Skip to main content
. 2024 Jul 26;10(15):e35174. doi: 10.1016/j.heliyon.2024.e35174

Table 7.

Multiple variable regression analyses based on Durbin-Watson for the electricity generation side and chosen independent weather variables (x1,x2,x3).

Variables
y Electricity generation (dependent variable)
x1 Daily solar radiation - tilted.
x2 Horizontal monthly radiation
x3 Average Monthly Temperature
Method Daily
Weighted Yes
Regression results
Number of observations: 36.000
Number of iterations: 12.000
Sum of residuals: 178.980
Average residual: 4.972
Residual sum of squares - Absolute: 13914332.921
Residual sum of squares - Relative: 13771108.977
Standard error of the estimate: 656.009
Coefficient of multiple determination (R2): 0.951
Coefficient of multiple determination – Adjusted (Ra2): 0.947
Root-mean-square error (RMSE): 659.411
Coefficient of variation of the RMSE: 0.073
F-test (p-value): 0.000
Net determination bias error (NDBE): 0.001
Durbin-Watson statistic: 1.37
Coefficient results
Name Value Stand error t-ratio p-value User-defined
a 803.854 410.6 1.95 0.059 803.85
b 399.940 330.8 1.21 0.235 399.94
c 94.619 23.9 3.95 0.00039 94.62
d 1834.18 746.6 2.45 0.019 1834.18
Equation: y=ax1+bx2+cx3+d