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Chronic motor impairments are a leading cause of disability after stroke. Previous studies have associated motor outcomes with the 
degree of damage to predefined structures in the motor system, such as the corticospinal tract. However, such theory-based ap
proaches may not take full advantage of the information contained in clinical imaging data. The present study uses data-driven ap
proaches to model chronic motor outcomes after stroke and compares the accuracy of these associations to previously-identified 
theory-based biomarkers. Using a cross-validation framework, regression models were trained using lesion masks and motor out
comes data from 789 stroke patients from the Enhancing NeuroImaging Genetics through Meta Analysis (ENIGMA) Stroke 
Recovery Working Group. Using the explained variance metric to measure the strength of the association between chronic motor out
comes and imaging biomarkers, we compared theory-based biomarkers, like lesion load to known motor tracts, to three data-driven 
biomarkers: lesion load of lesion-behaviour maps, lesion load of structural networks associated with lesion-behaviour maps, and mea
sures of regional structural disconnection. In general, data-driven biomarkers had stronger associations with chronic motor outcomes 
accuracy than theory-based biomarkers. Data-driven models of regional structural disconnection performed the best of all models 
tested (R2 = 0.210, P < 0.001), performing significantly better than the theory-based biomarkers of lesion load of the corticospinal 
tract (R2 = 0.132, P < 0.001) and of multiple descending motor tracts (R2 = 0.180, P < 0.001). They also performed slightly, but sig
nificantly, better than other data-driven biomarkers including lesion load of lesion-behaviour maps (R2 = 0.200, P < 0.001) and lesion 
load of structural networks associated with lesion-behaviour maps (R2 = 0.167, P < 0.001). Ensemble models - combining basic 
demographic variables like age, sex, and time since stroke - improved the strength of associations for theory-based and data-driven 
biomarkers. Combining both theory-based and data-driven biomarkers with demographic variables improved predictions, and the 
best ensemble model achieved R2 = 0.241, P < 0.001. Overall, these results demonstrate that out-of-sample associations between 
chronic motor outcomes and data-driven imaging features, particularly when lesion data is represented in terms of structural discon
nection, are stronger than associations between chronic motor outcomes and theory-based biomarkers. However, combining both 
theory-based and data-driven models provides the most robust associations.
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Graphical Abstract

Introduction
Motor impairments are the most common type of deficit 
after stroke, persisting in up to 50% of stroke survivors as 
lasting motor weakness.1 The nature and extent of deficits 
produced by a stroke are largely determined by its location, 
which can be determined with acute neuroimaging. Despite 
the prevalence of motor deficits after stroke, uncovering 
robust associations between neuroimaging measures and 
long-term motor deficits is still a challenge.2,3 Observational 
studies have demonstrated that motor impairments after 
stroke are associated with damage to critical structures in the 
motor system.4-8 Although these inferential studies help clarify 
the pathophysiology of motor deficits, few studies demonstrate 
that these patterns of association apply to new subjects, and in 
general, there is no consensus on how to optimally model lesion 
damage such that a machine-learning model can learn associa
tions that are relevant for new subjects.

Historically, theory-based biomarkers selected a priori 
based on their involvement in motor function, have been 

used to model motor outcomes after stroke. The most well- 
studied theory-based biomarker is the corticospinal tract 
(CST) lesion load, or the proportion of voxels in the ipsile
sional corticospinal tract originating from primary motor cor
tex (M1) that intersects with the lesion.9-13 M1-CST lesion 
load has been related to motor deficits in the acute and chronic 
phase of stroke,3,14 but M1-CST damage in itself may not cap
ture enough variance in lesion data to explain motor deficits in 
patients with a wide range of lesion topographies.11,15,16

Incorporating measures of damage to higher-order motor 
structures into linear models (e.g. lesion load of all tracts in 
the sensorimotor tract template atlas, SMATT-LL) helps to 
explain more variance in post-stroke motor outcomes com
pared to models based on measures of damage to M1-CST 
alone.11,15-20 Although lesion load to these tracts has been sig
nificantly associated with motor deficits within individual 
samples, the out-of-sample association of theory-based bio
markers with motor scores has not been well-assessed.14

As an alternative to theory-based biomarkers, data-driven 
approaches assume that useful lesion-deficit associations can 
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be discovered with sufficient data and proper representations 
of lesion damage.21,22 These approaches may produce more 
generalizable models than theory-based biomarkers: theory- 
based measures that are significantly related to motor 
outcomes in one sample may not necessarily associate with 
outcomes in a new sample.23 Whether such data-driven ap
proaches have value in estimating stroke motor outcomes is 
unknown, and how to best represent lesion damage such 
that data-driven approaches can uncover generalizable lesion- 
deficit associations is unclear. One approach is to discover 
lesion-behaviour maps (LBMs) or voxels in which lesion dam
age is associated with motor deficits.8,23 Then, in a new sam
ple, the extent of overlap between a patient’s lesion and the 
LBM can be associated with motor outcomes. Similarly, the 
extent of lesion overlaps with structural lesion-network 
maps (sLNM), which reflect the white matter networks asso
ciated with peak LBM voxels, referred to previously as the 
sLNM lesion load,8,23 may be able to capture relationships be
tween motor deficits and white matter tract damage. One limi
tation of using voxelwise representations of damage to develop 
lesion-behaviour maps is that non-overlapping lesions that im
pact the same white matter tract are treated separately, which 
may reduce the power of a model to identify robust lesion- 
deficit associations.24 Transforming voxelwise lesions into 
structural disconnection measures may better represent the 
neural correlates of post-stroke deficits and improve statistical 
power to detect critical features.24 This type of representation 
is, in effect, a non-linear dimensionality reduction of voxelwise 
lesion data that can collapse any damage along a white matter 
tract into a single feature. To this end, the Network 
Modification tool25 can be used to calculate lesions’ Change 
in Connectivity (ChaCo) scores, reflecting the amount of 
structural disconnection to/from each grey matter region in 
the brain, by identifying white matter tracts that pass through 
the lesion using structural connectomes from healthy 
subjects.25

We hypothesized that data-driven biomarkers would have 
stronger associations with chronic motor outcomes than 
theory-based biomarkers in new patients. Within data- 
driven biomarkers, we hypothesized that modelling lesion 
damage with whole-brain regional structural disconnection 
scores (ChaCo scores) would yield more accurate 
out-of-sample associations of chronic motor scores than 
modelling lesion damage with lesion-behaviour maps 
(LBM lesion load) and structural lesion-network maps 
(sLNM lesion load), but that sLNM-LL would perform bet
ter than LBM-LL due to the inclusion of relevant structural 
networks.

Accurate models of chronic motor outcomes require that 
patient information is combined across several data sources. 
In addition to lesion damage derived from imaging, demo
graphic factors such as age, sex, and time since stroke influ
ence an individual’s chronic outcome. Models that employ 
combinations of imaging and demographic variables will 
likely be necessary for optimized associative models.2

Additionally, the strength of one imaging biomarker may 
be able to compensate for the weaknesses of others. 

Therefore, we hypothesized that association performance 
would be improved by incorporating demographic informa
tion and by combining point estimations from several differ
ent biomarkers using ensemble models.

The variability between stroke subjects owing to the sig
nificant heterogeneity within the disease poses a challenge 
for clinical trials to identify effective therapies, presenting a 
need to evaluate various biomarkers robustly associated 
with motor deficits.26,27

Materials and methods
Sample demographics
A subset of cross-sectional data from the Enhancing 
Neuroimaging Genomics through Meta Analysis 
(ENIGMA) Stroke Recovery Working Group database 
(available as of 10 September 2021) from subjects with 
acute/subacute and chronic stroke was used in the study 
(Table 1, Supplementary Table 1). In total, the dataset con
sisted of 327 acute/subacute stroke subjects and 462 chronic 
stroke subjects, totalling 789. Details of the ENIGMA Stroke 
Recovery procedures and methods are available in Liew 
et al.28 The data originated from 22 research studies carried 
out at different sites. Informed consent was obtained from all 
subjects, and data were collected in compliance with each in
stitution’s local ethical review boards and in accordance with 
the Declaration of Helsinki.

ENIGMA Stroke Recovery subjects with the following 
data were included: (1) high-resolution (1-mm isotropic) 
T1-weighted brain MRI (T1w) acquired with a 3T MRI 
scanner; (2) information about time since stroke at the 
time of imaging, as well as (3) age, (4), sex, and (5) a measure 
of sensorimotor function from one of the following assess
ments: (i) Fugl–Meyer Assessment of Upper Extremities 
(FMA-UE), a performance-based measure of paretic upper 
extremity impairment,29 (ii) the Barthel index, which mea
sures the extent to which a person can function independent
ly and has mobility in their activities of daily living,30 or (iii) 
the National Institutes of Health Stroke Score (NIHSS), a 
broad measure of stroke severity that includes assessment 
of non-motor and motor functions.31 For most subjects 
with chronic stroke, motor deficits are normalized 
FMA-UE scores, whereas normalized FMA-UE scores were 
available for fewer of the subjects with acute/subacute stroke 
(Supplementary Table 2); for simplicity, we refer to all out
comes as ‘motor’ scores, though the main models were repli
cated with a single motor assessment (Fugl–Meyer UE 
scores) as well. Motor scores were normalized to the range 
[0, 1] by dividing the raw score by the maximum possible 
score for that assessment. Behavioural data were collected 
within approximately 72 hours of the MRI. Subjects were 
considered in the chronic phase of stroke if their time since 
stroke at the time of assessment was greater than or equal 
to 180 days and were considered to be in an acute/subacute 
phase if they were assessed within 180 days after the stroke. 
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See Supplementary Fig. 1 for lesion distribution in Montreal 
Neurological Institute (MNI) space.

Lesions were manually segmented via a standardized 
protocol,32 and segmentations were reviewed by two add
itional team members.32,33 Image processing was performed 

as follows (as described previously33): intensity normaliza
tion with the MINC-toolkit and registration of the T1w im
age and lesion segmentation map to a standardized template 
(MNI152NLin2009aSym, 2 mm), followed by defacing.33

Registration quality was confirmed by visual inspection to 
ensure correct alignment to the template.33

General overview
We built several models to associate chronic motor scores 
with imaging data and minimal demographic information. 
Each model used lesion-derived information as input to esti
mate normalized motor scores in subjects with chronic stroke. 
We compared several different biomarkers that reflect differ
ent aspects of lesion damage. These biomarkers include:

Theory-based biomarkers: 
• M1-CST-LL (1 feature)
• SMATT-LL (6 features for ipsilesional tracts, 12 features 

for bilateral tracts)

Data-driven biomarkers: 
• LBM-LL (1 feature)
• sLNM-LL (five features; five components derived from 

principal components analysis of structural connectivity 
seeded from lesion-behaviour map)

• ChaCo scores (86 or 268 features depending on the atlas, 
fewer when using feature selection).

Nested cross-validation was performed during model 
training and performance was assessed on unseen test data. 
For ChaCo score models, we assessed whether feature 

Table 1 Demographic information of subjects with chronic stroke (N = 462) in the ENIGMA dataset, by site

Site ID
Total N. 
N (F/M)

Median age in years 
(IQR)

Median motor score 
(IQR)

Median time since 
stroke

Median lesion vol. in cm3 

(IQR)

r001 39 (10/29) 61.0 (17.0) 0.65 (0.23) 23.5 (40.0) 6.27 (18.06)
r002 12 (6/6) 69.5 (11.5) 0.50 (0.41) 73.2 (51.9) 28.24 (31.71)
r003 15 (6/9) 61.0 (16.5) 0.24 (0.20) 48.8 (67.6) 20.28 (76.88)
r004 19 (7/12) 44.0 (14.5) 0.17 (0.16) 50.4 (81.9) 36.85 (44.29)
r005 27 (12/15) 66.0 (16.5) 0.79 (0.45) 31.4 (27.8) 1.61 (40.27)
r009 60 (17/43) 71.0 (7.2) 0.96 (0.12) 27.4 (9.3) 1.43 (4.65)
r025 16 (3/13) 64.5 (13.2) 0.98 (0.58) 14.2 (10.2) 5.92 (14.26)
r027 28 (8/20) 57.0 (10.2) 0.30 (0.16) 19.3 (24.7) 12.30 (62.13)
r028 21 (6/15) 63.0 (9.0) 0.82 (0.24) 26.5 (37.5) 5.25 (41.28)
r031 1 (0/1) 52.0 (0.0) 0.68 (0.00) 6.1 (0.0) 1.54 (0.00)
r034 15 (6/9) 58.4 (11.1) 0.82 (0.20) 61.3 (68.3) 6.68 (34.99)
r035 15 (6/9) 64.0 (18.0) 0.64 (0.52) 33.5 (22.9) 3.89 (31.56)
r038 18 (7/11) 67.0 (10.0) 1.00 (0.12) 15.1 (10.1) 1.98 (1.63)
r040 14 (7/7) 63.5 (9.8) 0.68 (0.47) 14.1 (17.5) 8.65 (82.65)
r042 22 (11/11) 48.5 (15.5) 0.64 (0.19) 29.6 (36.4) 14.16 (49.53)
r044 4 (0/4) 68.0 (9.2) 0.52 (0.25) 43.7 (52.9) 23.65 (67.00)
r045 4 (1/3) 62.0 (5.2) 0.49 (0.24) 96.1 (59.0) 7.97 (6.66)
r046 11 (3/8) 62.0 (10.5) 0.50 (0.29) 86.3 (83.4) 4.62 (19.82)
r047 44 (14/30) 65.5 (12.0) 0.65 (0.44) 38.1 (53.7) 12.72 (41.33)
r048 43 (16/27) 68.0 (12.5) 0.79 (0.44) 46.2 (49.8) 7.93 (43.45)
r052 32 (12/20) 63.0 (13.5) 0.41 (0.09) 39.1 (42.2) 6.98 (51.55)
r053 2 (1/1) 65.0 (3.0) 0.63 (0.25) 6.2 (0.1) 117.9 (17.39)

Some sites have both acute and chronic subjects that are listed separately. Total sample size (N), number of females (F) and males (M), and information about age (years), normalized 
motor scores, time since stroke at the time of assessment (months), and lesion volume (cm3). IQR, interquartile range.

Figure 1 Cross-validation framework for model 
evaluation. A. Overview of five-fold cross-validation. Subject data 
are partitioned into five non-overlapping training and test folds, 
such that no training subjects are in the test set, and no subject is in 
the test fold more than once. B. Use of acute/subacute subjects in 
training folds but not test folds. When using all training data, chronic 
subjects were included in the test folds and training folds, whereas 
acute/subacute stroke subjects were only included in training folds.
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selection improved performance. Additionally, we evaluated 
whether including acute subjects in the training set, but not 
in the test set, improved association strength with chronic 
deficits. We also evaluated whether adding basic demograph
ic information (age, sex, and time since stroke) via ensemble 
models improved performance. We also assessed whether 
using ensemble models to combine point estimations from 
multiple different lesion damage metrics improved perform
ance. Finally, we evaluated the performance of each model 
on completely unseen data by removing sites from the train
ing set and using them as test sets.

Machine-learning framework
Regression models were trained and evaluated using re
peated 5-fold nested cross-validation (Fig. 1). Model imple
mentation differed for each lesion biomarker based on the 
dimensionality of the data; see below for implementation de
tails for each biomarker. For biomarkers with more than one 
feature, ridge regression models were fit with a single hyper
parameter indicating the degree of regularization. In the out
er loop, the data were split into 5 training and test partitions. 
First, models were trained using all data (including acute, 
subacute, and chronic timepoints), and tested only on chron
ic subjects, yielding 696 subjects in the training set and 92 
subjects in the test set. Using only chronic data to train the 
models, there were approximately 370 subjects in the train
ing set and 92 subjects in the test set. Out-of-sample perform
ance was calculated as the average performance across five 
outer test folds. We obtained a distribution of out-of-sample 
performance by splitting the data into 5 train/test folds 100 
times, shuffling the indices of the splits each time.

Replication with Fugl–Meyer 
assessments in unseen sites
Although subjects who were included in the training set were 
never included in the test set for each fold, it is possible that 
subjects in the training set share some features with the test 
set, simply by coming from the same site. Therefore, in order 
to measure the models’ generalizability to out-of-distribution 
data, we performed additional analyses by leaving entire sites 
out of the training set and using only those sites in the outer 
test fold. For these additional analyses, we further limited 
the test set to only include subjects if their outcome measures 
were Fugl–Meyer Assessments, as that score is most reflective 
of motor function which our models are focused on estimat
ing. Three folds were created with approximately equal num
bers of subjects (N = 121, 127, and 130), where only subjects 
who were considered to be in the chronic stage of stroke were 
included (Supplementary Table 4).

Statistical analysis
Model performance
Model performance was assessed by comparing true normal
ized motor scores with estimated scores. Performance was 

calculated with both Pearson’s correlation coefficient and ex
plained variance, or R2, which captures the per cent of vari
ation in motor scores explained by variation in the model 
inputs:

R2 = 1 − var(y − ŷ)/var(y) 

where y is a vector of true motor outcomes, and ŷ is a vector 
of estimated motor outcomes. These two performance me
trics were used to compare results with prior literature, but 
differences between models were assessed using R2, as it is 
a more robust metric to assess model quality.

Differences in performance between models were assessed 
using two-sided Wilcoxon signed-rank tests and P-values 
were corrected for multiple comparisons using Bonferroni 
correction (P < 0.05).

For each model, we generated a null distribution for asses
sing model significance by permuting the estimated variable 
(motor score) 100 times. Then, as for each normal model, 
we ran 100 5-fold train/test cross-validation splits for each 
permutation. This yielded a distribution of 100 out-of-sample 
mean performance measures for each permutation. The me
dian across these 100 measures was then calculated for each 
permutation. In total, 100 null median performance measures 
were calculated. The P-value for the model’s significance is the 
proportion of null models that had a median R2 greater than 
or equal to the median performance of the true model.

Ensemble models
The idea of ensemble learning is to build a single model by 
combining the strengths of a collection of simpler base mod
els; we used ensemble models that average point estimations 
from different biomarkers.34 We tested whether models in
cluding demographic information (age, sex, and days post 
stroke), ensembled with lesion models, performed better 
than models with lesion data or demographic data alone. 
We also assessed whether models including both lesion 
load and ChaCo scores would perform better than models 
with lesion load or ChaCo scores alone. Ensemble models 
were generated by training ChaCo models and lesion load 
models separately, on the same subjects and with the same 
training/test/validation splits, and averaging the final esti
mated scores for each test subject. Standard linear regression 
was used to model the relationship between demographic in
formation and motor impairment.

Analysing feature weights
Feature weights in high-dimensional models can be unstable 
and therefore only provide limited interpretability.35 To as
sess the robustness of feature weights (i.e. beta coefficients), 
the Pearson correlation in regional feature weights across all 
training folds was calculated. For this specific feature stabil
ity analysis (but not for model evaluation), acute/subacute 
subjects were split for each training fold such that different 
folds did not contain the same set of acute/subacute subjects 
(all acute/subacute subjects were included in all training 
folds in the model evaluation phase to maximize the amount 
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of data available for training). For the 86-region Chaco mod
els, the average of the 86-region β vector, representing the 
model weights for each region, across five folds was calcu
lated for each of the 100 train/test splits. The median across 
these 100 splits was visualized on a glass brain. For the 
268-region ChaCo models with feature selection, the most 
consistently selected regions (selected in at least 475/500 
folds or 99% of outer folds) were identified. The average 
of the 268-region β vector across the five folds was calculated 
for each of 100 train/test splits. The median average β weight 
for consistently selected regions across these 100 splits was 
visualized on a glass brain.

Description of models and their 
inputs
Primary motor cortex CST lesion load (M1-CST-LL) 
models
The lesion load of the corticospinal tract originating from the 
primary motor cortex (M1-CST-LL) was calculated 
(Fig. 2A). Here, as in previous work, M1-CST-LL was calcu
lated as the proportion of lesioned voxels intersecting with a 
binarized ipsilesional M1-CST template.9 Specifically, lesion 
load was calculated in 1-mm MNIv6 space as follows:

Lesion load

=
Number of lesioned voxels intersecting withtract

Number of voxels in tract 

Left and right hemisphere M1-CST segmentations in MNI 
space were obtained from the high-resolution sensorimotor 
area tract template (SMATT).36 Few subjects had non-zero 
M1-CST-LL values (Supplementary Fig. 2A). Linear regres
sion was used to model the relationship between ipsilesional 
M1-CST-LL and chronic motor scores. The weights from the 
best-performing model in the inner loop were used to esti
mate motor scores for new subjects in the test folds.

Sensorimotor tract lesion load (SMATT-LL) models
Sensorimotor tract segmentations were obtained from the 
sensorimotor area tract template (SMATT),36 which con
tains 12 tracts derived from probabilistic tractography 
seeded in the left and right primary motor cortex (M1), dor
sal and ventral premotor cortex (PMd and PMv, respective
ly), supplementary motor area (SMA), pre-supplementary 
motor area (pre-SMA), and primary somatosensory cortex 
(S1) performed in healthy controls (Fig. 2B).

Lesion load was calculated as above for all 12 bilateral 
tracts (L/R SMATT-LL) and for six ipsilesional tracts (ipsile
sional SMATT-LL). L/R SMATT-LL was calculated in order 
to assess whether preserving hemispheric information im
proved associations.37 For subjects with brainstem, cerebel
lar, and/or bilateral cerebral strokes, ipsilesional lesion load 
was calculated as the average lesion load of the left and right 
hemisphere tracts (Supplementary Fig. 2B and C).

Ridge regression models were used to estimate chronic mo
tor deficits from ipsilesional SMATT- LL (6 features) and 
from L/R-SMATT-LL (12 features). Ridge regression was 
used to account for multicollinearity of lesion load values be
tween tracts (Supplementary Figs. 3 and 4). Lesion load values 
were normalized (after train/test split) by subtracting the mean 
across subjects and dividing by the l2-norm prior to model fit
ting. In the inner loop, the degree of model regularization (λ) 
was determined via grid search over 30 values ranging from 
10−2 to 102. The training data were fit with the selected λ, 
and this model was used to estimate motor scores for held-out 
subjects in the test folds.

Lesion-behaviour map lesion load (LBM-LL) models
A lesion-behaviour map (Fig. 3A) was obtained as described 
by Bowren et al. (2022). Specifically, Bowren et al. used sparse 
canonical correlation analysis to produce maps of voxels in 
which damage was associated with Fugl–Meyer scores.38

Lesion load to this lesion-behaviour map (LBM-LL) was cal
culated as the sum of voxels in the LBM that intersect with 
the lesion. Standard linear regression models were used to es
timate chronic motor deficits from LBM-LL.

Structural lesion-network mapping lesion load 
(sLNM-LL) models
Structural lesion-network maps (Fig. 3B) were obtained from 
Bowren et al. (2022). Specifically, peak white matter (WM) 
voxels from lesion-behaviour maps (described above) were 
identified. Then, tractography was seeded from these peak 
WM voxels to identify associated structural networks, called 
structural lesion-network maps (sLNMs). Principal compo
nents analysis of sLNMs was performed, which produced 
three principal components that correspond to five sLNM 
maps (PC1, and positive/negative weights of PC2 and PC3). 
Lesion load on each sLNM map was calculated for each sub
ject as the sum of the voxel intensities from the principal com
ponent map that intersected the lesion mask (Supplementary 
Fig. 5). Ridge regression models were used to estimate chronic 
motor deficits from sLNM lesion loads (five features).

Regional change in connectivity (ChaCo) models
Lesion masks in 1-mm3 MNI v6 space were processed 
with the Network Modification Tool (NeMo Tool) v2 pipe
line,25 available at https://kuceyeski-wcm-web.s3.us-east-1. 
amazonaws.com/upload.html; see https://github.com/ 
kjamison/nemo for documentation. Given a lesion mask, 
the NeMo tool produces outputs that reflect the impact of 
the lesion on white matter tracts using healthy structural 
connectomes as a reference. The NeMo tool embeds a lesion 
mask into healthy structural connectomes, identifies all 
white matter streamlines that intersect with the lesion, and 
determines the brain regions at the endpoints of those 
streamlines (Fig. 3C). Regional change in connectivity 
(ChaCo) scores, or the ratio of the number of disrupted 
streamlines divided by the total number of streamlines termin
ating in each region, was calculated for all grey matter regions 
(see Supplementary Fig. 6A and B for distribution of mean and 
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standard deviation of ChaCo scores). The NeMo tool uses 
structural connectivity from 420 unrelated subjects from the 
Human Connectome Project (HCP) Young Adult database. 
Regional ChaCo scores from two different atlases were com
pared: the 86-region Desikan-Killiany Atlas (68 cortical re
gions + 18 subcortical regions, excluding brainstem) from 
FreeSurfer (“fs86” for short), which contains coarse anatom
ically parcellated regions,39,40 and the 268-region Shen atlas 
(“shen268” for short), which contains more fine-grained func
tionally parcellated cortical and subcortical regions.41

First, the performance of ridge regression models was as
sessed, as described above, with regional ChaCo scores as in
puts (86 features for the fs86 atlas, 268 features for the 
shen268 atlas). Then, a filter-based feature selection step 
was added to the ridge regression models to obtain a subset 
of features that had the strongest association with the out
comes.42 Features were ranked by their association with 
the outcome variable (P-value from univariate regression) 
and only the κ most associated variables were included in 
the model. In the inner hyperparameter selection loop, 
both the amount of regularization on regression coefficients 
(λ) and the number of features to retain in the model (κ) were 

selected via grid search. The λ value was chosen by searching 
over 30 values ranging 10−2 to 102, and the κ value was cho
sen by searching 30 values ranging from 5 to the maximum 
number of features possible (for fs86: 86, for shen268: 268).

Code availability
The scikit-learn package was used to implement machine- 
learning models (http://scikit-learn.org). All analysis scripts 
that generated the results of the present study are available 
as open source (https://github.com/emilyolafson/lesion_ 
predictions), and the LBM and sLNM maps are also avail
able on the repository.

Results
Relative performance of models
The out-of-sample performances of the models using all 
training data can be found in Fig. 4A and B. All models per
formed significantly better than chance (P < 0.001). With the 

Figure 2 Theory-based biomarkers. A. The M1-CST, displaying only the right hemisphere tracts relative to an MNI (Montreal Neurological 
Institute) template. B. Tracts from the sensorimotor tract template atlas (SMATT), displaying only right hemisphere tracts relative to an MNI 
template, including pre-supplementary motor area (pre-SMA), supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral 
premotor cortex (PMv), primary motor cortex (M1), and primary sensory cortex (S1). Pre-SMA is the most anterior tract, and S1 is the most 
posterior tract.
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exception of sLNM-LL models, all data-driven models (i.e. 
LBM-LL and ChaCo models) outperformed all theory-based 
models when using all training data (Fig. 5A). When using 
only chronic data for training, only LBM-LL models 

outperformed all theory-based models (Fig. 5B, 
Supplementary Fig. 7A and B).

Within the theory-based biomarkers, M1-CST-LL models 
performed worse than ipsilesional SMATT-LL models 

Figure 3 Data-driven biomarkers. A. Lesion-behaviour map (LBM) representing the association between voxelwise damage and Fugl–Meyer 
scores, derived from multivariate lesion-behaviour mapping with Fugl–Meyer scores. B. Structural lesion-network maps (sLNMs), derived from 
seed-based tractography run on peak regions identified from LBM (A) and then performing principal components analysis to identify 3 
components, split into positive and negative weights. C. Change in Connectivity (ChaCo) scores derived from the Network Modification (NeMo) 
tool. Binary lesion masks in MNI space representing the presence of a stroke lesion (turquoise) in a given voxel are provided by the user. Each 
lesion mask is embedded into 420 unrelated healthy structural connectomes (separately for each healthy subject) and the regional ChaCo scores 
are calculated and averaged across healthy subjects (parcellation shown here is the Shen 268-region atlas).
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(difference in R2 = −0.043, P < 0.001, 95% CI [−0.044, 
−0.041]) and worse than left/right SMATT-LL models (dif
ference in R2 = −0.047, P < 0.001, 95% CI [−0.049, 
−0.045]).

Within the data-driven biomarkers, models using ChaCo 
scores parcellated with the Shen 268-region atlas and with 
correlation-based feature selection outperformed LBM-LL 
models (difference in R2 = −0.010, P < 0.001, 95% CI 
[−0.013, −0.007]). However, ChaCo models performed com
parably to LBM-LL models when using only chronic training 
data (Supplementary Fig. 7A and B). Using all training data, 
all ChaCo models outperformed sLNM-LL models. When 
using only chronic training data, the differences between 
sLNM-LL models and ChaCo scores parcellated with the 
268-region atlas were non-significant (Supplementary Fig. 
7A and B). sLNM-LL models performed worse than 
LBM-LL models using all training data (difference in R2 =  
−0.034, P < 0.001, 95% CI [−0.035, −0.032]) and chronic 
training data (difference in R2 = −0.029, P < 0.001, 95% CI 
[−0.031, −0.028]).

For all models tested, ensemble models combining point 
estimates from demographic data had stronger associations 
with motor outcomes than base models (Fig. 6A-E, 
Supplementary Table 3). Similarly, ensemble models mer
ging estimates with the best-performing ChaCo models per
formed better than base lesion load models. With the 
exception of LBM-LL models, ensemble models combining 
information from demographic data as well as ChaCo scores 
performed best (Fig. 6A-E, Supplementary Table 3). The best 
overall ensemble model included LBM-LL and 268-region 
ChaCo scores with feature selection.

Estimating Fugl–Meyer scores in 
held-out sites
To test whether models were generalizable to entirely new 
sites and to compare models in their ability to predict a meas
ure that measures purely motor impairment—the Fugl– 
Meyer assessment—sites were held out to form three unique 
test sets. We observed similar performances in these test folds 
in comparison to the main analyses (Table 2). For two out of 
three test folds (Folds 1 and 2), all models captured some 
variance in the data, with data-driven models performing 
best: LBM-LL (R2 = 0.255) and 268-region ChaCo scores 
with feature selection (R2 = 0.240). For the remaining test 
fold, although all models performed poorly (R2 ranging 
from −0.175 to 0.03, indicating poor model fit), the model 
using LBM-LL scores performed best (R2 = 0.03).

Featured selected by ChaCo models
Model weights for the best-performing ChaCo models are 
shown in Fig. 4C and D, reflecting the median regression 
weight for each region across 100 train/test splits. There 
were several spatial similarities in the pattern of regression 
weights for the 86-region ChaCo model and 268-region 
ChaCo model with feature selection. For both atlases, 

negative model weights (indicating that more disconnection 
is associated with worse motor outcomes, holding all other 
factors constant) are assigned to the left and right motor areas, 
as well as subcortical structures like the putamen and thal
amus, whereas positive weights are assigned to frontal, par
ietal, and cingulate areas. In the 268-region ChaCo models, 
more regions in the right hemisphere are consistently included 
in the model than in the left hemisphere.

The average correlation in feature weights between training 
folds was stable for the 268-region ChaCo score models, with 
an average r = 0.79 (Fig. 7). Furthermore, many regions with 
high-magnitude median feature weights had consistent 
weights across training folds. Finally, we observed evidence 
that 268-region ChaCo models were able to distinguish two 
regions’ relationships to motor scores, despite those regions 
being frequently damaged together (Supplementary Fig. 8).

Discussion
In this study, we compared the performance of several struc
tural imaging biomarkers in their association with post- 
stroke motor scores. We found that, in general, data-driven 
models performed better than theory-based models in their 
ability to associate with motor deficits in out-of-sample 
data, and this was replicated with a subset of the original 
data when estimating only FMA-UE scores. Among the data- 
driven models, we found that the best performance was ob
tained by modelling lesion damage using regional ChaCo 
scores. Contrary to our hypothesis, models using lesion- 
behaviour maps performed significantly better than struc
tural lesion-network maps. Finally, we saw that combining 
estimates from demographic information and combining 
multiple biomarkers improved the association strength 
with post-stroke motor ability over baseline models.

Data-driven biomarkers outperform 
theory-based biomarkers
Using all training data, the best-performing data-driven 
models used regional structural disconnection scores. 
These models, in addition to another data-driven biomarker, 
the extent of lesion damage to lesion-behaviour maps, out
performed all theory-based biomarkers. Additionally, data- 
driven models performed best when estimating FMA-UE 
scores in entire held-out sites, though all imaging biomarkers 
(theory-based and data-driven) did not associate as strongly 
in one of three hold-out sets, possibly due to a strong distri
bution shift for this test set.

Data-driven biomarkers may have outperformed theory- 
based biomarkers for two reasons. First, there may be re
gions outside of the primary motor system where lesions 
have an impact on motor performance. Damage to higher- 
order motor areas in the frontal and parietal lobes43 that 
have been implicated in motor planning and execution,44

as well as damage to regions important for attention,45

may be causally related to chronic motor outcomes. 
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The same rationale underlies the most successful theory- 
driven models in a previous study.18 Further, a patient’s abil
ity to recover from or compensate for deficits may depend on 
a larger extent of lesion damage, the related overall stroke 
outcome, and related physiological consequences, such as 

autonomic dysfunction46 or inflammatory processes.47

Second, there may be features that are not causally related 
to motor function but are nonetheless associated with long- 
term motor deficits. An in silico study has shown that im
aging features with peak anatomo-clinical correlations can 

Figure 4 Summary of model performance metrics across all models tested and feature weights (regression coefficients β) for 
the two best-performing models. A. and B. Distribution of model performance (mean Pearson correlation/R2 across five outer folds for 100 
permutations of the data, N = 92 for each fold). Asterisks (*) indicate that model performance is significantly above chance (*, P < 0.001), as 
assessed via permutation testing, where the P-value for the model’s significance is the proportion of null models that had median R2 greater than or 
equal to the median performance of the true model. The boxes extend from the lower to upper quartile values of the data, with a line at the 
median. Whiskers represent the range of the data from (Q1-1.5*IQR, Q3 + 1.5*IQR). C. and D. Mean feature weights for the top two 
best-performing models (ChaCo (fs86) without feature selection, ChaCo (shen268) with feature selection, respectively). For the fs86-ChaCo 
model (left), we display the mean regression coefficients β across 100 permutations. For ChaCo (shen268) (right), we display the median 
regression coefficients of regions that were selected in at least 95% of outer folds (i.e. for regions that were included in the model in at least 475/ 
500 outer folds, mean β coefficients were calculated across five outer folds, and the median value across 100 permutations is plotted).
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be located outside of the true neural correlates of a deficit;48

in this specific example, damage in a temporal area corre
lated highly with a deficit that originated from either inferior 
parietal or inferior frontal damage. This can be explained by 
the typical lesion anatomy, which does not damage anatom
ical structures independently, but in highly systematic pat
terns imposed by the typical anatomy of the brain 
vasculature.49 Moreover, information from outside critical 
areas may supplement information in critical areas. For ex
ample, an imaging feature within a critical brain region or 
network may be damaged either by a small lacunar lesion 
that only causes a minor deficit which can be compensated 

for or by a large lesion that fully disrupts a functional brain 
module and causes an irrevocable deficit. Damage to features 
outside of the critical area that are indicative of a larger le
sion might enable differentiation of these cases.

In this paper, structural disconnection of areas outside of the 
primary motor system was associated with worse motor out
comes. Similarly, the extent of damage to a lesion-behaviour 
map including voxels that lie mostly outside of the motor sys
tem (Supplementary Fig. 9) had a stronger association with 
motor outcomes than damage to known motor tracts. This 
study suggests that regardless of whether these extra-primary 
motor structures are causally related to a deficit, they are 

Figure 6 Statistical comparison of model performance for ensemble models. Demog. = demographic information (age, sex, days since 
stroke). ChaCo = model using 268-region ChaCo scores w/ feature selection. Significance of differences in explained variance was evaluated using 
Mann-Whitney signed-rank tests; ***denotes corrected P < 0.001 after Bonferroni correction. A positive difference value indicates that the model 
on the y-axis (vertical) has a greater explained variance than the model on the x-axis (horizontal). Panels A-E display differences in model 
performance relative to (A) M1-CST-LL, (B) Ipsilesional SMATT-LL, (C) left/right hemisphere SMATT-LL, (D) LBM-LL, and (E) sLNM-LL.

Data-driven versus feature-based biomarkers                                                                       BRAIN COMMUNICATIONS 2024, fcae254 | 13

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcae254#supplementary-data


more useful biomarkers of chronic motor deficits than the ex
tent of damage to white matter tracts of the motor system.

Association of lesion-based structural 
disconnectivity with chronic motor 
outcomes
Models using ChaCo scores performed best of all models 
tested, particularly when feature selection was employed. 
These are high-dimensional models that may require more 
data to start outperforming simpler models,22 which may ex
plain the drop in their relative performance when using smal
ler subsets of the data for training, including using only 
chronic data and using only subjects with FMA-UE scores. 
However, with sufficient data, one strength of models using 
ChaCo scores can be understood, in part, by considering 
how lesion data is represented relative to LBM and sLNM 
models. For LBM and sLNM, the data on which feature selec
tion takes place are voxels. On the other hand, in ChaCo mod
els, the data on which feature selection takes place are regional 
measures of structural disconnection. This data transformation 
essentially reduces the number of “rare” features compared to 
voxelwise representations (Supplementary Fig. 10), as non- 
overlapping lesions that affect different portions of the same tract 
are mapped onto ChaCo scores of the same region or set of re
gions. The drawback to this approach is that regional ChaCo 
scores do not enable the detection of associations between dam
age to specific tracts and motor outcomes; if such associations 
exist then that signal may be diluted in regional measures.

Feature weights of the ChaCo models
In this paper, our main aim was to compare stroke imaging 
biomarkers in their association with motor outcome. We 

did not aim to uncover the precise nature of the neural corre
lates of motor deficits. However, further investigation of 
model features and their weights can provide some clarity 
in understanding the models’ relative performance.

Several grey matter regions that are part of the known mo
tor system were incorporated into ChaCo models with nega
tive weights, suggesting that more damage to these regions is 
associated with worse motor outcomes. Such regions include 
the primary somatomotor cortex and subcortical structures, 
as well as secondary motor structures in the frontal and par
ietal cortices. Many regions that were consistently assigned 
negative weights were neighbouring regions, in line with 
the spatial distribution of motor networks and somatotopy 
of the motor system. However, several regions, in particular 
in the right frontal cortex and medial surface, were consist
ently assigned a positive weight. In other words, some brain 
regions existed for which feature weights indicated a para
doxical lesion-deficit relationship in the sense that brain 
damage was linked to a more favourable motor outcome. 
Some cases of genuine facilitation due to brain damage 
have been documented,24,50 and inhibitory interregional 
brain modes that can explain paradoxical lesion effects are 
assumed.51,52 Hence, paradoxical lesion effects underlying 
motor outcome may provide a counter-intuitive, but still vi
able explanation of our findings. On the other hand, meth
odological aspects could also be an explanation for 
apparently paradoxical effects. First, paradoxical associa
tions might arise as an artefact from the lesion anatomy.53

For illustration, imagine a stroke population in which some pa
tients suffer from visual field defects after posterior brain dam
age to the visual system. The existence of a frontal lesion might 
then be anticorrelated with visual field defects—not because of 
a true paradoxical lesion effect due to inhibition, but as a mere 
statistical effect following from the lesion anatomy: a patient 
with a frontal lesion is unlikely to simultaneously suffer from 
a posterior lesion and, hence, is unlikely to suffer from visual 
field defects. Similar effects are imaginable on a smaller scale af
fecting neighbouring brain regions.53

Second, paradoxical effects might also emerge as a simple 
statistical artefact. The feature weights in a high-dimensional 
model can be unstable35 and, especially with highly correlated 
data, can somehow be decoupled from causality and the actual 
structure of the investigated entity. In our study, the stability of 
features was decent, though still markedly inferior to some pre
vious studies that explicitly optimized feature replicability to 
create interpretable high-dimensional models.54,55 Only for 
some areas, the paradoxical feature weights were stable across 
replications. Future studies are needed to validate or optimize 
our modelling and model interpretation strategies.

Surprisingly strong performance of a 
simple biomarker: LBM lesion load
We hypothesized that because of previously identified relation
ships between structural disconnections and motor deficits, 
sLNM-LL would outperform LBM-LL. On the contrary, we 
saw that LBM-LL performed better than sLNM-LL. In some 

Table 2 Performance of models estimating Fugl–Meyer 
scores

Fold Model R2 score Correlation

1 M1-CST-LL 0.155 0.419
1 Ipsilesional SMATT-LL 0.122 0.419
1 Left/right SMATT-LL 0.153 0.435
1 LBM-LL 0.255 0.506
1 FS86 (with feat. select.) 0.134 0.393
1 Shen268 (with feat. select.) 0.088 0.35
2 M1-CST-LL 0.035 0.378
2 Ipsilesional SMATT-LL 0.129 0.456
2 Left/right SMATT-LL 0.075 0.417
2 LBM-LL 0.165 0.433
2 FS86 (with feat. select.) 0.209 0.478
2 Shen268 (with feat. select.) 0.240 0.501
3 M1-CST-LL −0.175 0.06
3 Ipsilesional SMATT-LL −0.013 0.207
3 Left/right SMATT-LL 0.002 0.222
3 LBM-LL 0.003 0.239
3 FS86 (with feat. select.) −0.114 0.234
3 Shen268 (with feat. select.) −0.096 0.218

Displaying R2 and correlation of hold-out performances on the three test folds, each 
containing entire sites not used in training. Bold entries indicate the best performance 
across the fold.
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Figure 7 Analysis of feature stability for 268-region ChaCo models (with feature selection) and investigation of paradoxical 
feature weights. A. Scatter plots displaying similarity between beta coefficients across five training folds for one permutation. Each point 
corresponds to one region, and points are coloured by the mean beta coefficient for that region across 500 training folds (i.e. coloured based on 
y-axis value). The average Pearson correlation coefficient across 500 folds is reported. B. Boxplots show the distribution of beta coefficients of 
consistently weighted regions (defined as having median beta coefficients that are zero or of an opposite sign <5% of the time). In total, 30 regions 
with consistent negative weights and five regions with consistent positive weights remained. Median weights for consistently weighted regions are 
plotted on a brain. The boxes extend from the lower to upper quartile values of the data, with a line at the median. Whiskers represent the range 
of the data from (Q1–1.5*IQR, Q3 + 1.5*IQR).
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cases, LBM-LL performed as well as complex, high- 
dimensional ChaCo models. The LBM was derived from an in
dependent dataset, suggesting that this map of association is 
generalizable to new data. Associating motor deficits with 
LBM-LL can be done with simple linear regression, making 
this biomarker accessible to those with a limited coding back
ground. Hence, even though a single lesion load measure might 
at first glance appear to be overly simple and unfit to represent 
the complexity of the human brain and its pathology, it might 
still provide a biomarker that can be meaningful in clinical 
studies with simple, straightforward interpretable design. 
However, high-precision personalized medicine should rely 
on more complex, high-dimensional imaging markers such 
as ChaCo disconnection scores.

Ensemble models
Finally, we saw that averaging estimations from multiple 
models generally improves performance. This suggests that 
the information captured by each data type is not redundant 
and that using multiple different lesion metrics may compen
sate for weaknesses of different feature representations. 
Beyond estimations of chronic motor scores, models may be 
improved by testing and possibly combining multiple features 
as well as multiple feature representations (specifically, 
LBM-LL and ChaCo scores) to obtain an optimal model.21,56

Limitations
There are several limitations of this study. Without baseline 
motor scores and baseline lesion masks (which may differ 
somewhat from the lesion masks collected after the acute 
post-stroke stage), we cannot evaluate the associative power 
of baseline lesion damage and baseline behavioural informa
tion. Although we lack baseline motor scores, which have 
traditionally been thought to explain up to 70% of motor re
covery after stroke, empirical evidence supporting the hy
pothesis of proportional recovery has been recently 
re-analysed.57,58 In these analyses, it has been shown that 
the correlation between baseline motor severity and motor 
recovery may be inflated by the ceiling effect of several stroke 
scales. In this sense, baseline imaging may provide useful bio
logical information that is associated with the extent of one’s 
recovery. We hope that our work will inspire further re
search that includes baseline lesion data, which could valid
ate or refine the relationships we have observed.

Without baseline motor scores, we cannot know to what 
extent lesion information explains unique variance in chron
ic motor outcomes compared to baseline motor scores. 
However, previous studies have shown that models with be
havioural features and imaging biomarkers explain more 
variance in motor outcomes than models with behavioural 
features alone.5,10,14 Similarly, the lack of subject-level re
habilitation data is another limitation. Additionally, the in
clusion of metrics that are not specific to motor deficits (i.e. 
NIHSS) in the training sets may have reduced the perform
ance of models.

Furthermore, ChaCo scores were calculated using a database 
of healthy young control subjects (aged 26–36) which does not 
fully reflect the range of ages of the stroke subjects analysed 
here. However, previous work has shown that structural dis
connection estimates based on a young adult white matter trac
tography atlas are very similar to the same metrics derived from 
a healthy ageing adults’ white matter tractography atlas.59

The associations between lesion volume and motor out
comes have been weak or inconclusive; in particular, the top
ology of the lesion is more strongly associated with motor 
outcomes than lesion volume.10,17,60 As such, lesion volume 
was not included as a theory-based biomarker.

Finally, the strength of LBM-LL/sLNM-LL models relative to 
ChaCo models may be reduced because of the distribution shift 
in the training versus testing dataset: the sample used to generate 
the LBM was different from the sample on which it was tested, 
whereas, for ChaCo models, feature selection was performed 
using the same dataset on which the models were tested.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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