Table 5.
Performance metrics of various classifiers under different feature selection methods.
| Classifier | ROC | Sensitivity | Specificity | F1 Score | Accuracy | PPV | NPV | |
|---|---|---|---|---|---|---|---|---|
| Feature selection with Lasso | LR | 0.575 | 0.542 | 0.581 | 0.558 | 0.561 | 0.575 | 0.549 |
| SVM | 0.742 | 0.689 | 0.626 | 0.673 | 0.658 | 0.658 | 0.658 | |
| RF | 0.951 | 0.901 | 0.882 | 0.895 | 0.892 | 0.888 | 0.895 | |
| MLP | 0.763 | 0.717 | 0.680 | 0.709 | 0.699 | 0.700 | 0.697 | |
| LightGBM | 0.937 | 0.901 | 0.793 | 0.858 | 0.848 | 0.820 | 0.885 | |
| AdaBoost | 0.687 | 0.684 | 0.567 | 0.652 | 0.627 | 0.622 | 0.632 | |
| XGBoost | 0.944 | 0.906 | 0.828 | 0.875 | 0.867 | 0.846 | 0.894 | |
| CatBoost | 0.925 | 0.844 | 0.833 | 0.842 | 0.839 | 0.840 | 0.837 | |
| Feature selection with t/Chi-Square | LR | 0.575 | 0.462 | 0.586 | 0.497 | 0.523 | 0.538 | 0.511 |
| SVM | 0.600 | 0.519 | 0.586 | 0.542 | 0.552 | 0.567 | 0.538 | |
| RF | 0.951 | 0.925 | 0.818 | 0.881 | 0.872 | 0.841 | 0.912 | |
| MLP | 0.585 | 0.538 | 0.591 | 0.557 | 0.564 | 0.579 | 0.550 | |
| LightGBM | 0.871 | 0.854 | 0.700 | 0.797 | 0.778 | 0.748 | 0.821 | |
| AdaBoost | 0.685 | 0.722 | 0.542 | 0.668 | 0.634 | 0.622 | 0.651 | |
| XGBoost | 0.900 | 0.906 | 0.749 | 0.844 | 0.829 | 0.790 | 0.884 | |
| CatBoost | 0.846 | 0.830 | 0.724 | 0.793 | 0.778 | 0.759 | 0.803 | |
| Without Feature selection | LR | 0.577 | 0.538 | 0.571 | 0.552 | 0.554 | 0.567 | 0.542 |
| SVM | 0.743 | 0.684 | 0.680 | 0.687 | 0.682 | 0.690 | 0.673 | |
| RF | 0.951 | 0.882 | 0.906 | 0.895 | 0.894 | 0.908 | 0.880 | |
| MLP | 0.797 | 0.741 | 0.700 | 0.730 | 0.720 | 0.720 | 0.721 | |
| LightGBM | 0.942 | 0.892 | 0.833 | 0.869 | 0.863 | 0.848 | 0.880 | |
| AdaBoost | 0.686 | 0.660 | 0.581 | 0.641 | 0.622 | 0.622 | 0.621 | |
| XGBoost | 0.943 | 0.901 | 0.818 | 0.868 | 0.860 | 0.838 | 0.888 | |
| CatBoost | 0.936 | 0.877 | 0.818 | 0.855 | 0.848 | 0.834 | 0.865 |