Skip to main content
. 2024 Aug 2;10(15):e35586. doi: 10.1016/j.heliyon.2024.e35586

Table 3.

Performance metrics of classifiers using random oversampling preprocessing and no preprocessing without feature selection.

Classifier ROC Sensitivity Specificity F1 Score Accuracy NPV
Without RandomOversample LR 0.577 0 1 0 0.791 0.791
SVM 0.535 0 1 0 0.791 0.791
AdaBoost 0.5 0 1 0 0.791 0.791
RF 0.502 0.051 0.978 0.09 0.784 0.796
XGBoost 0.514 0.102 0.897 0.136 0.73 0.791
CatBoost 0.539 0.051 0.978 0.09 0.784 0.796
LightGBM 0.53 0.119 0.901 0.159 0.738 0.794
MLP 0.571 0 0.991 0 0.784 0.789
After RandomOversample LR 0.577 0.538 0.571 0.552 0.554 0.542
SVM 0.743 0.684 0.680 0.687 0.682 0.673
RF 0.951 0.882 0.906 0.895 0.894 0.880
MLP 0.797 0.741 0.700 0.730 0.720 0.721
LightGBM 0.942 0.892 0.833 0.869 0.863 0.880
AdaBoost 0.686 0.660 0.581 0.641 0.622 0.621
XGBoost 0.943 0.901 0.818 0.868 0.860 0.888
CatBoost 0.936 0.877 0.818 0.855 0.848 0.865