Skip to main content
. 2024 Aug 5;10(15):e35625. doi: 10.1016/j.heliyon.2024.e35625

Table 3.

Comparison summary of pre-trained models vs. proposed architecture on banana leaf disease dataset (Accuracy: Acc, Precision: P, Recall: R, Average time per epoch in seconds: ATPES, Average GPU Inference Time in Seconds: AGITS).

Model Acc P R AUC ATPES AGITS
MobileNetV2 0.7531 0.7660 0.7407 0.9104 10 0.088
DenseNet121 0.8148 0.8174 0.8107 0.9251 15.1 0.096
ResNet152V2 0.7942 0.8042 0.7942 0.9180 19.3 0.129
DenseNet169 0.8107 0.8133 0.8066 0.9469 15.7 0.097
DenseNet201 0.8230 0.8257 0.8189 0.9429 17.3 0.098
InceptionV3 0.7407 0.7586 0.7243 0.8983 20.7 0.142
NASNetLarge 0.7860 0.7925 0.7860 0.9184 27.9 0.163
InceptionResNetV2 0.6955 0.7294 0.6543 0.8275 22.8 0.154
EfficientNetV2S 0.7819 0.7908 0.7778 0.9313 16.02 0.107
EfficientNetV2L 0.7407 0.7469 0.7407 0.9059 32.2 0.198
Modified DenseNet201_PReLU 0.8971 0.9004 0.8930 0.9716 17.37 0.098
Modified DenseNet201_Relu 0.8971 0.8996 0.8848 0.9670 17.37 0.098
DenseNet201Plus with only attention mechanism 0.8712 0.8501 0.8501 0.9529 17.37 0.098
DenseNet201Plus with only attentive transition 0.8788 0.8694 0.8714 0.9602 17.37 0.098
Proposed DenseNet201Plus 0.9012 0.9012 0.9012 0.9716 17.37 0.098