Skip to main content
. 2024 Aug 2;10(15):e35586. doi: 10.1016/j.heliyon.2024.e35586

Table 5.

Performance metrics of various classifiers under different feature selection methods.

Classifier ROC Sensitivity Specificity F1 Score Accuracy PPV NPV
Feature selection with Lasso LR 0.575 0.542 0.581 0.558 0.561 0.575 0.549
SVM 0.742 0.689 0.626 0.673 0.658 0.658 0.658
RF 0.951 0.901 0.882 0.895 0.892 0.888 0.895
MLP 0.763 0.717 0.680 0.709 0.699 0.700 0.697
LightGBM 0.937 0.901 0.793 0.858 0.848 0.820 0.885
AdaBoost 0.687 0.684 0.567 0.652 0.627 0.622 0.632
XGBoost 0.944 0.906 0.828 0.875 0.867 0.846 0.894
CatBoost 0.925 0.844 0.833 0.842 0.839 0.840 0.837
Feature selection with t/Chi-Square LR 0.575 0.462 0.586 0.497 0.523 0.538 0.511
SVM 0.600 0.519 0.586 0.542 0.552 0.567 0.538
RF 0.951 0.925 0.818 0.881 0.872 0.841 0.912
MLP 0.585 0.538 0.591 0.557 0.564 0.579 0.550
LightGBM 0.871 0.854 0.700 0.797 0.778 0.748 0.821
AdaBoost 0.685 0.722 0.542 0.668 0.634 0.622 0.651
XGBoost 0.900 0.906 0.749 0.844 0.829 0.790 0.884
CatBoost 0.846 0.830 0.724 0.793 0.778 0.759 0.803
Without Feature selection LR 0.577 0.538 0.571 0.552 0.554 0.567 0.542
SVM 0.743 0.684 0.680 0.687 0.682 0.690 0.673
RF 0.951 0.882 0.906 0.895 0.894 0.908 0.880
MLP 0.797 0.741 0.700 0.730 0.720 0.720 0.721
LightGBM 0.942 0.892 0.833 0.869 0.863 0.848 0.880
AdaBoost 0.686 0.660 0.581 0.641 0.622 0.622 0.621
XGBoost 0.943 0.901 0.818 0.868 0.860 0.838 0.888
CatBoost 0.936 0.877 0.818 0.855 0.848 0.834 0.865