Table 3.
Comparison summary of pre-trained models vs. proposed architecture on banana leaf disease dataset (Accuracy: Acc, Precision: P, Recall: R, Average time per epoch in seconds: ATPES, Average GPU Inference Time in Seconds: AGITS).
| Model | Acc | P | R | AUC | ATPES | AGITS |
|---|---|---|---|---|---|---|
| MobileNetV2 | 0.7531 | 0.7660 | 0.7407 | 0.9104 | 10 | 0.088 |
| DenseNet121 | 0.8148 | 0.8174 | 0.8107 | 0.9251 | 15.1 | 0.096 |
| ResNet152V2 | 0.7942 | 0.8042 | 0.7942 | 0.9180 | 19.3 | 0.129 |
| DenseNet169 | 0.8107 | 0.8133 | 0.8066 | 0.9469 | 15.7 | 0.097 |
| DenseNet201 | 0.8230 | 0.8257 | 0.8189 | 0.9429 | 17.3 | 0.098 |
| InceptionV3 | 0.7407 | 0.7586 | 0.7243 | 0.8983 | 20.7 | 0.142 |
| NASNetLarge | 0.7860 | 0.7925 | 0.7860 | 0.9184 | 27.9 | 0.163 |
| InceptionResNetV2 | 0.6955 | 0.7294 | 0.6543 | 0.8275 | 22.8 | 0.154 |
| EfficientNetV2S | 0.7819 | 0.7908 | 0.7778 | 0.9313 | 16.02 | 0.107 |
| EfficientNetV2L | 0.7407 | 0.7469 | 0.7407 | 0.9059 | 32.2 | 0.198 |
| Modified DenseNet201_PReLU | 0.8971 | 0.9004 | 0.8930 | 0.9716 | 17.37 | 0.098 |
| Modified DenseNet201_Relu | 0.8971 | 0.8996 | 0.8848 | 0.9670 | 17.37 | 0.098 |
| DenseNet201Plus with only attention mechanism | 0.8712 | 0.8501 | 0.8501 | 0.9529 | 17.37 | 0.098 |
| DenseNet201Plus with only attentive transition | 0.8788 | 0.8694 | 0.8714 | 0.9602 | 17.37 | 0.098 |
| Proposed DenseNet201Plus | 0.9012 | 0.9012 | 0.9012 | 0.9716 | 17.37 | 0.098 |