log-transformed, the two first trials 
of each block are not removed, and the accuracy cut-off is 

Fig. 4  Spearman–Brown estimates across the rewarded phase. In the 
top panel, each dot represents a Spearman–Brown reliability esti-
mates for the rewarded phase, and shaded areas represent 95% CI. In. 
In the bottom panel, the different combinations of specifications are 

signaled with a vertical line. The shaded line in the top panel high-
lights .7, as the minimum threshold for studies on individual differ-
ences
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.7 the reliability in the rewarded phase is rsb = .85, 95% CI 
[.8, .88]. The maximal reliability in the unrewarded phase is 
achieved with the same set of specifications but when RTs 
are log-transformed (rsb = .74, 95% CI [.67, .80]).

Discussion

The first aim of the present study was to replicate and 
extend the results of Watson et al. (2019a), which dem-
onstrated that the VMAC effect could be observed in 

conditions where a high reward predicting singleton 
had always been response irrelevant and held no infor-
mational value. In our study, we showed that the VMAC 
effect increased over time in the rewarded phase, that is, 
we observed a progressive increase in RTs when the high 
valued singleton acted as singleton distractor compared 
to the low valued singleton. Furthermore, when reward 
feedback was omitted in the unrewarded phase, the VMAC 
effect remained constant, without any evidence of reduc-
tion over trials. These two results replicate previous find-
ings with Le Pelley’s paradigm (Le Pelley et al., 2015), 

Fig. 5  Spearman–Brown estimates across the unrewarded phase. In 
the top plot, each dot represents a Spearman–Brown reliability esti-
mate for the unrewarded phases, and the shaded areas represent 95% 
CI. In. In the bottom plot, the different combinations of specifications 

are signaled with a vertical line. The shaded line in the bottom plot 
highlights .7, as the minimum threshold for studies on individual dif-
ferences
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where the VMAC effect emerged over trials, even when 
the reward-signals are always task irrelevant, and also rep-
licate Watson et al. (2019a), who showed that once estab-
lished, the VMAC effect remains present regardless of the 
current informational value of the reward-related stimuli. 
Beyond replicating Watson et al. (2019a), we extended 
the unrewarded phase to match the length of the rewarded 
phase. Explicitly informing participants about the useless-
ness of color to win points and increasing the length of the 
unrewarded phase allowed us to rule out a possible expla-
nation that could drive the result of Watson et al. (2019a). 
If informational value about the color reward relation-
ship is necessary to produce the VMAC effect, explicitly 
instructing participants that rewards will be discontinued 
should suffice to reduce or even abolish the VMAC effect. 
Here, as in Watson et al. (2019a), this was clearly not the 
case. However, in Watson et al. (2019a) it is possible that 
participants fail to pay sufficient attention to the instruc-
tions. In other words, it is possible that participants did not 
update their control attentional settings, leading to atten-
tional biases for the high reward predictive stimulus. In our 
study, as the unrewarded phase had the same length as the 
rewarded phase, participants had sufficient direct experi-
ence to change their control attentional settings, even if 
they did not pay attention to the direct instructions. In 
contrast, we found no reduction of the VMAC effect over 
blocks in the unrewarded phase. These results suggest that 
once learned, the VMAC effect is resistant to Pavlovian 
extinction, even when the associated feature is always 
irrelevant and participants are explicitly informed about 

it. It is worth noting, however, that in our experiment, as 
in the original Watson et al. (2019a) study, participants 
were explicitly informed about the color reward contin-
gency before the rewarded phase, which does not allow 
to rule out the possibility that the learning process behind 
the VMAC effect is in fact dependent on informational 
value. If this were the case, this result could perhaps be 
interpreted not in terms of Pavlovian learning, but as some 
sort of strategic form of attention (i.e., attending to color 
to gather information about the magnitude of the reward 
in the current trial) that could eventually become automa-
tized with extensive practice (Theeuwes, 2018).

The second aim of this study was to explore the reliabil-
ity of the VMAC effect measured in a rewarded learning 
stage (akin to Le Pelley's paradigm) and in an unrewarded 
test phase (akin to Anderson's paradigm), and to explore 
how different specifications can impact reliability estimates. 
Our analysis shows that across 288 different specifications, 
there is substantial heterogeneity in reliability. Comparing 
both phases, it seems that for almost every specification, 
the rewarded stage shows higher reliability than the unre-
warded phase (𝛥rsb = .l2). Furthermore, for both phases, as 
expected following classical test theory, reliability improved 
with the number of blocks, showing that the higher esti-
mates of reliability are always reached when all blocks are 
included. Given that the VMAC effect increases through 
blocks in the rewarded phase, this result also means that 
specifications that maximize the effect size (i.e., calculat-
ing the effect in the two last blocks) produce the worst reli-
ability estimates, at least during the learning phase. This 

Fig. 6  Comparisons of reliability between phases as a function of relevant pipelines. Split-half reliability for each pipeline in the rewarded phase 
plotted against the reliability achieved by the same pipeline in the unrewarded phase
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negative relationship between the effect size and reliability is 
not surprising; in fact, it is in accordance with the so-called 
reliability paradox (Hedges et al., 2018), by which tasks (or 
specifications) that produce more robust effects at the group 
level often show poor reliability. Although it makes sense to 
focus on later trials to confirm that learning has taken place, 
our multiverse shows that if the goal of the study is to detect 
individual differences, then task length should be planned 
to enhance reliability. That is, experiments that seek to use 
VMAC as a measure of individual differences should take 
into account that the procedures that maximize the size of 
the effect are not necessarily the same ones that best cap-
ture individual differences. For the same reasons, although 
removing participants behaving at chance might increase 
the size of the VMAC effect, including them might improve 
reliability and therefore facilitate the detection of individual 
differences across participants. Nevertheless, it is worth not-
ing that participants who behave near chance may not be 
paying sufficient attention to the task, and thus variations 
in the observed VMAC effect might not reflect true varia-
tion in susceptibility to VMAC. For example, it is possible 
that including these participants in the analysis artificially 
increases internal consistency by adding a few extreme data 
points in the calculation of split-half reliability. As we only 
excluded 13 participants with less than 70% accuracy, a post 
hoc analysis with this subset of participants is not advisable, 
but we raise the possibility that including participants who 
behave close to chance may not necessarily result in a more 
valid measure, even if it yields higher reliability estimates.

Although the present study confirms that reliability 
increases as more blocks are included in the analysis, it does 
not take into account other relevant questions related to the 
quality of the trials that are included or excluded from the 
analysis. It could be the case that the removal of trials where 
learning is not yet stabilized leads to better reliability esti-
mates. Our analyses show that, at the group level, the VMAC 
effect is not significant in the first two blocks of trials. In 
implicit learning paradigms, this could be an important fac-
tor, because if learning is not yet stabilized in early stages, 
it is possible that those first trials map onto a different latent 
construct than the rest of the task, thus increasing noise and 
reducing reliability. To rule out that possibility, we re-ran 
the multiverse analysis for all the specifications where the 
12 blocks of trials are included, but we varied whether the 
first two blocks of the rewarded stage were included or not. 
The reliability estimates of this specification are shown in 
Fig. S5 of the Supplementary Material. We ran a permuta-
tion test to compare if removing these first two blocks would 
increase reliability compared to using all valid trials. The 
results showed that removing those trials produces a small 
but significant reduction in reliability (𝛥rsb = – .02, pperm 
< .01). This result is in accordance with a recent reliabil-
ity multiverse analysis in another implicit learning effect, 

contextual cueing of visual attention, where reliability esti-
mates always improved with the inclusion of any epoch of 
the task, independently of whether those epochs correspond 
to early or later stages of the task (Vadillo et al., 2023). 
Taken collectively, these results suggest that it is not advis-
able to exclude any subset of trials from the calculation of 
the measure.

Interestingly, although reliability generally improves 
with the number of observations, Parsons (2022) showed 
that specifications with more stringent trial selection cri-
teria tend to produce better reliability estimates. We have 
seen a similar pattern in our multiverse analysis, where the 
most stringent relative filter (i.e., filtering RTs by 2 SDs) 
produces better estimates. To visualize this idea, in Fig. 7 
we show the overall relationship between number of trials 
and reliability. Although there is a general positive relation-
ship between the number of trials and reliability, if we look 
separately to each level of number of blocks, there is actu-
ally a negative relationship between the number of trials and 
reliability, with fewer trials leading to better estimates. The 
fact that other methods of outlier removal, such as using a 
fixed filter or removing the first two trials of each block, 
did not have a large influence on reliability suggests that in 
specifications where a relative filter is employed, the use 
of an additional trial selection criteria could be redundant. 
These results suggest that it is not only important to optimize 
the task length, but it is also important to choose a good 
method of outlier removal. Furthermore, the present study 
together with other multiverse reliability analyses on differ-
ent experimental tasks (Parsons, 2022; Vadillo et al., 2023) 
seems to support the conclusion that the optimal decision for 
outlier removal may vary between experimental and correla-
tional research. For instance, if the emphasis of a particular 
study is on group-level effects, it is advisable, in accordance 
with Miller (2023), to avoid outlier removal procedures, as 
these could introduce bias and diminish statistical power. 
Conversely, in individual differences studies, employing a 
robust outlier removal procedure may enhance reliability and 
possibly attenuate the impact of measurement error.

Lastly, it seems that the averaging method makes a sub-
stantial difference in reliability. One plausible explanation 
for this result is that, given that the mean is more sensitive 
to the tails of the RTs distribution, it is possible that the 
VMAC effect is partly driven by an increase of RTs in the 
tail of the distribution when a high-reward singleton appears 
in the display. To explore this possibility, we computed the 
size of the VMAC effect using different quantiles of the RTs 
distribution to aggregate the data, instead of using the mean 
or the median. We applied this strategy to all the datasets 
generated for the multiverse analyses. The results are shown 
in Fig. 8. As can be seen, there is a general increase in the 
size of the VMAC effect on slower responses. This sug-
gests that our guess could be correct. To further support this 
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claim, we decided to run another multiverse analysis to test 
whether using a higher quantile could improve reliability 
compared to using the median. Arbitrarily, we decide to use 
the .75 quantile. The reliability estimates of this new speci-
fication are shown as Supplementary Material (Fig. S6). A 

permutation test shows that using a higher quantile does not 
improve reliability compared to using the median (pperm = 
.490). Although Fig. 8 shows that the general effect size is 
bigger at higher quantiles, there may also be more variabil-
ity in the tails of the distribution, which produces random 

Fig. 7  Relationship between reliability and number of trials. The 
general relationship between the overall number of trials (log-scaled 
for visualization purposes) and reliability is represented by the blue 
regression line (95% CI), where the upper regression line denotes 
the rewarded phase and the lower line denotes the unrewarded phase. 

Color represents a different number of blocks used for reliability 
calculation, where each colored regression line shows how outlier 
removal methods influence on reliability across different numbers of 
blocks

Fig. 8  VMAC effect calculated in different quantiles of the RTs dis-
tribution. Each point represents the bootstrapped mean VMAC effect 
at different quantiles of the RTs distribution (10,000 replications) in 
the 144 datasets generated for the multiverse analysis. On the right 
are depicted the data sets where RTs were log-transformed, while 

on the left are the data sets where the RTs are raw. The regression 
line shows LOESS fit, which represents the relationship between the 
effect and the quantile used to calculate the effect. Color represents 
the phase used to calculate the effect
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variation in the VMAC effect which ultimately hampers 
reliability. Thus, perhaps the reason why the mean is more 
reliable than the median is simply that it is more sensitive 
to the general shape of the RT distribution, not just the tails. 
Given the present finding, future research should address 
systematically why using the mean is more beneficial for 
reliability than using the median.

As explained in the introduction, previous studies of the 
psychometric properties of the VMAC effect do not support 
the use of RTs measures to study individual differences due 
to their apparent lack of stability (Anderson & Kim, 2019; 
Friedrich et al., 2023), but this does not necessarily mean that 
their internal consistency is too low for correlational research 
(see Ivanov et al., 2023). Our multiverse analysis showed 
that, depending on preprocessing pipelines, the internal con-
sistency of both phases can vary enormously. Although in 
most cases reliability was below the typical threshold of reli-
ability for individual differences studies, under some specifi-
cations reliability could be considered acceptable. In fact, in 
the rewarded phase of the present study, if all the trials avail-
able are included in the calculations, reliability is systemati-
cally above .7. Sadly, several studies measuring individual 
differences in VMAC have restricted their analyses to a small 
subset of the available data (Albertella et al., 2019, 2020a, 
2020b; Liu et al., 2021), an analytic decision that could yield 
reliability levels as low as .14 in the rewarded phase and 
almost 0 in the unrewarded phase. This raises concerns about 
the potential impact of measurement error in previous stud-
ies that have used a similar preprocessing pipeline. Based 
on the present findings, as some preprocessing pipelines can 
produce measures with relatively high internal consistency, 
future research aimed at investigating individual differences 
in the VMAC effect should include data preprocessing pipe-
lines that are expected to produce higher internal consist-
ency and, if possible, explore the impact of equally valid 
preprocessing pipelines on potential inferences. As suggested 
by Parsons (2022), a multiverse reliability analysis could also 
be performed as a robustness check.

Although previous studies have raised reliability concerns 
about the use of experimental tasks in correlational research 
(Draheim et al., 2019; Hedges et al., 2018; Rouder & Haaf, 
2019), the present study shows that with the appropriate pre-
processing pipelines, the measures taken in experimental tasks 
can reach acceptable reliability levels. However, it is important 
to note that our reliability estimates may not generalize to other 
assessments of the same measure. Reliability is not a property 
of the instrument, it is a property of the measure, and report-
ing reliability of experimental measures is not a standard in 
psychological science (Parsons et al., 2019). For that reason, 
we want to raise awareness about the necessity of reporting 
the reliability of the VMAC task when the objective of the 
study is to explore individual differences, so that the results 
can be informative, transparent, and replicable. Fortunately, 

reporting reliability in experimental tasks has become a trivial 
matter due to the effort of the scientific community to develop 
software that facilitates the estimation of reliability through 
different methods (Parsons, 2021; Pronk et al., 2022). Once 
reporting reliability becomes a standard practice, a promising 
next step would be to study the expected reliability across a 
relatively large set of published studies by means of a reli-
ability meta-analysis, as has been done in other paradigms, 
such as the implicit association test (Hussey & Drake, 2020).

While reporting reliability and adopting preprocessing 
pipelines that optimize reliability are valuable practices, 
these steps alone may not be sufficient to mitigate the impact 
of measurement error on studies of individual difference. It 
would also be beneficial to utilize alternative strategies such 
as incorporating specific task design features that enhance 
reliability (Rey-Mermet et al., 2019; Siegelman et al., 2017) 
or implementing analytical methods that take measurement 
error into account (Haines et al., 2020; Malejka et al. 2021; 
Rouder & Haaf, 2019). Future research could investigate the 
influence of distinct design features on task reliability. Stud-
ies of VMAC vary enormously in different aspects of the task 
whose impact on reliability is so far unknown. For instance, in 
Anderson's original paradigm the learning phase of the reward 
schedule is probabilistic (i.e., when the high color distractor 
appears on-screen, there is a certain probability that reward 
will be higher), while in Le Pelley’s paradigm the reward 
schedule is deterministic (i.e.,. the number of points earned 
is always larger when the reward high singleton is presented). 
The learning process can occur under instrumental (i.e., par-
ticipants have to select a certain stimulus to earn reward) or 
Pavlovian conditions (i.e., stimuli merely signal the magnitude 
of the reward but do not require a direct response). In some 
variants of the task, only gains are possible, while in others 
both gains and losses can occur. Experiments can also include 
or exclude absent trials from the search task. These and other 
design decisions could significantly influence reliability.

In summary, in this study we have replicated and 
extended the study by Watson et al. (2019a) with an online 
version of the task, showing that the VMAC effect is robust 
to the omission of contingencies during the testing stage. 
Furthermore, we have explored how different preprocessing 
decisions can affect reliability estimates in a study with a 
design analogous to the two most common paradigms used 
to measure the effect. The results show high heterogeneity, 
highlighting the need to design individual difference studies 
on the basis of data preprocessing decisions that maximize 
reliability. We recommend that researchers working with 
this effect take the standard practice of reporting the reli-
ability of their measures. However, on its own, this does not 
address all the possible implications of measurement error 
and efforts should be made in future studies to find alter-
natives that either improve reliability or take measurement 
error into account.
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