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resonance imaging was performed on 192 partici-
pants in the BNET study, a longitudinal and obser-
vational trial of community-dwelling adults aged 70 
or older. Functional brain networks were generated 
for resting state and during a motor imagery task. 
Regression analyses were performed between eSPPB 
component scores (gait speed, complex gait speed, 
static balance, and lower extremity strength) and 
BMI with SMN and DAN connectivity. Gait speed, 
complex gait speed, and lower extremity strength 
significantly interacted with BMI in their associa-
tion with SMN at rest. Gait speed and complex gait 
speed were interacted with BMI in the DAN at rest 
while complex gait speed, static balance, and lower 
extremity strength interacted with BMI in the DAN 
during motor imagery. Results demonstrate that dif-
ferent components of physical function, such as 

Abstract  Declining physical function with aging 
is associated with structural and functional brain 
network organization. Gaining a greater understand-
ing of network associations may be useful for target-
ing interventions that are designed to slow or prevent 
such decline. Our previous work demonstrated that 
the Short Physical Performance Battery (eSPPB) 
score and body mass index (BMI) exhibited a statis-
tical interaction in their associations with connectiv-
ity in the sensorimotor cortex (SMN) and the dorsal 
attention network (DAN). The current study exam-
ined if components of the eSPPB have unique associ-
ations with these brain networks. Functional magnetic 
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balance or gait speed and BMI, are associated with 
unique aspects of brain network organization. Gain-
ing a greater mechanistic understanding of the asso-
ciations between low physical function, body mass, 
and brain physiology may lead to the development of 
treatments that not only target specific physical func-
tion limitations but also specific brain networks.

Keywords  Brain networks · Magnetic resonance 
imaging · Community structure

Introduction

Age-associated loss of mobility compromises activi-
ties of daily living (ADLs) that are the foundation 
of older adults ability to remain independent in their 
communities [1]. Furthermore, loss of physical func-
tion is often a precursor to further mobility loss, 
pressure ulcers, falls, urinary incontinence, and mal-
nutrition [2]. It is also well documented that obesity, 
assessed by body mass index (BMI), is a major risk 
factor for the loss of mobility [3]. A large and grow-
ing body of literature supports the importance of neu-
ral mechanisms in age-related mobility decline [4]. 
Most studies have examined these mechanisms in 
association with irreversible brain pathologies (e.g., 
white matter disease) [5, 6]. Less is known about the 
associations between physical function and brain net-
works in older adults and whether associations are 
moderated by BMI.

In the past few years, studies have begun to exam-
ine how functional brain networks relate to physical 
function in older adults. The sensorimotor network 
(SMN) is known to be involved in the processing of 
physical stimuli and coordinating motor responses. 
Low efficiency of local connectivity in the SMN in 
older adults is associated with poor gait stability [7]. 
Similarly, slow gait speed is associated with low lev-
els of resting-state connectivity in the basal ganglia 
[8]. Brain networks associated with cognition may 
also be important in determining physical function. 
The dorsal attention network (DAN) is known to be 
involved in higher order motor coordination, such 
as balance and complex movement. Recently, it was 
demonstrated [9] that older adults with better perfor-
mance on a manual visual-motor task have stronger 
connectivity within the SMN and DAN. Our previ-
ous work [10] showed that connectivity in the DAN 

was higher during a motor imagery task that engages 
visuospatial attention compared to resting state. SMN 
exhibited the opposite findings with connectivity 
decreased during the motor imagery task likely due 
to the desynchronization that occurs during motor 
imagery [11]. Another indication that cognition and 
cognition-related networks may be important deter-
minants of physical function is that much of the 
emerging work examining the neural correlates of 
mobility decline has been in people with mild cog-
nitive impairment (MCI), with poor physical func-
tion being associated with alterations in connectivity 
between the SMN and other brain regions [12–14].

Given the complexity of whole-brain networks, it 
is helpful to assess the connectivity of subnetworks 
within the context of the whole. Network modularity 
[15] is one of the most common methods to divide 
a network into communities such that the regions 
within each community are more interconnected with 
each other than with regions in other communities. 
Once networks have been divided into communi-
ties using modularity, it is possible to test hypothe-
ses about how the spatial consistency of community 
structure in specific subnetworks varies between 
groups or by other measures of interest [16, 17].

Previously, we observed that the spatial pattern 
of the SMN and DAN communities was disrupted in 
people with poorer physical function, and this rela-
tionship was magnified as BMI increased [18]. The 
current study is an extension of that recent report of 
associations that both physical function and body 
mass index (BMI) have with functional brain net-
work community structure within the SMN and 
DAN. Physical function was assessed by scores on 
the expanded Short Physical Performance Battery 
(eSPPB) [19], which is used to measure the ability of 
older adults to coordinate movement for ADLs. The 
four components of the eSPPB assess gait speed with 
a 4-m usual paced walk, static balance using multi-
ple standing positions, lower extremity strength with 
a chair-stand test, and complex gait speed using a nar-
row walk test. Thus, it is a composite measure of gait 
speed, balance, and lower extremity strength.

The unique roles of the SMN and DAN in neural 
processes, as well as their relationships with physical 
function [20, 21], led to the following two hypoth-
eses. Hypothesis 1: gait speed, lower extremity 
strength, and complex gait speed would be associated 
with the SMN as this circuit is known to generate 
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motor commands and is essential for moving the 
lower extremities. Hypothesis 2: balance and com-
plex gait speed would be associated with the DAN 
as this circuit controls spatial attention necessary for 
complex gait movements and balance. These associa-
tions would be most notable during a motor imagery 
task that involved spatial navigation through complex 
environments. In addition, associations were hypoth-
esized between lower extremity strength and DAN 
connectivity as this it has been emphasized that per-
ception and spatial attention are embodied processes 
[22] and strength in the lower extremities is highly 
relevant to the motor imagery task. It is predicted that 
all associations will be moderated by BMI such that 
higher subscale scores and lower BMI will be associ-
ated with stronger community structure.

Because the composite score of the eSPPB con-
sists of four distinct subscales, we explore the mod-
erating effects of BMI on each subscale to determine 
whether any observed effects are specific to particu-
lar domains of physical function. For example, stud-
ies have shown that BMI is inversely related to com-
plex motor coordination; thus, domains of functions 
within the eSPPB such as complex gait speed and 
balance may have stronger interactions with BMI in 
their association with the community structure of the 
SMN and DAN. Analyses were run on brain networks 
generated using functional magnetic resonance imag-
ing (fMRI) data of rest and motor imagery task con-
ditions collected from participants in the Brain Net-
works and Mobility (B-NET) study (n = 192).

Methods

B‑NET study design

B-NET (NCT0340427) was a longitudinal, observa-
tional trial of community-dwelling older adults (aged 
70 and older) recruited from Forsyth County, NC, 
and surrounding areas. Recruitment took place via 
direct mailings, word of mouth, flyers, and a com-
munity newsletter distributed by the Sticht Center for 
Healthy Aging and Alzheimer’s Prevention at Wake 
Forest University School of Medicine. Each partici-
pant agreed to come in for two baseline visits and 
three follow-up visits over 30 months. The data used 
for this manuscript is from the baseline visits, which 
included brain MRIs, extensive health histories, and 

cognitive and physical function testing. The longitu-
dinal data collection concluded in July of 2023.

Participants

B-NET enrollment included 192 participants over 
the age of 70. Potential participants were excluded 
from the study on the basis of being a single or dou-
ble amputee, having musculoskeletal implants that 
impeded functional testing (e.g., joint replacements), 
the inability/unwillingness to complete a brain MRI 
scan, and dependency on assistance for ambulation. 
Neurological/psychiatric exclusion criteria were as 
follows: clinical diagnosis of any disease affecting 
mobility (e.g., Parkinson’s disease), prior traumatic 
brain injury, history of brain tumor, recent history of 
seizures, diagnosis of any psychotic disorder, alco-
hol use disorder, or any evidence of impaired cogni-
tive function as measured by the Montreal Cognitive 
Assessment (MoCA). A score of 20 or lower on the 
MoCA was considered exclusionary, and scores from 
21 to 25 were reviewed by the study neuropsycholo-
gist to determine eligibility on an individual basis. 
Other exclusion criteria included hospitalization or 
surgery within the past 6  months, uncontrolled or 
serious chronic disease, uncorrected major hearing or 
vision problems, plans to relocate within 24 months, 
and active participation in a behavioral intervention 
trial. Our exclusions are in accordance with prior rec-
ommendations [23] to gain a clearer picture of age-
related change without confounds associated with 
cognitive decline. For clarity on participants that 
were excluded from participation, a Strengthening the 
Reporting of Observational Studies in Epidemiology 
(STROBE) flow chart diagram [24] is included in the 
supplemental Methods (Figure  S1). There were two 
participants missing the complex gait speed scores 
so analyses for this variable were limited to 190 par-
ticipants with all other analyses included the full 192 
participants. Extensive demographic characteristics 
were presented in a prior publication [18], and an 
abbreviated summary of characteristics relevant to the 
current study is presented in Table 1 of the “Results” 
section (Participant Characteristics). All partici-
pants gave written informed consent in this study as 
approved by the Wake Forest University School of 
Medicine Institutional Review Board (IRB, protocol 
#IRB00046460).
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Baseline study measurements

At the first BNET baseline visit, all participants com-
pleted an extensive evaluation. Measures directly 
relevant to the current manuscript are as follows: 
self-reported age, sex, height, and weight. BMI was 
calculated using the participant’s height and weight 
measured using a wall-mounted stadiometer and a 
calibrated scale, respectively. The eSPPB was admin-
istered at the first visit, and MRI scans were collected 
during another baseline visit within approximately 
1 month of the first visit; the eSPPB and MRI assess-
ments are described below.

Expanded Short Physical Performance Battery 
(eSPPB)

The physical function of participants was assessed 
using the eSPPB test [19], which was adapted from 
the SPPB test developed by Guralnik et  al. [25] to 
address effects that could limit the utility of the tra-
ditional SPPB in well-functioning populations. The 
original SPPB [25] assesses overall physical function 

by combining assessments of the following: (1) a 4-m 
timed usual pace walk; (2) a balance test involving 
side-by-side, semi-tandem, and full-tandem stances; 
and (3) repeated trials of standing up from sitting 
in a chair. The eSPPB expands the assessments to 
improve the sensitivity of the test in higher function-
ing older adults [19]. The four components of the 
eSPPB test allowed assessment of different dimen-
sions of physical function. In the balance assessment 
(BAL), participants were asked to stand in a side-by-
side posture for 10 s, and then hold the semi-tandem, 
tandem, and one-leg positions for 30 s each, reflect-
ing individuals’ ability to coordinate movement and 
maintain balance. Two tests were used to measure 
gait: the participants’ gait speed during a 4-m walk 
(GS) and the participants’ “narrow walk” gait speed 
for a 4-m walk during which they were required to 
keep their steps between a set of parallel lines 20 cm 
apart (complex gait speed or CGS). The gait speed 
assessments are useful in determining individuals’ 
ability to ambulate effectively, and, in the narrow 
walk condition, to ambulate with more precision. To 
assess lower extremity strength (LES), participants 
were timed while standing up from a seated position 
five times without using their arms. This test evalu-
ates the physical strength as well as how quickly 
participants can recover from a movement and how 
much repetition they can withstand. Scores for each 
test within the eSPPB assessment ranged from 0 
to 1 based on a ratio of the measured value to the 
best possible performance. Adding across the four 
components gives a continuous score from 0 to 4. 
Although the different subcomponents of the eSPPB 
were designed to assess clinically relevant aspects of 
physical function, they are not statistically independ-
ent. A correlation matrix showing the relationships 
between the four subcomponents is included in sup-
plemental Table S1.

Brain imaging collection, processing, and network 
generation

An anatomical T1-weighted 3D volumetric 
MPRAGE and two functional blood oxygenation 
level-dependent (BOLD) scans were collected on 
a Siemens 3  T Skyra MRI scanner with 32-chan-
nel head coil. During the resting-state fMRI scan, 
a fixation cross was displayed on the monitor, and 
for the motor imagery visualization task fMRI scan, 

Table 1   Participant characteristics

# Complex gait speed scores were not available for two partici-
pants. All statistical analyses for complex gait speed utilized 
190 participants. The eSPPB score is based on 190 participants 
as it requires complex gait speed

n 192

Age (years) 76.4 (4.7)
Race

  Caucasian/White 173
  African American/Black 18
  American Indian/Alaskan Native 1
  Asian 0

Ethnicity
  Hispanic/Latino 2

Sex
  Men 84
  Women 108
  BMI (kg/m2) 28.4 (5.6)

Physical function measures
  Balance score 0.72 (0.262)
  Gait speed score 0.49 (0.100)
  Complex gait speed score# 0.40 (0.193)
  Lower extremity strength score 0.40 (0.119)
  eSPPB score# 2.00 (0.523)
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continuous feed videos adapted from the Mobility 
Assessment Tool short-form (MAT-sf) [26, 27] were 
played on the monitor. Two versions of this motor 
imagery visualization, “easy” task and “hard” task 
were presented in the scanner. Our prior assess-
ment of the tasks revealed that DAN community 
structure was strongest during the easy task in this 
population [10] and was thus the focus of the analy-
ses presented here. Images were preprocessed using 
Statistical Parametric Mapping version 12 (SPM12, 
http://​www.​fil.​ion.​ucl.​ac.​uk/​spm), FMRIB’s “topup” 
Software Library (FMRIB Software Library v6.0), 
and Advanced Normalization Tools (ANTs). Struc-
tural images were segmented based on gray and 
white matter using SPM12. Gray and white mat-
ter segmented images were then summed to gener-
ate a mask of brain parenchyma. Images were then 
masked and spatially normalized according to the 
Montreal Neurological Institute (MNI) template 
using ANTs. Functional images preprocessing 
included distortion correction, slice time correc-
tion, realignment, coregistration with native-space 
anatomical images, and warping to MNI space using 
transformation information from ANTs. The motion 
scrubbing procedure developed by Power and col-
leagues [28] was used to correct head motion arti-
facts during the scan. Signals from total white mat-
ter, total gray matter, total CSF, and the 6 rigid-body 
motion parameters indicated from the first realign-
ment procedure were removed using regression. This 
was followed by band pass filtering (0.009–0.08 Hz) 
using cutoffs established in early studies of resting-
state brain network organization [29]. Further details 
of structural and functional image processing are in 
the supplemental eMethods.

Networks were generated by performing voxel-
wise cross-correlations on each voxel pair. The 
resulting matrix is a weighted brain network, where 
each voxel is a node and correlations between nodes 
are edges. An empirically determined threshold was 
calculated to satisfy the equation S = log(N)/log(K), 
where S = 2.5 and K is the average number of con-
nections per node [30]. The threshold was applied to 
the matrix to dichotomize the data and create a final 
binary adjacency matrix, Aij, an N × N matrix (where 
N is the number of network nodes, ~ 20,000). Values 
at or above the threshold were set to 1 indicating the 
presence of a connection, and those below the thresh-
old were set to 0.

Community structure analyses

Modularity (Q) [15] was used to identify network 
community partitions for each study participant in 
each condition using a dynamic Markov process [31]. 
The partitioning procedure resulted in each individual 
participant’s brain network being divided into cat-
egorical communities. Each participant’s communi-
ties were compared to a priori templates for SMN and 
DAN to produce scaled inclusivity (SI) values for all 
brain voxels [32, 33]. The resulting maps, SMN-CS 
and DMN-CS, indicated the level of spatial alignment 
of the participant’s communities with the SMN and 
DAN, respectively. Values from these maps were used 
in the regression analyses detailed below. Further 
information on the scaled inclusivity analyses can be 
found in the supplemental Methods Section 1.3.3.

Statistical analyses

Distance regression analyses [16] were used to assess 
associations between predictor variables (e.g., eSPPB 
components) and brain network community structure. 
For each combination of condition (rest and task) 
and network (SMN and DAN), a separate model was 
used. The Jaccard distance (see Methods Section 1.4) 
was used to quantify the distance between the SI 
community structure maps and served as the depend-
ent variable. These distances were calculated with a 
3-dimensional SI brain map of the network commu-
nity structure for each participant. Distance (absolute 
distance between participants for independent vari-
ables) was computed between every subject pair to 
create a distance matrix for each independent variable 
(eSPPB component, BMI, sex, and head motion). 
Our prior study [18] assessed the relationships 
between age, sex, and race and SMN and DAN con-
nectivity. Only sex was significant and was the only 
demographic used in the current analyses. All pri-
mary models included the eSPPB component*BMI 
interaction.

For the primary analyses presented in the manu-
script, BMI was treated as a continuous measure. 
Although there are advantages to using the continu-
ous measure, there can also benefits to examining 
BMI using traditional categories. One particular ben-
efit is the intuitive understanding that people have 
of the BMI categories. We performed exploratory 
analyses using three BMI categories (normal weight, 

http://www.fil.ion.ucl.ac.uk/spm
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overweight, and obesity) to determine if results were 
comparable to the continuous model. Qualitatively, 
the continuous and categorical analyses were quite 
similar. The outcomes of these analyses are presented 
in the supplemental Results section (Tables S4 and S5 
and Figures S7 and S8).

For all analyses (continuous BMI and categori-
cal BMI), a linear statistical model with individual-
level effects [16] was used to regress community 
structure distance against predictor variable dis-
tances. An adaptive false discovery rate was applied 
to correct for multiple comparisons within each 
subnetwork [34, 35]. For any models where the 
eSPPB component*BMI interaction was not signifi-
cant, a reduced model was run without the interac-
tion to assess mains effects of the eSPPB compo-
nent and BMI. Further information on the statistical 
analyses can be found in the supplemental Methods 
Section 1.4.

Results

Population characteristics

Results from baseline measures of physical function 
are shown in Table  1, along with participant demo-
graphics. The average participant age was 76.4 years 
(SD 4.72). Among the 192 participants, 173 people 
self-identified as White, 18 as African American/
Black, and one as Asian. Two of the White partici-
pants identified as Hispanic/Latino ethnicity. There 
were 84 men and 108 women. The average BMI of 
participants was 28.35  kg/m2 (5.62). The average 
eSPPB score was 2 out of 4 with a standard deviation 
of 0.523. The average balance score for the popula-
tion was a 0.72 out of 1, with a standard deviation of 
0.262. Scores for gait speed, complex gait speed, and 
lower extremity strength were all comparable, with 
averages of 0.49 (± 0.262), 0.40 (± 0.10), and 0.40 
(± 0.119), respectively.

eSPPB and BMI associations with SMN‑CS

Results from models examining the interaction 
between each of the four eSPPB components and 
BMI for the SMN-CS at rest and during the motor 
imagery task are shown in Table 2. Simplified results 
are shown in Table  4. The eSPPB components that 

showed significant interactions with BMI were com-
plex gait speed (p = 0.032) and lower extremity 
strength (p = 0.018). In both cases, the interaction was 
synergistic with higher physical function and lower 
BMI associated with higher spatial consistency of 
community structure.

Although there is not a simple interpretation of 
the estimates for the distance regression used, differ-
ences across components can be readily appreciated 
in the interaction plots (Fig. 1) where it is clear that 
the interaction between BMI and lower extremity 
strength is nearly twice as large as it is for complex 
gait speed. Spatial patterns of the associations can 
be seen in the brain maps of the community struc-
ture (Figure  S2). No significant component by BMI 
interactions was seen with SMN-CS during the motor 
imagery task.

For each model without a significant interaction, a 
reduced model was run to assess main effects in the 
absence of the interaction. The gait speed by BMI 
interaction approached, but did not reach, significance 
at rest (p = 0.053). In the model without the interac-
tion and both gait speed and BMI were each indi-
vidually significant. In the balance model, BMI was 
significantly associated with SMN-CS at rest, but 
balance was not. There were no significant effects for 
eSPPB components or BMI in the SMN during the 
motor imagery task (Table 4 and Table S2).

eSPPB and BMI associations with DAN‑CS

Results from models examining the interaction 
between each of the four components and BMI for the 
DAN-CS at rest and during the motor imagery task 
are shown in Table 3. During the rest condition, the 
gait speed by BMI interaction (p < 0.0001) and com-
plex gait speed by BMI interaction (p = 0.0013) were 
both significant. During the motor-imagery task, the 
balance by BMI (p = 0.0001), complex gait speed by 
BMI (p = 0.0229), and lower extremity strength by 
BMI (p = 0.003) interactions were significant.

As found in the SMN, all interactions in the DAN 
were synergistic with higher physical function and 
lower BMI being associated with higher spatial con-
sistency of community structure. Interaction plots 
and maps of the community structure for the DAN 
are presented in Figures  S3–6 in the Supplement. 
Reduced models that did not include the eSPPB 
component by BMI interactions did not identify 
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Table 2   Sensory motor network: interaction models for extended Short Physical Performance Battery and body mass index

Network Condition Variable Coefficient
Estimate

Standard 
Error T Score p Value Corrected 

p Value

SMN
Rest

BAL 0.0004 0.0016 0.2623 0.7931 0.8574

BMI 0.0003 0.0001 3.6184 0.0003 0.0011

BAL*BMI 0.0002 0.0002 1.1527 0.2491 0.3266

Sex 0.0015 0.0004 3.4469 0.0006 0.0019

Head Motion 0.0001 0.0000 1.9822 0.0475 0.0784

GS 0.0083 0.0047 1.7712 0.0765 0.1113

BMI 0.0003 0.0001 3.1513 0.0016 0.0043

GS*BMI 0.0008 0.0004 1.9372 0.0527 0.0827

Sex 0.0015 0.0004 3.3914 0.0007 0.0021

Head Motion 0.0001 0.0000 1.9962 0.0459 0.0784

CGS 0.0000 0.0023 0.0118 0.9906 0.9906

BMI 0.0003 0.0001 3.1628 0.0016 0.0043

CGS*BMI 0.0005 0.0002 2.1398 0.0324 0.0648

Sex 0.0015 0.0004 3.3690 0.0008 0.0022

Head Motion 0.0001 0.0000 1.9889 0.0467 0.0784

LES 0.0059 0.0039 1.5355 0.1247 0.1691

BMI 0.0003 0.0001 2.9429 0.0033 0.0079

LES*BMI 0.0009 0.0004 2.3680 0.0179 0.0398

Sex 0.0015 0.0004 3.3921 0.0007 0.0021

Head Motion 0.0001 0.0000 1.9771 0.0480 0.0784
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Table 2   (continued)

BMI 0.0000 0.0001 0.4396 0.6602 0.7439 

BAL*BMI 0.0001 0.0002 0.8495 0.3956 0.4869 

Sex 0.0007 0.0004 2.0764 0.0379 0.0736 

Head Motion 0.0001 0.0000 4.6864 <0.0001 <0.0001 

GS -0.0039 0.0039 -0.9882 0.3231 0.4039 

BMI 0.0000 0.0001 0.4583 0.6468 0.7391 

GS*BMI 0.0004 0.0004 1.0790 0.2806 0.3621 

Sex 0.0007 0.0004 2.0682 0.0386 0.0736 

Head Motion 0.0001 0.0000 4.7018 <0.0001 <0.0001 

CGS -0.0007 0.0019 -0.3734 0.7089 0.7876 

BMI 0.0000 0.0001 0.1847 0.8535 0.8984 

CGS*BMI 0.0002 0.0002 1.0367 0.2999 0.3808 

Sex 0.0007 0.0004 1.8165 0.0693 0.1027 

Head Motion 0.0001 0.0000 2.3192 0.0204 0.0441 

LES -0.0002 0.0032 -0.0645 0.9486 0.9606 

BMI 0.0000 0.0001 0.5504 0.5820 0.6748 

LES*BMI 0.0003 0.0003 0.7714 0.4405 0.5339 

Sex 0.0007 0.0004 2.0572 0.0397 0.0738 

Head Motion 0.0001 0.0000 4.7017 <0.0001 <0.0001 

Task BAL -0.0004 0.0014 -0.2682 0.7886 0.8574

BMI, body mass index; BAL, balance; GS, gait speed; CGS, complex gait speed; LES, lower extremity strength
* Interaction. Gray shaded text indicates significant component by BMI interaction. Correction for multiple comparisons was per-
formed using false discovery rate (FDR)
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significant main effects for any component, but BMI 
was significant in all models (Table 4 and Table S3).

Discussion

This study examined the interaction between specific 
components of the eSPPB and BMI with functional 
brain network community structure in older adults. 
The primary hypotheses, based on our prior work 
[18] and the known roles of the SMN and DAN, were 
that gait measures (GS and CGS) and leg strength 
(LES) would have statistical interactions with BMI 
in the SMN, whereas balance (BAL) and the complex 
gait measure (CGS) would interact with BMI in the 
DAN. The main study outcomes showed that complex 
gait speed and lower extremity strength both exhib-
ited statistical interactions with BMI in the SMN, 
only at rest. After adjusting for multiple comparisons, 
the role of chance in the complex gait speed finding 

could not be ruled out. There were no significant 
associations in the SMN during the motor imagery 
task. It was also found that gait speed and complex 
gait speed statistically interacted with BMI in the 
DAN at rest. During the task, balance, complex gait 
speed, and lower extremity strength all significantly 
interacted with BMI. All significant relationships 
were such that higher performance on components 
of the eSPPB and/or lower BMI were associated with 
higher spatial consistency in the SMN or DAN com-
munity structure.

These results are novel, largely support our initial 
hypotheses, and are consistent with current knowl-
edge about the brain regions encompassed by these 
brain networks. The SMN is known to produce the 
motor commands necessary for movement. Thus, 
it is not surprising that leg strength and gait speed 
were associated with the integrity of this network. 
The integrity of SMN connectivity has been shown 
to be higher in individuals with better mobility by 

Fig. 1   Plot of the interaction between eSPPB component 
complex gait speed (CGS) and lower extremity strength (LES) 
with BMI for SMN at rest. The color lines represent the rela-
tionships between component distances (δCGS and δLES, 
respectively) on the x-axis and community structure distances 
(δSMN) on the y-axis for ten discrete BMI distances (δBMI) 
that are evenly spaced. For plot A, the bottom yellow line 
shows there is essentially no relationship between δCGS and 
the community structure when the δBMI is 0. However, as 
δBMI increases the relationship between δCGS and the com-

munity structure increases. The y-intercepts represent the effect 
of δBMI when the δCGS = 0. Plot B shows that there is a slight 
positive association between δLES and the community struc-
ture when the δBMI is 0. The association increases substan-
tially as δBMI increases, -with maximal slopes that are nearly 
twice that of δCGS. It is interesting to note that the effect of 
δBMI when the δLES = 0, the y-intercepts, is not larger than 
seen in the δCGS. Thus, the main difference between com-
plex gait speed and lower extremity strength in the SMN is the 
interaction with BMI
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our group [18, 36] and others [7, 12]. The statisti-
cal interactions that were found support the idea that 
BMI and the subscale measures amplify each other’s 
association with the brain network. For example, for 

lower extremity strength, the findings suggest that 
individuals with low leg strength have degraded SMN 
but those individuals that also have a high BMI have 
even greater degradation. If someone has weak legs 

Table 3   Dorsal attention network: interaction models for extended Short Physical Performance Battery and body mass index

Network Condition Variable Coefficient
Estimate

Standard 
Error T score p Value Corrected 

p Value

DAN
Rest

BAL 0.0001 0.0018 0.0720 0.9426
0.9606

BMI 0.0006 0.0001 5.7417 <0.0001
<0.0001

BAL*BMI 0.0003 0.0002 1.5604 0.1187
0.1637

Sex 0.0038 0.0005 7.9288 <0.0001
<0.0001

Head Motion 0.0001 0.0000 2.8815 0.0040
0.0091

GS -0.0066 0.0052 -1.2665 0.2054
0.2738

BMI 0.0004 0.0001 4.3321 <0.0001
0.0001

GS*BMI 0.0022 0.0005 4.4635 <0.0001
<0.0001

Sex 0.0038 0.0005 7.8751 <0.0001
<0.0001

Head Motion 0.0001 0.0000 2.9619 0.0031
0.0079

CGS speed -0.0049 0.0026 -1.9167 0.0553
0.0846

BMI 0.0005 0.0001 5.2709 <0.0001
<0.0001

CGS*BMI 0.0008 0.0002 3.2066 0.0013
0.0038

Sex 0.0038 0.0005 7.6970 <0.0001
<0.0001

Head Motion 0.0001 0.0000 2.9077 0.0036
0.0086

LES -0.0071 0.0043 -1.6304 0.1030
0.1446

BMI 0.0006 0.0001 6.1220 <0.0001
<0.0001

LES*BMI 0.0007 0.0004 1.6513 0.0987
0.1410

Sex 0.0038 0.0005 7.8850 <0.0001
<0.0001

Head Motion 0.0001 0.0000 2.9452 0.0032
0.0079
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and is not able to ambulate well, this could lead to 
disuse of the SMN and loss of network integrity. If 
they have a high BMI that is only going to amplify 

their mobility limitations and result in even great dis-
use of the SMN. Having identified these neural corre-
lates of lower extremity strength, longitudinal studies 

Table 3   (continued)

BMI 0.0004 0.0001 4.0435 0.0001 
0.0002 

BAL*BMI 0.0008 0.0002 3.9949 0.0001 
0.0002 

Sex 0.0008 0.0004 2.0377 0.0416 
0.0756 

Head Motion 0.0003 0.0000 10.8345 <0.0001 
<0.0001 

GS 0.0009 0.0045 0.1975 0.8434 
0.8984 

BMI 0.0006 0.0001 6.9887 <0.0001 
<0.0001 

GS*BMI 0.0001 0.0004 0.1687 0.8661 
0.8998 

Sex 0.0008 0.0004 2.0017 0.0453 
0.0784 

Head Motion 0.0003 0.0000 10.8652 <0.0001 
<0.0001 

CGS -0.0014 0.0022 -0.6116 0.5408 
0.6362 

BMI 0.0005 0.0001 5.8418 <0.0001 
<0.0001 

CGS*BMI 0.0005 0.0002 2.2757 0.0229 
0.0482 

Sex 0.0009 0.0004 2.1514 0.0315 
0.0645 

Head Motion 0.0003 0.0000 10.7858 <0.0001 
<0.0001 

LES strength -0.0071 0.0037 -1.9107 0.0561 
0.0846 

BMI 0.0004 0.0001 4.8239 <0.0001 
<0.0001 

LES*BMI 0.0014 0.0004 3.5776 0.0003 
0.0012 

Sex 0.0008 0.0004 1.9449 0.0518 
0.0827 

Head Motion 0.0003 0.0000 10.9511 <0.0001 
<0.0001 

Task BAL -0.0010 0.0016 -0.6550 0.5125
0.6119

BMI, body mass index; BAL, balance; GS, gait speed; CGS, complex gait speed; LES, lower extremity strength
* Interaction. Gray shaded text indicates significant component by BMI interaction. Correction for multiple comparisons was per-
formed using false discovery rate (FDR)
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should determine if SMN-CS is predictive of future 
age-related mobility declines given the important of 
leg strength for mobility.

The current study extends our prior finding that 
the interaction between eSPPB (total score) and 
BMI in the SMN was limited to the resting state 
[18]. Although traditional fMRI studies have shown 
higher levels of activity, or BOLD signal, during the 
motor imagery [37, 38], this activation is not univer-
sal throughout the network. Rather, portions of the 
sensorimotor cortex devoted to the legs were active 
during imagined walking. Community structure anal-
yses, as used here, identify circuits that are highly 
interconnected, rather than strictly showing areas of 
activation. Prior studies have shown that the SMN is 
highly interconnected at rest [32, 39–41]. This high 
interconnectivity is indicative of large-scale syn-
chrony throughout the SMN with all regions sharing 
common information. It has also been shown with 
magnetoencephalography (MEG) that resting SMN 

synchrony is disrupted and becomes desynchronized 
immediately before movements [42] and during 
motor imagery [11]. Thus, it is not surprising that the 
current findings were mainly at rest when the SMN is 
most likely to be synchronized.

The DAN is typically involved in higher order spa-
tial attention and orientation, linking salient stimuli 
to motor responses [43, 44]. This functionality is the 
basis for our hypothesis that balance and complex gait 
would be associated with DAN-CS. Recent work sug-
gests that DAN connectivity is associated with gait 
variability rather than gait speed [45]. Our findings 
for resting state supported our hypothesis implicating 
gait in the integrity of DAN-CS, but there were no 
balance associations in the DAN at rest. Our hypoth-
esis that balance and complex gait would be associ-
ated with DAN was supported for the motor imagery 
task. It has been reported that the DAN is active and 
important in motor imagery [44, 46]. Thus, it may be 
that associations between the measures of physical 

Table 4   Summarized significant associations

Network Condition balance

gait 

speed

complex 

gait 

speed

lower 

extremity 

strength

SMN

Rest

Task

DAN

Rest

Task

Significant eSPPB component by BMI interaction

Significant eSPPB component and BMI main effects (no interaction)

Significant BMI main effect (no interaction)
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function and DAN-CS may be best assessed when the 
DAN is engaged in a task directly relevant to its role in 
locomotion. The association between lower extremity 
strength and DAN-CS during the task is likely related 
to the fact that spatial attention is an embodied pro-
cess [22] and that lower extremity strength is highly 
relevant to the movements shown in the MAT-sf video 
used during the motor imagery task.

Although the primary objective of this work was to 
relate various aspects of physical function to brain net-
work organization, our analyses included an interac-
tion with BMI as we found this in our prior work. The 
average BMI score of participants was 28.4 (Table 1), 
and 59 participants qualified as obese (i.e., BMI ≥ 30). 
For the main outcomes, BMI was treated as a continu-
ous variable.  However, supplementary  analyses were 
run for specific BMI categories (normal weight, over-
weight,  obesity)  largely replicating the main study 
outcomes. An interesting finding here was that the 
BMI association was highly consistent regardless of 
the eSPPB component being investigated. In addition, 
when the interaction was not significant, BMI always 
had a significant main effect except in the SMN dur-
ing the task. It has been established that BMI is asso-
ciated with mobility limitations, higher risk of mobil-
ity disability, and lower SPPB scores [47–49]. Obesity 
is associated with difficulties rising from a chair and 
other tasks that fight gravity. It is possible that those 
individuals with obesity stand less often, which may 
lead to less engagement and reinforcement of the rel-
evant networks. Obesity is also associated with reduc-
tions in brain gray and white matter volume [50, 51] 
and white matter integrity [50, 52, 53]. Since the brain 
white matter contains the fibers that interconnect brain 
regions, damage to white matter can disrupt network 
connectivity. Given the associations that obesity has 
with pathological brain changes, it is not surprising 
that we found elevated BMI to be associated with 
reduced functional network integrity.

Although our analyses were designed to discover 
neural associations with components of the eSPPB 
and BMI, the correlative nature of these analyses 
does not allow for causal interpretations. It is possi-
ble that low physical activity due to a variety of neu-
rocognitive or physical limitations (such as depres-
sion or osteoarthritis) results in a disuse reduction 
in the integrity of these networks. Similarly, obesity 
can impair mobility and physical function, and this 
would lead to SMN and DAN disuse. In such cases, 

interventions could be targeted at increasing physi-
cal activity and reducing sedentary behavior [54]. 
On the other hand, it is possible that disruption of the 
SMN and DAN integrity due to brain-based pathol-
ogy (such as cerebrovascular disease) could lead to 
decreased physical function. If degradation of brain 
network integrity is driving the decline in physical 
function, neuromodulatory treatments, such as tran-
scranial magnetic stimulation (TMS) or transcranial 
direct current stimulation (tDCS), may prove use-
ful. In fact, it has been shown that tDCS applied to 
the DAN modulates gait variability [45]. Another 
possibility is that the relationships between physi-
cal function and brain networks exhibit circular cau-
sality, as is thought to occur in complex biological 
systems [55, 56] including the brain [57]. In such a 
case, whichever came first may not matter as either 
degraded network organization or impairments in 
physical function can cause the other, resulting in spi-
raling declines. This is an important topic for future 
research as circular causality would allow for inter-
ventions that are either brain- or behavior-based (or 
both) regardless of the initial instigating factor. Thus, 
an optimist perspective would be that understanding 
brain-body interactions may help us turn spiraling 
declines into upward spirals.

This study is not without limitations. As noted 
above, the cross-sectional study design does not allow 
for the identification of causal processes. However, 
BNET does have a longitudinal component that will 
be used in future analyses to determine if baseline 
brain networks predict decline in physical function, 
or vice versa. Although this is a relatively large study 
sample, the population included community-dwell-
ing, relatively healthy/high-functioning older adults. 
The type of community structure analyses used are 
novel and it is unknown if differences in various 
methodological choices could impact the findings. 
We used voxel-wise analyses and our own templates 
for the SMN and DAN. These methods were spe-
cifically chosen to match our prior study examining 
eSPPB and community structure. However, future 
work should consider examining replicability using 
alternative methods of analyzing brain network com-
munity structure such as applying one of the growing 
number of parcellation schemes [58–61]. Given that 
our work was focused on two specific subnetworks 
(SMN and DAN) rather than exploring the entire 
brain, it will also be important to extend analyses to 
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other brain subnetworks, such as the default mode 
and ventral attention networks to determine the speci-
ficity of these findings. Future studies will also need 
to determine if the relationships observed here are 
found in more diverse samples or in those with poor 
health or cognition. Although our findings with BMI 
were quite strong and consistent, BMI is not a univer-
sally accepted measure, and there is growing interest 
in using body fat measures rather than BMI.

Conclusions

This study shows clear evidence that specific compo-
nents of physical function interact with BMI within 
the SMN and DAN. In the SMN, the associations 
were for gait (gait speed and complex gait speed) 
and strength (lower extremity strength) measures, but 
only during rest. In the DAN, the associations differed 
depending on condition. At rest, the DAN associa-
tions were for gait measures (gait speed and complex 
gait speed). During the motor imagery task, the asso-
ciations included balance and strength measures as 
well. Gait speed and balance are two objective meas-
ures that can act as primary indicators of functional 
mobility [20, 21]. Slower walking pace has been 
shown to be predictive of disability, cognitive impair-
ment, mortality, and falls in older adults [20]. Balance 
is most obviously associated with fall frequency and 
is also associated with loss of independence, blood 
pressure disorders, and certain medications [62]. 
Results from this study expand our understanding of 
how different components of physical function, such 
as balance or gait speed, are associated with network 
structure. Gaining a greater mechanistic understand-
ing of the associations between low physical function 
and brain physiology may lead to the implementation 
of new and/or personalized treatments based on the 
specific limitation in physical function.
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