Table 3.
Performance metrics of classifiers using random oversampling preprocessing and no preprocessing without feature selection.
| Classifier | ROC | Sensitivity | Specificity | F1 Score | Accuracy | NPV | |
|---|---|---|---|---|---|---|---|
| Without RandomOversample | LR | 0.577 | 0 | 1 | 0 | 0.791 | 0.791 |
| SVM | 0.535 | 0 | 1 | 0 | 0.791 | 0.791 | |
| AdaBoost | 0.5 | 0 | 1 | 0 | 0.791 | 0.791 | |
| RF | 0.502 | 0.051 | 0.978 | 0.09 | 0.784 | 0.796 | |
| XGBoost | 0.514 | 0.102 | 0.897 | 0.136 | 0.73 | 0.791 | |
| CatBoost | 0.539 | 0.051 | 0.978 | 0.09 | 0.784 | 0.796 | |
| LightGBM | 0.53 | 0.119 | 0.901 | 0.159 | 0.738 | 0.794 | |
| MLP | 0.571 | 0 | 0.991 | 0 | 0.784 | 0.789 | |
| After RandomOversample | LR | 0.577 | 0.538 | 0.571 | 0.552 | 0.554 | 0.542 |
| SVM | 0.743 | 0.684 | 0.680 | 0.687 | 0.682 | 0.673 | |
| RF | 0.951 | 0.882 | 0.906 | 0.895 | 0.894 | 0.880 | |
| MLP | 0.797 | 0.741 | 0.700 | 0.730 | 0.720 | 0.721 | |
| LightGBM | 0.942 | 0.892 | 0.833 | 0.869 | 0.863 | 0.880 | |
| AdaBoost | 0.686 | 0.660 | 0.581 | 0.641 | 0.622 | 0.621 | |
| XGBoost | 0.943 | 0.901 | 0.818 | 0.868 | 0.860 | 0.888 | |
| CatBoost | 0.936 | 0.877 | 0.818 | 0.855 | 0.848 | 0.865 |