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Abstract

Huntington’s disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin
(HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and
no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the
OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase
of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand
the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort
of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding
N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny
neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters
and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support
the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be
regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more
complex secondary consequences precipitated by cell death.
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Introduction
Huntington’s disease (HD) is a debilitating neurodegenerative
genetic disorder caused by an expanded polyglutamine-encoding
CAG repeat in the huntingtin gene (HTT) [1]. Individuals with
40 or more CAG codons develop the condition with near com-
plete penetrance [2]. Widespread loss of medium spiny neurons
(MSN) in the caudate nucleus and putamen (striatum) contributes
to the presenting symptoms that encompass motor, cognitive
and behavioural abnormalities. Despite characterisation of the
HD defect and advancements in our understanding of disease

pathogenesis, no proposed disease-modifying interventions have
proved successful in HD clinical trials [3].

Glutamate excitotoxicity as an initiator of neuronal death
has been a longstanding hypothesis and research focus in
neurodegenerative disorders [4–7]. In HD, it has been proposed
that the loss of the MSNs of the striatum is due to elevated
synaptic glutamate levels from reduced glutamate clearance and
increased glutamate release. This excess synaptic glutamate has
been proposed to cause an overactivation of ionotropic glutamate
receptors including N-methyl-d-aspartate (NMDA) receptors,
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α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors, and kainate receptors, leading to an influx of calcium
ions, chronic membrane depolarisation, oxidative stress, and
activation of cell death pathways [4–8]. Evidence for acute
ionotropic glutamate receptor-mediated excitotoxicity was shown
through the experimental striatal injection of glutamate receptor
agonists (glutamic acid, kainic acid, quinolinic acid) in rodents
and non-human primates resulting in MSN degeneration and
motor dysfunction [9–15]. Further, studies investigating several
HD mouse models provided evidence for an association between
excessive NMDA receptor signalling and striatal degeneration
[16–18].

Our group has previously generated a transgenic ovine model
of HD (named OVT73) that expresses the full-length human hunt-
ingtin (HTT) cDNA with a pure CAG repeat length of 69 codons
along with a short CAA CAG tract, resulting in a polyglutamine
tract of 73 units. The HTT cDNA is under the control of the
1.1 kb segment of the immediate upstream human HTT genomic
sequence [19]. The transcript expression level from the transgene
in the OVT73 animals is estimated to be about ∼10% to 20% of a
single normal allele equivalent seen in HdhQ80, YAC128 and rat
BACHD HD models [20]. The germline transmission of the 73-unit
glutamine coding repeat was stable over three generations [20]
and somatic instability was observed to be minimal [21]. The mod-
erate expression of the transgene combined with a somatically
stable polyglutamine coding repeat might position this model for
the investigation of the initiating stages of HD (prodromal phase).
Animals at 6 years of age do not exhibit any striatal cell loss and
there are animals that are over 10 years of age not showing any
overt symptoms [20, 22–25]. Several molecular and behavioural
changes comparable to early phase HD were observed in the
OVT73 line, including the formation of intracellular HTT aggre-
gates [20], circadian rhythm abnormalities [24, 25] and changes
in brain, plasma and liver metabolites [22, 23, 26, 27]. We have
previously reported increased urea levels in the OVT73 striatum
[27] also found on post-mortem throughout HD patients brains
including the striatum. The human urea results do not appear to
be an end stage cell loss associated phenomena as it is also found
in HD post-mortem brains with low grade neuropathology and
lower levels of cell loss (Vonsattel grade 0/1) [28]. Increased urea
and ammonia levels are known to cause neurological impairment
and have been suggested to exacerbate neuronal excitotoxicity
[29–33].

To gain a better understanding of the disease mechanism in
a prodromal HD model, we have undertaken RNA-seq of sin-
gle nuclei from the OVT73 striatum. The tissue utilised for this
study was obtained immediately adjacent to that used for our
previously reported bulk RNA-seq analysis [27], taken from an
extensively investigated cohort of 5-year-old animals [20, 22–
25]. Multidimensional data from these animals are also publicly
available in the form of a queryable database [34]. Surprisingly,
we have detected transcriptomic signatures for a process that
indicates the upregulation of glutamate signalling occurring in
the MSNs of the OVT73 striatum. Since our HD sheep do not
display striatal cell loss or overt motor symptoms, we propose that
the response to glutamate in these animals is at a “steady state”
but may be the prelude to excitotoxicity mediated neurodegen-
eration. These results suggest that there is a treatment window
when the biochemical dysfunction could be addressed before the
cascade of cell death. These observations position the OVT73 HD
sheep model as a valuable resource testing of therapeutics in the
prodromal phase and not at a disease stage confounded by the
cell death cascade.

Results
Upregulation of genes involved in synaptic
transmission in OVT73 medium spiny neurons
Following quality control, a total of 28 234 nuclei were recovered
from the striatum of 6 OVT73 sheep and 6 age matched
wild-type controls. A total of 13 cell types were identified
including 12 507 oligodendrocytes (expressing marker genes MOG
and PLP1), 6093 MSNs (RGS9, PDE10A), 3024 oligodendrocyte
precursor cells (PCDH15, PDGFRA), 2601 microglia (CSF1R,
CX3CR1), 2181 astrocytes (AQP4, GFAP), 1068 neuroblasts (DCX ¸
ADARB2), 683 interneurons (ELAVL2, CLSTN2) and 77 endothelial
cells (FLT, MECOM). Interneurons were subcategorised based
on markers defined in Munoz-Manchado et al., [35] into 526
PV/Th interneurons (HS3ST2, PTHLH), 107 SST/NPY interneurons
(SST, NPY) and 50 cholinergic interneurons (CHAT). MSNs were
subcategorised according to cell markers defined in Saunders
et al., [36] into 2776 D1 MSNs (TAC1, EBF1), 2998 D2 MSNs
(DRD2, PENK) and 319 eccentric MSNs (OTOF, FOXP2). Full cell
marker lists are provided in Supplementary File 2, and cell type
distributions shown in Fig. 1C. Across all cell types, we observed
a significant reduction in the proportion of oligodendrocytes in
the OVT73 derived tissue compared with control cases (ANOVA,
P = 1.24×10−5).

To investigate differential gene regulation in the OVT73
HD striatum, differential expression analyses were conducted
between OVT73 and controls for each cell type separately. The
ratio of differentially expressed genes (DEGs) identified to the
median number of expressed genes per nucleus was 1.75 in
oligodendrocytes (1753 DEGs/1002 median number of expressed
genes of oligodendrocyte nuclei), 0.41 in OPCs (742/1812), 0.98
in D2 MSNs (4444/4516), 0.47 in D1 MSNs (2262/4850), 0.01 in
eccentric MSNs (45/4337), 0.21 in microglia (217/1049), 0.05 in
neuroblasts (47/895), 0.18 in astrocytes (303/1687) and 0.01 in
PV/Th interneurons (33/4398) (Fig. 2B). No DEGs were detected
in endothelial cells, cholinergic interneurons, and SST/NPY
interneurons, likely due to their small population sizes. The
statistical power to detect differences in gene expression is
dependent on the number of cells, consistent with the highest
proportion of DEGs being observed in oligodendrocytes, with
the highest number of cells. When comparing the proportion
of DEG’s in D1 MSNs, D2 MSNs, OPC, microglia, astrocytes and
neuroblasts all represented in the data set by similar nuclei
numbers, a greater proportion of DEGs was observed in D2 MSNs.
The full list of DEGs is available in Supplementary File 3 and
volcano plots for individual cell type DEG analysis are available
in Supplementary Fig. 5.

The top enriched Gene Ontology (GO) terms (ordered by FDR
adjusted p-values) associated with DEGs included synapse assem-
bly and organisation, GABAergic and glutamatergic synaptic
transmission, axonogenesis, neuronal projection development,
aerobic respiration and proton motive force-driven mitochondrial
ATP synthesis (Fig. 2C). Differential expression in D1 and D2 MSNs
were the most significant contributors to the enrichment of the
above GO terms. The full list of enriched GO terms is available in
Supplementary File 4.

Co-expressed gene modules involved in synaptic
transmission show increased activity in OVT73
medium spiny neurons and astrocytes
To identify and investigate sets of genes that were co-expressed in
the OVT73 versus control cell types, we performed co-expression
module analysis with MEGENA [37]. We identified several gene
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Figure 1. Single nuclei RNA-seq of the OVT73 sheep striatum. (A) Experimental design. Nuclei were extracted from the striatum of 12 sheep (6 OVT73
and 6 controls) and pooled to form 7 nuclei suspensions. Single nuclei RNA libraries were generated from the sample multiplexed suspensions and
sequenced. Reads were demultiplexed based on the natural genetic variation between pooled samples. Panel image created with BioRender.com. (B)
UMAP visualisation of clusters identified and annotated by cell marker gene expression. (C) Proportions of identified cell types across the 12 animals. A
significant decrease in oligodendrocytes between OVT73 and control cases was observed (∗∗∗ANOVA, P < 0.001) (D) dot plot of selected cell-type enriched
markers for annotated cell types in the sheep striatum.

BioRender.com
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Figure 2. Differentially expressed genes in OVT73 versus control sheep striatum. (A) Volcano plot of differentially expressed genes (DEGs) identified in
D2 medium spiny neurons (OVT73 D2 MSN vs control D2 MSN). Horizontal blue line shown at P = 0.05, vertical red lines shown at log2 fold change of
−0.1 and 0.1. (B) Proportion of DEGs over the median number of expressed genes in each cell type. (C) Heatmap of most significant gene ontology terms
(ordered by lowest FDR adjusted p-values) in cell types.

modules involved in synaptic transmission that exhibited higher
module activity in OVT73 MSNs and OVT73 astrocytes compared
to controls. A module centred around DLGAP2, GRIN2B, CACNA1C,

CACNA1B, CNTNAP5, SYT1, KCTD16, and GRIN2A genes (Module
2, M2) showed higher module activity in OVT73 D1 MSNs
compared to control D1 MSNs (differential module activity
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of 0.054; P < 0.0005, randomised permutation test with 2000
permutations) and OVT73 D2 MSNs compared to control D2
MSNs (differential module activity of 0.06, P < 0.0005) (Fig. 3B,
Supplementary Fig. 7 and Supplementary Fig. 8). The most
significant GO terms for module genes included synapse
organisation, synapse assembly, chemical synaptic transmission,
dicarboxylic acid catabolic process and glutamate metabolic
process (Supplementary Fig. 6 and Supplementary File 6).
Furthermore, this module was enriched for D1 MSNs DEGs (gene
set over-representation analysis, FDR = 0.022) and D2 MSNs DEGs
(FDR = 0.0013). Additionally, a module centred around SLC1A2,
SLC7A11, GLI3, IRAG1, GFAP and SLC39A12 genes (Module 11, M11)
was enriched in OVT73 astrocytes compared to control astrocytes
(differential module activity of 0.092, P < 0.0005). Most significant
GO terms for modules genes included L-glutamate transmem-
brane transport and amino acid transport. The module showed
an enrichment of astrocyte DEGs (FDR = 2.08×10−5). Full lists of
genes in gene modules are available in Supplementary File 5.
The full list of enriched GO terms for modules is available in
Supplementary File 6.

Cell–cell signalling is elevated in OVT73 animals
The differential expression analyses and co-expression analyses
both indicated that synaptic signalling and transmission may be
increased in the OVT73 animals. This led us to examine the cell–
cell communication networks using CellChat [39]. Cell–cell com-
munication analysis also supported increased synaptic signalling
in neuronal and glial cells of the OVT73 striatum. Comparison of
ligand-receptor pair expression from OVT73 and control revealed
a higher total number of ligand-receptor interactions (4030 and
3509 detected ligand-receptor pairs for OVT73 and control respec-
tively) and a higher sum of all communication probabilities (200
and 130 for OVT73 and control respectively) across all cell types
in the OVT73 samples. The cell types that showed the greatest
increase in the number of incoming (receptor to ligand) and out-
going (ligand to receptor) ligand-receptor interactions included
D2 MSNs and astrocytes. The communication probability was
greater in the OVT73 dataset for all neuronal cells (D1, D2, eccen-
tric MSNs and PV/Th, NPY/SST, cholinergic interneurons), OPCs
and astrocytes indicating more cell–cell crosstalk in the OVT73
cell state (Fig. 4A and B, thicker lines indicate higher number of
ligand receptor interactions or higher communication probabil-
ity in OVT73). In contrast, no differences in cell–cell signalling
were detected in microglia from OVT73 compared to controls
(Supplementary Fig. 9).

Examination of signalling pathways showed greater informa-
tion flow (defined as the sum of communication probabilities of
all ligand receptor pairs in the signalling pathway) in neurexin
(NRXN), neuregulin (NRG), protein tyrosine phosphatase receptor
M (PTPRM), contactin-1 (CNTN), neuronal growth regulator
(NEGR), laminin, cell adhesion molecule (CADM), neural cell
adhesion molecule (NCAM), ephrin type receptor A (EPHA) and
pleiotrophin (PTN) pathways in OVT73 D2 MSNs. Interestingly,
the greatest increase in communication was observed in myelin
protein zero (MPZ), collagen, bone morphogenetic protein (BMP),
and fibroblast growth factor (FGF) signalling pathways (Fig. 4C,
Supplementary Fig. 10). Individual ligand receptor pairs that
showed the greatest increase in communication probability
between OVT73 MSNs and control included NEGR1-NEGR1,
NRXN1-NLGN1, CADM1-CADM1, NRXN3-NLGN1, CDH2–CDH2,
NRG1-ERBB4 and NRG3-ERBB4. These ligand-receptor pairs have
been implicated in various neurodevelopmental processes
including myelination [40–43], glutamatergic and GABAergic

synapse development [44, 45], neurite outgrowth and general
nervous system development [46–53]. Individual ligand receptor
pair interactions for astrocytes and MSNs (D1, D2) are shown in
Supplementary Fig. 11. Communication probabilities between
all ligand receptor pairs across all cell types is available in
Supplementary File 7.

Upregulation of glutamate signalling is
attenuated by protective mechanisms
The glutamate excitotoxicity hypothesis proposes neuronal
stress and eventual initiation of cell death pathways arising
from elevated levels of synaptic glutamate and excessive
signalling through ionotropic glutamate receptors [4–7]. We
have identified transcriptional evidence in support of elevated
glutamate signalling in the OVT73 striatum through a widespread
transcriptional upregulation of ionotropic glutamate receptors
(NMDA, AMPA, kainate and delta receptors) (Fig. 5A). We also
observed an upregulation of transcription of the glutamine to
glutamate conversion enzyme glutaminase (GLS) in OVT73 D1
and D2 MSNs and OVT73 astrocytes. Upregulation of GLS suggests
increased production of glutamate which may be released into the
synaptic space, bind glutamate receptors, and trigger a feedback
loop to upregulate glutamate receptor expression. Elevated
glutamate signalling is commonly observed with oxidative stress
signatures represented by reduced activity of the oxidative
phosphorylation complexes [54–56]. In keeping with this we have
observed a downregulation of several genes encoding oxidative
phosphorylation complexes including complex I, II, III, IV and V
in OVT73 D1 and D2 MSNs.

In addition, we observed transcriptional upregulation of
several genes likely due to a compensatory response to elevated
glutamate levels. The transcription of genes encoding glutamate
uptake transporters GLT (SLC1A2) and GLAST (SLC1A3) were
upregulated in OVT73 astrocytes suggesting a response to
remove excess synaptic glutamate (Fig. 5C). We also describe
a transcriptional upregulation of genes encoding the gamma-
aminobutyric acid A receptor subunits (GABAA) including the
α, β and γ subunits in OVT73 D1 and D2 MSNs compared to
controls. Additionally, an upregulation of genes encoding GABA
transporter GAT4 (SLC6A11) and genes encoding the glutamate
to GABA conversion enzymes, glutamate decarboxylase (GAD1
and GAD2) was also observed in OVT73 D2 MSNs (Fig. 5B). Taken
together, these observations suggested increased GABAA receptor
signalling is likely a result of increased glutamate conversion to
GABA.

Transcription analysis of gene regulatory
networks indicate reduced CREB regulon activity
in the OVT73 striatum
We assessed the transcription factor regulation of highly variable
genes in OVT73 through construction of gene regulatory networks
using SCENIC. We focused on the regulon activity of the cAMP-
responsive element-binding protein (CREB) family of transcription
factors that has been shown to be activated following excessive
glutamate signalling [57, 58]. When examining differential regu-
lon activity between OVT73 and controls, we observed a reduction
in regulon activity for CREB1 in astrocytes (differential module
activity of −0.952, P = 0.0005, randomised permutation test with
2000 permutations), D1 MSNs (−1.43, P < 0.0005) and D2 MSNs
(−1.367, P < 0.0005) (Fig. 6). ATF2 regulon activity was reduced
between OVT73 and controls for D2 MSN (−0.755, P < 0.0005).
ATF4 regulon activity was reduced between OVT73 and controls
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Figure 3. Co-expression gene modules. (A) Co-expression modules generated using the multiscale embedded gene Co-expression network analysis
(MEGENA). A total of 12 modules were identified with the structure outlined in the top right. module hub genes are labelled with connected genes
represented as dots. Genes differentially expressed between OVT73 and controls are coloured in blue. Genes with evidence to support an interaction
with HTT as curated by the HDinHD database [38] were coloured in red. genes that were both differentially expressed and a known HTT interactor were
coloured in green. (B) Co-expression module activity in OVT73 and control cell types. Module activity in cell types were determined by computing the
module eigengene (first principal component) using normalised expression values of module genes. Eigengene values are shown with p-values of the
correlation shown in parentheses in each square. Higher eigengene values indicate higher gene expression of module genes within the cell type.
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Figure 4. CellChat cell–cell communication networks inferred from expression of ligand-receptor pairs. Circle plot showcasing the (A) differential number
of ligand-receptor interactions and (B) differential communication probability between OVT73 and controls for any two cell types. Red arrows indicate
increased number/communication probability in OVT73, blue arrows indicate decreased number/communication probability in OVT73. Thickness of line
indicates greater number/communication probability. The total number of ligand-receptor interactions and total interaction strength for OVT73 and
controls is also shown as bar graphs on the top right. (C) Differential information flow between OVT73 and control cell types for outgoing (ligand
to receptor) and incoming (receptor to ligand) signalling pathways. The information flow for a given signalling pathway is defined as the sum of
communication probabilities of all ligand receptor pairs in the pathway. A positive value indicates more communication in OVT73.
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Figure 5. Heatmap of log2 fold change of selected genes between OVT73 and control cell types implicated in glutamate signalling. Differential gene
transcriptional regulation of (A) glutamate receptors (NMDAR, AMPAR, Kainate, delta receptors), (B) GABAA receptors and glutamate to GABA conversion
genes, (C) glutamate uptake transporters and glutamine-glutamate cycle genes and (D) genes encoding oxidative phosphorylation complexes.

for astrocytes (−0.162, P = 0.001), D1 MSNs (−0.087, P = 0.006) and
D2 MSNs (−0.448, P < 0.0005). ATF7 regulon activity was reduced
between OVT73 and controls for D2 MSNs (−0.265, P < 0.0005)
(Fig. 6B, Supplementary Fig. 14). The greatest sum of difference
in CREB regulon activity between OVT73 and controls (sum of
CREB1, ATF2, ATF4, ATF7 regulon activity in OVT73 subtracted
by the sum of CREB1, ATF2, ATF4, ATF7 regulon activity in con-
trol) was observed in the D2 MSNs. Interestingly, CREB regu-
lon activity was reduced to a lesser degree in D1 MSNs com-
pared to D2 MSNs. Regulon activity of all identified regulons is
available in Supplementary Fig. 12 and Supplementary Fig. 13.
Gene members of each regulon are available in Supplementary
File 8.

Discussion

Revealing the HD pathogenic mechanisms prior to striatal cell
loss and motor and cognitive deficits is likely to reveal disease
modifying pharmaceutical targets. Our group has generated and
characterised a transgenic sheep model of HD (named OVT73)
that displays no striatal cell loss, or overt symptoms but exhibits
many of the molecular changes of prodromal HD [20, 22–26].
To gain further insight into cellular changes in a prodromal
HD model we undertook a single nuclei transcriptomic study in
striatal tissue from 5-year-old OVT73 animals. Differential gene
expression analysis, gene co-expression network analysis and
cell–cell signalling analysis indicate alterations in glutamatergic
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Figure 6. Gene regulatory networks show reduced CREB regulon activity in OVT73. (A) CREB-related transcription factor regulated gene modules
(regulons) network. The associated transcription factor regulon is shown as triangles with gene members of the regulon connected as dots. The two
panels on the right show the log2 fold change of differentially expressed gene members of the regulon between OVT73 and controls in D1 MSNs and
D2 MSNs. (B) Differential regulon activity was computed by subtraction of regulon activity between OVT73 and controls. A randomised permutation
test with 2000 permutations was performed to determine significant differential regulon activity between OVT73 and control cell types. P-values of the
randomised permutation test are shown in the parentheses.

and GABAergic synapses in striatal MSN’s, the most vulnerable
cells in HD.

With respect to the glutamatergic synapse, we observed
transcriptional upregulation of genes encoding ionotropic gluta-
mate receptors including NMDA, AMPA and kainate receptors in
both the D1 and D2 type OVT73 MSNs. Co-expression analysis
also revealed increased transcriptional activity of the gene

modules containing the aforementioned glutamate receptor
genes in the same cell types. Moreover, cell–cell signalling
inferred from ligand-receptor co-expression revealed a disease
state increase in signalling of pathways including neurexin,
neuroligin, neuregulin, neural cell adhesion molecule and ephrin.
These pathways have been implicated in neurite outgrowth,
glutamatergic synapse formation and upregulation result in an
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increase in ionotropic glutamate receptor abundance [44, 59–69].
Previous studies of striatal MSNs from post-mortem human and
HD mouse models found positive correlations between ionotropic
glutamate receptor mRNA levels and receptor protein abundance.
Further, an upregulation of receptor signalling inferred from
ligand binding studies and changes in receptor currents were
also identified [70–74]. Therefore, it is likely that the observed
upregulation of ionotropic glutamate receptor gene transcription
in OVT73 medium spiny neurons indicates increased glutamate
signalling.

Overactivation of ionotropic glutamate receptors has been
shown to lead to an influx of calcium ions promoting excitotoxic
stress, mitochondrial dysfunction, and eventual initiation of cell
death [8, 75]. Mitochondrial dysfunction and oxidative stress
induced by excitotoxic stress is evident by a decrease in the
activity of oxidative phosphorylation (OXPHOS) complexes [76–
78]. In support of this, a recent single nuclei RNA-seq study of
HD patient striatum and HD mouse model tissue also reports
transcriptional downregulation of these OXPHOS complexes in
the MSNs [79]. Similarly, in the OVT73 sheep striatum, we have
detected downregulation of transcription from genes encoding
OXPHOS complexes including complex I, II, III and IV and V in
the OVT73 D1 and D2 MSNs. This downregulation is occurring in
the absence of cell loss in the sheep indicating there must be a
compensatory mechanism.

Previous studies have also shown that excess influx of calcium
ions due to overactivated ionotropic glutamate receptors can also
trigger neuroprotective pathways including phosphorylation of
the transcription factor CREB and activation by CREB binding
protein [57]. Interestingly, we have observed a downregulation
of genes encoding CREB transcription factors (CREB1, ATF2, ATF4
and ATF7) and a reduction of CREB regulon activity inferred from
gene regulatory networks in OVT73 D1 and D2 MSNs, astrocytes,
microglia, neuroblasts and oligodendrocytes. This would suggest
that the CREB transcriptional machinery may be dysregulated in
OVT73. Studies in HD mouse models that have shown that CREB
phosphorylation and activation is lost prior to cell death [58, 80–
82]. In keeping with the earliest stage selective vulnerability of D2
MSN, the greatest reduction in CREB regulon activity was observed
in the OVT73 D2 MSNs. These results provide further evidence for
CREB transcriptional dysregulation in HD and importantly that
this precedes the cell death cascade.

In HD, the mutant CAG tract has been shown to expand somat-
ically throughout disease course particularly in the striatum [83–
87]. It has been proposed that further repeat expansion in indi-
vidual cells leads to increased excitotoxic stress in those cells and
once a cell specific repeat threshold has been exceeded, cell death
processes are activated [88]. The 73-unit polyglutamine repeat
coding tract in the OVT73 line is somatically stable which may
explain why there is an absence of striatal neuronal loss. It is
possible that this allows us to observe in this model a steady
state of compensatory mechanisms activated to prevent damage
due to excitotoxic stress. A core mechanism for the clearance of
synaptic glutamate is through uptake into astrocytic glutamate
transporters (SLC1A2, SLC1A3) and degradation via the glutamine-
glutamate cycle [89, 90]. A reduction in astrocytic glutamate
transporters at both RNA and protein level have been reported
in HD patients and HD mouse models [74, 91, 92]. Conversely, we
have observed an increase in transcription of SLC1A2 and SLC1A3
in OVT73 astrocytes. Given the prodromal nature of the OVT73
model, we postulate that we are observing a disease timepoint
where these compensatory mechanisms remain operational and
have not been overwhelmed as per the later stages of the disease.

Our sheep dataset exclusively only comprises of transcription,
however it has been shown in HD mouse models and HD post
mortem tissue that SLC1A2 and SLC1A3 mRNA levels were posi-
tively correlated with uptake of synaptic glutamate [74, 93, 94]. It is
therefore possible that the upregulation of SLC1A2 and SLC1A3 in
the OVT73 striatum represent a compensatory response to remove
excess synaptic glutamate.

The loss of GABAA receptor mediated neuronal inhibition is
considered a key feature of neuronal dysfunction in HD [95,
96]. We have found in the OVT73 model striatum transcriptional
upregulation of genes encoding GABAA receptor subunits α, β, and
γ specifically in D1 and D2 MSNs. Other studies have revealed that
mRNA levels of GABAA receptors in striatal MSNs (human cases
and HD mouse models) correlate with receptor protein abundance
and receptor signalling inferred through receptor binding stud-
ies and changes in receptor currents [95, 96]. Increased striatal
GABAA receptor activity have been postulated to have a neu-
roprotective effect against excitotoxicity [97, 98] and therefore
increased GABAA signalling in OVT73 may be another mechanism
that mitigates glutamate induced stress providing neuronal pro-
tection in the OVT73 striatum.

A limitation of our study is the absence of functional or other
analyses to confirm the transcriptional differences identified in
the present data. Unfortunately, we did not have further tissue
from these animals for further analysis. Future functional char-
acterisation in other cohorts will be critical, not only to confirm
results summarised in this study, but also for comprehensive
characterisation of the overall OVT73 sheep model.

The transcriptional alterations are encouraging evidence for an
active cell stress response to excess synaptic glutamate. This pro-
tective response has prevented or delayed the excitotoxic process
in the OVT73 striatum as there is no cell loss. These observations
also suggest that glutamate induced stress may be present long
before the initiation of the cell death cascade. Our single nuclei
RNA-seq observations corroborates reports of HD mouse models
that showcase excitotoxicity begins early on in disease phase
before the onset of symptoms [99–101]. Current experimental HD
therapeutics targeting glutamate mediated excitotoxicity have
included NMDA receptor antagonists (Memantine, Amantadine)
that reduce the overactivation of NMDA receptors which have
been utilised in clinical trials to limited success [102–105]. One
potential explanation for the lack of efficacy of these drugs is
that the therapeutic agents were administrated too late in disease
progression where the consequences of cell death (neuroinflam-
matory cytokines, proinflammatory markers and reactive oxy-
gen species) takes over the momentum [106]. In support of this
proposition striatal neurons of HD mouse models have shown
to gradually become resistant to excitotoxicity modifying agents
following disease progression [107–110]. The findings of our single
nuclei RNA-seq study indicate that striatal cells can maintain
steady state disease resilience and early intervention for instance
glutamate depletion may prevent the cell death cascade and lead
to better clinical outcomes.

Methods and materials
Ovine samples
The cohort maintenance and tissue sampling has been reported
in previous publications [22, 27]. Briefly, animals were maintained
in a certified, purpose-made research facility at the South Aus-
tralian Research and Development Institute (SARDI). Animals
were kept in large paddocks as a mixture of wild-type controls
and transgenic animals and fed ad libitum. Post-mortem striatal
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samples were taken from six 5-year-old OVT73 (3 females, 3
males) HD sheep as previously described [22, 27] and six age-
matched wild-type controls (2 females, 4 males). Tissue collec-
tion was performed in accordance with the SARDI/PIRSA Ani-
mal Ethics Committee (approval no. 19/02 and 05/12). All experi-
ments performed adhered to the recommendations in the ARRIVE
guidelines [111]. In brief, a lethal dose of pentobarbitone sodium
solution (Lethabarb, 1 ml/2 kg body weight) was administrated
intravenously, the brains were removed from the skulls, dissected
into the 5 distinct blocks (Fig. 1) and snap frozen initially on dry
ice and then in liquid nitrogen. Samples were wrapped in tinfoil
and stored at −80◦C until further use.

Nuclei isolation for single nuclei RNA-seq
Nuclei were extracted from frozen anterior ventral-medial stri-
atal (Supplementary Fig. 1) tissue utilising an adapted protocol
from Krishnaswami et al., 2016 [112]. Briefly, approximately 50–
100 mg of brain tissue was transferred to a dounce homogenizer
containing 1 ml homogenization buffer—HB (250 mM sucrose,
25 mM KCl, 5 mM MgCl2, 10 mM Tris buffer pH 8.0, 1 μM DTT,
1X protease inhibitor (Sigma), 0.4 U/μl RNaseIn (ThermoFisher
Scientific), 0.2 U/μl SuperaseIn (ThermoFisher Scientific), 0.1%
Triton X-100). Tissue was homogenised using 5 strokes with the
loose dounce pestle A, followed by 10–15 strokes of tight dounce
pestle B. The homogenate was filtered through a 40 μm strainer
into 5 ml Eppendorf tubes and centrifuged at 1000 rcf (4◦C) for
8 min. The supernatant was removed, and the pellet was resus-
pended in 250 μl of HB. A 50%–29% iodixanol gradient (OptiPrep™
Density Gradient Medium, Sigma) was prepared to allow removal
of the myelin layer. 250 μl of 50% iodixanol was added to the
nuclei-HB mixture and slowly layered on top of 500 μl of 29%
iodixanol in a new Eppendorf tube. The resultant gradient was
centrifuged at 13 000 rcf (4◦C) for 40 min. The supernatant and
myelin were removed, and the purified nuclei pellet was resus-
pended in a solution containing 1 ml PBS, 1% BSA and 0.2 U/μl
RNAse inhibitor. 5 μl of resuspended nuclei was stained with 5 μl
trypan blue and the quality and number of nuclei was assessed
using the Countess II FL Automated Cell Counter (ThermoFisher
Scientific). To reduce the cost per library, nuclei suspensions
from different samples were pooled at equal concentrations in
groups of 2 (Supplementary Fig. 2) prior to library preparation and
demultiplexed as described below.

Library preparation and single nuclei RNA
sequencing
The droplet-based Chromium methodology from 10X Genomics
was utilised for the generation of single nuclei libraries. Libraries
were prepared according to the Chromium Next GEM Single
Cell 3’ Reagent Kits v3.1 as per manufacturer’s instructions.
The single nuclei RNA-seq libraries were sequenced on the
HiSeq XTen platform. Alignment of reads was performed using
the CellRanger v7.0.0 pipeline with STAR v2.7.2a to the sheep
Oar_rambouillet_v1.0 reference genome and annotation (Ensembl
release 107). Summary statistics for single nuclei RNA-seq
libraries are shown in Supplementary Fig. 3.

Sample demultiplexing
Demultiplexing of pooled nuclei associated barcodes in the
CellRanger computed alignments utilized the genetic variation
between individual samples. In brief, regions of the transcrip-
tome with high read coverage (> 50) were identified using
the featureCounts function from the Subread package [113,
114]. These regions were used as input into Freebayes variant

caller to find genomic variants for each barcode. A filtering
step was subsequently applied using BCFtools [115] to remove
low confidence variant calls (QUAL score < 30). Barcodes were
assigned to sample ID by genotype at variant loci with the scSplit
algorithm [116]. scSplit employs a hidden state model to assign
nuclei associated barcodes from the pooled sample to respective
groups based on an expectation-maximisation framework [116].
scSplit input parameters included an expected number of
mixed samples of 2 and an estimated doublet percentage of
4% (scSplit -n 2 -d 0.04). scSplit demultiplexing outcome of
barcodes is available in Supplementary File 1. The filtered unique
molecular identifiers (UMI) feature-barcode matrices generated
by CellRanger were split according to the demultiplexed barcodes.

Quality control and cell clustering
The filtered unique molecular identifiers (UMI) feature-barcode
matrices were processed with ICARUS software [117, 118] devel-
oped by our group which utilizes the Seurat v4.0 R package [119].
A quality control filter was applied to remove low quality nuclei
with gene counts less than 200 or more than 7500. Additionally,
nuclei with mitochondrial reads (> 5%) were removed. From the 12
samples, a total of 28 234 high quality nuclei were recovered with
an average of 1357 median genes per nucleus (range: 1292–2607),
an average of 2672 median unique molecular identifiers (UMIs)
per nucleus (range: 1569–3877) and an average percentage of
transcripts originating from mitochondrial genes of 1.04% (range:
0.5%–2.02%) (Supplementary Fig. 4).

The read counts were normalised and scaled using the
NormalizeData function in Seurat with parameters normalisa-
tion.method = LogNormalize and scale.factor = 10 000. Dimen-
sionality reduction was performed on normalised read counts
using a set of 3000 top variable genes identified through the
FindVariableFeatures function in Seurat. All sheep datasets (6
OVT73 and 6 Control) were integrated using harmony [120] and
cell clustering was performed with the first 30 dimensions, k-
nearest neighbour value of 20 and the Louvain community
detection algorithm. Cell type annotation was performed
by comparison of cluster marker genes identified using the
FindAllMarkers function in Seurat with parameters min.pct = 0.25
and logfc.threshold = 0.25 (Supplementary File 2 for list of cell type
marker genes) against known striatal cell type markers identified
in published single cell RNA-seq datasets [36, 79, 121]. Medium
spiny neurons were classified into 3 sub-categories (D1, D2 and
Eccentric) using cell markers described in the DropViz atlas [36].

Differential expression analyses and gene
ontology enrichment
Differential expression analyses were conducted for each cell type
separately between OVT73 cases and controls. The mixed model-
based MAST statistical test [122] was performed to identify differ-
entially expressed genes (DEGs). Genes with a log2 fold change
of > 0.1, p-value adjusted for false discovery rate (FDR < 0.05)
and expressed in at least 10% of nuclei from either condition
(OVT73 or control) were considered to be differentially expressed.
A Gene Ontology (GO) over-representation analysis was performed
on differentially expressed genes using the enrichGO function in
the R package ClusterProfiler [123], which identifies enriched GO
terms using Fisher’s exact test. A list of DEGs was used as input
into enrichGO. GO terms were extracted from the NCBI annotation
of Ovis aries, retrieved with record AH107722 with the R package
AnnotationHub [124].

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae087#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae087#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae087#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae087#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae087#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae087#supplementary-data
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Gene co-expression analysis
Co-expression analysis was performed for the 3000 most vari-
able genes (identified by the FindVariableFeatures function in
Seurat) across all OVT73 and control samples. MEGENA (v1.5)
was used to extract significant gene interactions and construct
co-expression gene modules [37]. Default parameters detailed in
the MEGENA vignette were used, including the use of Pearson’s
correlations, FDR threshold of 0.05, module and hub significance
P-values of 0.05 and a minimum module size of 10 genes. Modules
were visualised graphically using Cystoscape v3.9.1 [125]. Module
activity in cell types were determined by computing the module
eigengene (first principal component) using normalised expres-
sion values of module genes. Higher eigengene values indicate
higher gene expression of module genes within the cell type.
The WGCNA package was used to compute module eigengenes
with the moduleEigengenes function. Differential module activity
between OVT73 and control cell types was computed as a subtrac-
tion of module eigengenes of the two conditions. A randomised
permutation test was used with 2000 permutations to identify sig-
nificant differential module activity between OVT73 and control
cell types.

Additionally, Gene Ontology analysis of module genes was
performed using the moduleGO function in the DGCA R package
with a p-value threshold of 0.05. Gene sets in each module were
examined for its enrichment of OVT73 versus control differentially
expressed genes. Gene set enrichment analysis was performed
using the enricher function in the clusterProfiler v4.6.0 R package
[123]. A minimum and maximum gene set size of 10 and 500 was
used with adjusted p-value FDR threshold of 0.05.

Gene regulatory network analysis
Examination of gene regulatory networks for cell types across
OVT73 and control samples was conducted using R SCENIC
v1.2.0 [126]. SCENIC performs cis-regulatory transcription factor
binding motif analysis on a set of co-expressed transcription
factors and genes. Transcription factor genes were defined
from the curated list by Lambert et al., [127]. Given, a public
sheep transcription factor motif database was not available,
a custom transcription factor motif database for sheep was
made for this study. The motif database was generated as
follows, the 500 bp sequence upstream and 100 bp sequence
downstream of the transcriptional start site (TSS) for each gene
was extracted from the oar_rambouillet v1.0 reference genome
(ensemble version 107). Additionally, the 10 kb sequence upstream
and downstream of the TSS were also extracted. The files are
available on zenodo (https://doi.org/10.5281/zenodo.8057929)
under oar_rambouillet_v1.0_500bp_up_100bp_down.fa and oar
_rambouillet_v1.0_10kbp_up_10kbp_down.fa. These regions were
assessed for transcription factor binding motifs based on the
2022 SCENIC+ motif collection (https://resources.aertslab.org/
cistarget/motif2tf/) using the create_cistarget_motif_databases.py
function of the create_cisTarget_databases package (https://
github.com/aertslab/create_cisTarget_databases). Code used
to generate database is shared under https://doi.org/10.5281/
zenodo.8057929.

The 3000 most variable genes (identified by the FindVariable-
Features function in Seurat) across all OVT73 and control sam-
ples were used as inputs into SCENIC. Co-expression modules
were constructed using GENIE3 [126, 128] and transcription factor
motifs were scored using RcisTarget v1.18.2. Transcription factor-
regulated gene modules (regulons) with 10 or more genes were
considered. The activity of each regulon in OVT73 and control cell

types (regulon activity) were scored using the AUCell algorithm
which computes the enrichment of regulons as an area under the
recovery curve across a ranking of all genes in a cell based on their
normalised expression values. A high regulon activity indicates
genes within the regulon are positively regulated by the transcrip-
tion factor. Regulons were visualised graphically using Cystoscape
v3.9.1 [125]. Differential regulon activity between OVT73 and con-
trol cell types was computed as a subtraction of regulon activity
of the two conditions. A randomised permutation test was used
with 2000 permutations to identify significant differential regulon
activity between OVT73 and control cell types. Additionally, a
regulon specificity score (RSS) was determined which employs the
Jensen-Shannon divergence metric to assess cell-type specificity
of regulon activity [126]. Regulons in cell types with a specificity
score of 1 indicates exclusive expression of the regulon in that
one cell type, while a specificity score of 0 indicates the regulon is
evenly expressed across all cell types.

Cell–cell communication analysis
The inference of cell signalling crosstalk through the transcription
levels of ligand receptor pairs was examined using CellChat.
CellChat incorporates a comprehensive database of ligand recep-
tor interactions, soluble agonists/antagonists and stimulatory/in-
hibitory membrane bound co-receptors to infer cell–cell commu-
nications from single cell RNA-seq data based on mass action
models, social network analysis tools and pattern recognition
methods [39]. In brief, intercellular communications were inferred
through 3 steps; (1) identification of differentially expressed lig-
ands and receptors genes for each cell type using the Wilcoxon
rank sum test with a p-value threshold of 0.05. (2) A communica-
tion probability (interaction strength) is computed by modelling
ligand-receptor interactions using the law of mass action on
average expression values of a ligand in one cell group and a
receptor of another cell group. This calculation accounts for the
number of cells within each cell group. (3) Significant interactions
are identified using a permutation test that randomly permutes
cell group labels and recomputes the interaction probability.

A comparison of cell–cell communication in OVT73 versus con-
trol cell types was performed using default parameters detailed
in the CellChat v1.6.1 vignettes. Ligand-receptor interactions were
extracted from the human CellChat database. Interactions involv-
ing 50 or less nuclei were filtered out using the filterCommunica-
tion function.
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