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ABSTRACT: Drug-induced liver injury (DILI) has been a significant challenge in drug discovery, often leading to
clinical trial failures and necessitating drug withdrawals. Over the last decade, the existing suite of in vitro proxy-DILI
assays has generally improved at identifying compounds with hepatotoxicity. However, there is considerable interest in
enhancing the in silico prediction of DILI because it allows for evaluating large sets of compounds more quickly and
cost-effectively, particularly in the early stages of projects. In this study, we aim to study ML models for DILI
prediction that first predict nine proxy-DILI labels and then use them as features in addition to chemical structural features to predict
DILI. The features include in vitro (e.g., mitochondrial toxicity, bile salt export pump inhibition) data, in vivo (e.g., preclinical rat
hepatotoxicity studies) data, pharmacokinetic parameters of maximum concentration, structural fingerprints, and physicochemical
parameters. We trained DILI-prediction models on 888 compounds from the DILI data set (composed of DILIst and DILIrank) and
tested them on a held-out external test set of 223 compounds from the DILI data set. The best model, DILIPredictor, attained an
AUC-PR of 0.79. This model enabled the detection of the top 25 toxic compounds (2.68 LR+, positive likelihood ratio) compared
to models using only structural features (1.65 LR+ score). Using feature interpretation from DILIPredictor, we identified the
chemical substructures causing DILI and differentiated cases of DILI caused by compounds in animals but not in humans. For
example, DILIPredictor correctly recognized 2-butoxyethanol as nontoxic in humans despite its hepatotoxicity in mice models.
Overall, the DILIPredictor model improves the detection of compounds causing DILI with an improved differentiation between
animal and human sensitivity and the potential for mechanism evaluation. DILIPredictor required only chemical structures as input
for prediction and is publicly available at https://broad.io/DILIPredictor for use via web interface and with all code available for
download.

■ INTRODUCTION
The liver is a major organ of drug metabolism in the human
body and thus it is vulnerable to not just drugs but also their
reactive metabolites.1,2 Drug-induced liver injury (DILI) has
been a leading cause of acute liver failure3 (causing over 50%
of such cases4), accounting for a significant proportion of drug-
related adverse events. DILI is detectable generally in phase III
clinical trials and a leading cause of postmarket drug
withdrawals.5 Two common types of DILI are intrinsic and
idiosyncratic.6 While intrinsic DILI is generally dose-depend-
ent and predictable, idiosyncratic DILI is rare, generally not
dependent on dosage, typically unpredictable and undetectable
in early drug development using standard preclinical models,
with a variable onset time and several phenotypes.
The mechanisms underlying DILI are multifactorial7 and not

completely understood. These include cellular toxicities such
as mitochondrial impairment,8 inhibition of biliary efflux,9

oxidative stress,10 and more. Additionally, DILI can be
influenced by dose variations, pharmacokinetics (PK), and
biological variations, such as variations in cytochrome P450
(CYP) expression.11 Today, there are several established in
vitro assays and in vivo experiments (proxy-DILI data) that are
relatively good at detecting DILI risk.12 The current battery of
in vitro proxy-DILI assays is generally effective at detecting

hepatotoxic compounds. However, most human-relevant in
vitro models for DILI risk assessments can still fail to accurately
predict patient safety at therapeutic doses due to differing
toxicity mechanisms at varying concentrations while animal in
vivo models are not completely human-relevant.13 At the time
of writing this research article (February−June 2024), at least
three reports show clinical trials in phase 1/2 suffered setbacks
or ended due to unexpected liver damage, liver function
abnormalities that were not predicted by early in vitro
models.14−16 This underscores the critical need for the
development of more accurate and reliable in vitro systems
that can better simulate human liver responses to drug
exposure, thereby improving the safety assessment and
reducing the risk of late-stage clinical failures. Thus, there is
significant interest in improving in silico DILI prediction due to
its ability to assess large numbers of compounds more quickly
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and cost-efficiently, especially in the early stages of drug
discovery.17

In the drug discovery pipeline, hepatotoxicity assessment
encompasses a variety of in vitro and in vivo experimental
models as well as in silico models. Several in vitro models for
liver toxicity testing employ proxy end points (hepatotoxicity
assays) with liver slices and cell lines such as primary animal
and human hepatocytes18 or even three-dimensional systems
with the dynamic flow for the primary cell and/or stem cell
cultures.19 However, the ideal hepatocyte-like cell model
system depends on the evaluation of particular cellular
functions given that there are substantial differences among
various human liver-derived single-cell culture models as
previously explored in the context of drug disposition,
bioactivation, and detoxification.20 The agreement between
in vitro data and human in vivo data is also low.21 For example,
methapyrilene is known to cause changes to the level of iron
metabolism in the human hepatic HepaRG cell line22 and
oxidative stress and mitochondrial dysfunction in rats23 but has
not been reported to cause hepatotoxicity in humans.24,25 On
the other hand, in vivo animal models also have low
concordance as shown by recent studies using the eTOX
database where organ toxicities were rarely concordant
between species.26 The concordance between animal and
human data for liver toxicity, specifically, is often low (with
some studies indicating rates as low as 40%27 and others in the
range of 39−44%28), which makes extrapolating safety
assessments from animals to humans a challenging endeav-
or.29,30 For example, 2-butoxyethanol causes hepatic toxicity in
mice via an oxidative stress mechanism but not in humans
given humans have higher levels of liver vitamin E (and a high
resistance to iron accumulation) compared to mice.31 Overall,
this leads to a greater need for improved DILI prediction,

especially when translating knowledge from preclinical stage
and animal studies to human clinical studies.17

DILIst32 and DILIrank33 are lists of compounds that have
been classified as inducing DILI or not and were developed
from FDA-approved drug labels. Binary classification from
labeling documents is challenging, and this is evident in the
fact that many DILIrank compounds are labeled ambiguous
although the DILI for some of these compounds has been
reported in the literature. For in silico models, these ambiguous
compounds are generally removed. Machine learning models
are being increasingly used to model biological systems and
identify complex patterns in data sets.34 Generally, in silico
models rely on identifying chemical structural alerts35 or use a
range of chemical or physicochemical features. Ye et al.
employed Random Forest algorithms and Morgan fingerprints
for DILI prediction, achieving an AUC of 0.75 with random
splitting (70% training, 30% testing).36 Liu et al. utilized
Support Vector Machines and obtained a 76% balanced
accuracy on an external test set using Morgan fingerprints;
however, their predicted protein target descriptors provided
less accurate predictions (balanced accuracy of 59%) but
offered better interpretability.37 Mora et al. employed QuBiLS-
MAS 0−2.5D molecular descriptors to predict DILI (labels
from various sources) on an external test set comprising 554
compounds, achieving a 77% balanced accuracy.38 Predicting
organ-level toxicity solely based on chemical structure is
challenging and the use of biological data helps improve
toxicity prediction.39,40 More recently, predicted off-target
effects and experimental P450-inhibitory activity have also
been considered to improve DILI prediction.41,42 Moving away
from binary predictions, Aleo et al. developed the hepatic risk
matrix (HRM) to assess the potential for human drug-induced
liver injury (DILI) among lead clinical and back-up drug

Table 1. Sources of Liver-Safety and Toxicity Data Used in This Study, the DILIst and DILIrank Datasets are Used Together
as the Gost Standard DILI Dataset Used in This Study

data source assay type
used in this

study

total number
of

compounds

number of
compounds in
active class description

reference (data
retrieved from)

human
hepatotoxicity

human
hepatotoxicity

training
data

1163 588 human hepatotoxicity Mulliner et al.

animal
hepatotoxicity A

animal
hepatotoxicity

training
data

542 184 chronic oral administration, hepatic
histopathologic effects, ToxRefDB

Liu et al.

animal
hepatotoxicity B

animal
hepatotoxicity

training
data

671 369 hepatocellular hypertrophy, rats, ORAD, HESS, Ambe et al.

preclinical
hepatotoxicity

animal
hepatotoxicity

training
data

2204 1642 preclinical hepatotoxicity Mulliner et al.

diverse DILI A heterogenous data training
data

1106 382 large-scale and diverse DILI data set, He et al.

diverse DILI C heterogenous data training
data

445 208 transient liver function abnormalities, adverse
hepatic effects, U.S. FDA Orange Book,
Micromedex

Mora et al.

BESP mechanisms of
liver toxicity

training
data

446 240 bile salt export pump Inhibition McLoughlin et
al.

Mitotox mechanisms of
liver toxicity

training
data

5239 689 mitochondrial toxicity Hemmerich et
al.

reactive
metabolite

mechanisms of
liver toxicity

training
data

317 81 reactive metabolite Mazzolari et al.

Cmax (total) pharmacokinetic
properties

predicted
property

718 N/A maximum total concentration in plasma Smith et al.

Cmax (unbound) pharmacokinetic
properties

predicted
property

515 N/A maximum unbound concentration in plasma Smith et al.

DILIst DILI test data
(DILI)

990 619 DILIst classification Tong et al.

DILIrank DILI test data
(DILI)

121 97 DILIrank data set Chen et al.,
Chavan et al.
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candidates. By integrating physicochemical properties and
common toxicity mechanisms, the HRM stratifies drug
candidates based on safety margins relative to clinical Cmax,total.
This study identified 70−80% most-DILI-concern drugs and
effectively differentiated successful from unsuccessful drug
candidates for liver safety.43 Chavan et al. integrated high-
content imaging features with chemical features for DILI label
prediction, resulting in a 0.74 AUC.44 Previously, the authors
of this work explored this in the case of mitochondrial
toxicity45 (which at high doses is one of the mechanisms
known to cause DILI), cytotoxicity,46 and also cardiotoxicity.47

In this study, we significantly extended the use of different
data sources to several in vivo and in vitro data types in
developing the DILIPredictor model presented here. We
identified liver injury end points such as human hepatotox-
icity,48 preclinical hepatotoxicity and animal hepatotoxic-
ity48−50 and DILI data sets compiled by various studies38,51

(Table 1) These data sets provide the in vivo labels for DILI
for different species at various stages of the drug discovery
pipeline, from preclinical to postmarket withdrawals. We
identified three in vitro assays that could be indicative of liver
toxicity and with public data:7 mitochondrial toxicity,52 bile
salt export pump inhibition (BSEP),53 and the formation of
reactive metabolites.54 Mitochondria account for 13−20% of
the liver, and mitochondrial dysfunction can impact ATP

synthesis, increase ROS generation, and trigger liver injury.55

The majority of the mitochondrial toxicity data in Hemmerich
et al. originates from a Tox21 assay assessing mitochondrial
membrane depolarization in HepG2 cells (which provides a
distinct perspective compared to in vitro data derived from
primary hepatocytes), thereby introducing additional biological
information. When BSEP function is inhibited, bile salts
accumulate within liver cells, causing hepatocyte injury and a
risk of liver failure.56 Metabolic processes can form reactive
metabolites that bind covalently to hepatic proteins, altering
their function and leading to damage in liver tissues.57 We also
included PK parameters, which have been predicted before
using machine learning models based on chemical structures.58

Overall, in this study, we hypothesized that these proxy-DILI
labels along with chemical structure and physicochemical
parameters would lead to improved predictivity in identifying
potential liver injury end points while differentiating between
sensitivities observed in human and animal proxy-DILI labels,
allowing for interpretations of hepatotoxicity data across
species. An objective of our study is not just to achieve high
overall predictive performance but to understand how
individual in vitro and in vivo proxy end points provide
predictive value for DILI outcomes in humans. The prediction
of individual proxy end points is valuable, as it aligns with the
specific experiments, thereby forming testable hypotheses. It

Figure 1. Workflow of the current study. Individual models for 9 in vivo and in vitro assays in the proxy-DILI data set and 2 PK parameters were
used to predict these end points for compounds in the gold standard DILI data set. A combination of these predictions along with chemical
structure and molecular descriptors were then used to train and evaluate the models on DILI compounds.
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should be noted that in vivo DILI is not easily testable without
significant effort, and in the case of humans, clinical trials.
Hence, in this work, a FeatureNet approach was adopted, that
is, models are trained on predictions from other individual
models. This allows us to interpret the importance of the
individual predictions to the final prediction with previous
studies showing comparable performance to multitask
learning.59 Furthermore, the nature of our data, characterized
by small sizes for in vivo relevant data and sparse matrices,
presents additional challenges for implementing multitask
learning effectively. Finally, by including in vitro proxy-DILI
labels, the models developed in this study have the potential
for mechanistic evaluation and facilitating a comprehensive
understanding of the underlying biochemical and cellular
processes associated with drug-induced liver injuries.

■ MATERIALS AND METHODS
The workflow followed in this study is shown in Figure 1 and
described in more detail in the following.

Drug-Induced Liver Toxicity Data Sets: DILIst and DILIrank.
The human in vivo data set for liver toxicity was collected by
combining DILIst32 (714 toxic and 440 nontoxic compounds) and
DILIrank33 (268 toxic and 76 nontoxic compounds from Chavan et
al.39) data sets. The DILIst data set classifies compounds into two
classes based on their potential for causing DILI. The DILIrank data
set was released by the FDA prior to DILIst. This data set analyzed
the hepatotoxic descriptions from FDA-approved drugs and assessed
causality evidence from the literature and classified compounds into
four groups: vMost-, vLess, vNo-DILI concern, and Ambiguous-DILI-
concern drugs. For the DILIrank data set, we retrieved data from
Chavan et al.39 We treated vMost- and vLess as DILI-positive and
those labeled with vNo-DILI-concern as DILI-negative. Ambiguous-
DILI-concern drugs were removed. Together, these data sets form the
largest drug list with DILI classification to date.

Proxy-DILI Data Sets: In Vivo and In Vitro Assays. The data
sets we considered include one proxy-DILI label from studies on
human hepatotoxicity,48 and two proxy-DILI labels from animal
hepatotoxicity studies (animal hepatotoxicity A and B, and preclinical
hepatotoxicity as detailed in Table 1).48−50 Animal hepatotoxicity
data sets mentioned above consisted of data compiled by the authors
from ToxRefDB,60 ORAD,50 and HESS61 as well as hepatic
histopathologic effects. Two diverse DILI data sets contain
heterogeneous data collected by other studies38,51 (Diverse DILI A
and C as detailed in Table 1). These data sets consisted of data from
the drugs known to cause transient liver function abnormalities and
adverse hepatic effects as well as compounds from the U.S. FDA
Orange Book and Micromedex. We included three in vitro assays
related to proposed or known mechanisms of liver injury, namely,
mitochondrial toxicity,52 bile salt export pump inhibition (BSEP),53

and the formation of reactive metabolites54 (as detailed in Table 1).
The labels for these in vitro data sets were the assay hit calls defined
by the original studies. Supplementary Table S1 lists the SMILES,
chemical names, and CASRN for all molecules, where available from
the original sources; note that not all original sources provide
complete information on chemical names or CASRN. Previous
studies indicated that mitochondrial toxicity and BSEP are reasonable
predictors for cholestatic and mitochondrial toxins; however, they fail
when applied to a wider chemical space for drugs with different
mechanisms.62 Many assay hits screened from chemical libraries often
have unfavorable drug metabolism and pharmacokinetics presenting
development challenges.63 Thus, we considered pharmacokinetics as
two of the proxy-DILI labels and compiled pharmacokinetic
parameters of maximum concentration (Cmax) from Smith et al.64

This data set contains maximum unbound concentration in plasma for
515 unique compounds and maximum total concentration in plasma
for 718 unique compounds (Supplementary Table S2). Together, as
shown in Table 1, we obtained nine in vivo and in vitro assays (proxy-

DILI labels) related to liver injury and two pharmacokinetic
parameters.

Data Set Preprocessing and Compound Standardization. So
that the focus of this work remains only on traditional drug like
molecules, we dropped compounds if there were no carbon atoms
present, if they were disconnected compounds, if they contained
contain only metals, or if the molecular weight was above 1500 Da.
Then, compound SMILES were standardized using RDKit,65 which
included disconnection of metal atoms, normalization, and reioniza-
tion, isolating the principal molecular fragment, uncharging and
charge normalization, standardization to most common isotopic form,
removing stereochemical configuration and tautomer standardization.
The entire process was iteratively applied up to five times or until the
SMILES representation stabilized. If the standardization process did
not converge to a single representation, the most frequently occurring
SMILES string across the iterations was selected as the standardized
form. Finally, the standardized SMILES were protonated to reflect
their form at physiological pH of the liver (pH = 7.0) implemented
using Dimorphite-DL.66 To ensure our data set did not contain
duplicate chemistry, we used the first 14 characters of InChIKeys
(known as the “hash layer”), which represents the chemical structure
excluding stereochemical and isotopic variations. By comparing these
truncated InChIKeys, we identified duplicates. In cases where
DILIrank and DILIst contained the same compound with conflicting
toxicity labels, we retained the toxic annotation (given there was some
evidence of toxicity in either DILISt or DILIrank). Finally, we
obtained a data set of 1,111 unique compounds and associated DILI
labels (716 toxic and 395 nontoxic compounds). This data set is
henceforth referred to as the gold standard DILI data set
(Supplementary Table S3).

For the proxy-DILI data set, in the case of any compounds with
conflicting toxicity labels within a particular data set after SMILES
standardization, we retained the compound as toxic/active (hence
preferring the evidence of toxicity/activity which is a usual practice in
drug discovery) resulting in a data set of 13,703 compounds. For each
of the nine labels besides PK parameters (as detailed in Table 1), if a
compound was already present in the gold standard DILI data set
above (compared using the InChIKey hash layer), we removed the
compound from the proxy-DILI data set. This was done to avoid any
information leaks in the models developed in this study. Finally, we
obtained a data set of 12,133 compounds in total for nine proxy-DILI
labels, which are henceforth called the proxy-DILI data set in this
study (Supplementary Table S4).

Assay Concordance with Experimental Values. To evaluate
the concordance of the nine proxy-DILI labels and the gold standard
DILI data set with each other, we used all 13,703 compounds in the
proxy-DILI data set and compared them to the 1,111 compounds in
the gold standard DILI data set. To evaluate concordance, we used
Cohen’s kappa (as defined in scikit-learn v1.1.167) to measure the
level of agreement between activity values for each pair of labels which
were present in the data set.

Exploring the Physicochemical Space. Physicochemical space
was explored using six characteristic physicochemical descriptors of
molecular weight, TPSA, number of rotatable bonds, number of H
donors, number of H acceptors and log P, (as implemented in
RDKit65 v.2022.09.5). We used a t-distributed stochastic neighbor
embedding (t-SNE from scikit-learn v1.1.167) to obtain a map of the
physicochemical space for all compounds in the gold standard DILI
data set and proxy-DILI data set with a high explained variance (PCA:
85.15% using two components).

Structural Fingerprints, Mordred, and Physicochemical
Descriptors. We used Morgan fingerprints68 of radius 2 and 2048
bits and 166-bit MACCS Keys,69 as implemented in RDKit65

(v2022.09.5), as structural features for all compounds in the DILI
data set and proxy-DILI data set. This resulted in 2,214-bit vector
structural fingerprints.

We used molecular descriptors (as implemented in the Mordred70

python package) and physicochemical properties (such as topological
polar surface area TPSA, partition coefficient log P, etc. as
implemented in RDKit65 v2022.09.5) for all compounds in the gold
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standard DILI data set and proxy-DILI data set. We dropped
descriptors with missing values, which resulted in 1,016 molecular
descriptors for each compound.

Feature Selection. We first used feature selection on the
compounds in the proxy-DILI data set using a variance threshold
(as implemented in scikit-learn v1.1.167) to filter features (Figure 1
Step 1). We used a low variance threshold of 0.05 for Morgan
fingerprints resulting in 89 selected bits, a threshold of 0.10 for
MACCS keys resulting in 100 selected keys, and a threshold of 0.10
for Mordred descriptors resulting in 653 selected descriptors. Lower
thresholds for variance ensured strict selection criteria, leading to
fewer selected features to strike a balance between the length of all
fingerprints and physicochemical parameters. An additional 15
calculated physicochemical parameters (as implemented in RDKit65

v2022.09.5: topological polar surface area, hydrogen bond acceptors
and donors, fraction of sp3 carbons, log P, and the number of
rotatable bonds, rings, assembled rings, aromatic rings, hetero atoms,
stereocenters, positive and negatively charged atoms, and the counts
of NHOH and NO) were also added. This resulted in 189 bit-vector
structural fingerprints and 668 molecular descriptors for each
compound in the proxy-DILI data set. The same selected features
were used for the gold standard DILI data set (Figure 1 Step 4) to
avoid any information leaks.

Evaluation of Predictions from Individual Proxy-DILI
Models. First, we trained individual models for each of the nine
proxy-DILI end points for all of the other proxy-DILI end points. For
each proxy-DILI end point, we trained individual Random Forest
models (Figure 1 Step 2) with a 5-fold stratified cross-validation and
random halving search hyperparameter optimization (as implemented
in scikit-learn v1.1.167 with hyperparameter space given in
Supplementary Table S5). We used this hyperparameter-optimized
model to obtain predicted probabilities for all compounds for the
other proxy-DILI end points for every 9 × 9 combination. For each
model built on a proxy-DILI end point, we chose an optimal decision
threshold based on the J-statistic value (see released code for
implementation) by comparing the predicted probabilities to the true
values. We obtained final binary predictions using this threshold,
thereby choosing the best-case scenario where the balanced accuracy
is optimized from the AUC-ROC curve. Next, we compared how well
each proxy-DILI model was at predicting other proxy-DILI labels by
comparing the F1 score and likelihood ratios.

Evaluating Predictivity of Individual Proxy-DILI models for
the Gold Standard DILI Data Set. To train and evaluate models for
DILI, we first split our gold-standard DILI data set (containing 1,111
unique compounds) using ButinaSplitter based on the Butina
clustering of a bulk Tanimoto fingerprint matrix split with a cutoff
threshold of 0.70 (as implemented in DeepChem,71,72 Figure 1 Step
3). This led to a training DILI data of 888 unique compounds (560
toxic and 328 nontoxic compounds) and a held-out DILI test set of
223 unique compounds (156 toxic and 67 nontoxic). This ensures
that the DILI test set included a wide variety of compounds that are
structurally less similar to those used in training. Therefore, the held-
out DILI test set is a more challenging representation (compared to
random splits) as encountered in real-world drug discovery:
predicting DILI outcomes for new compounds away from the
chemical space of the known compounds. We evaluated the
performance of individual models built on each of the nine proxy-
DILI end points on the held-out DILI test set (223 compounds).
First, for each of the nine individual models, we obtained out-of-fold
predicted probabilities on the DILI training data (888 compounds)
using cross-validation with a 5-fold stratified split. We used these out-
of-fold predicted probabilities and true values to obtain an optimal
decision threshold based on the J-statistic value. Finally, we used each
of the individual models and the corresponding optimal decision
threshold to obtain predictions of the held-out DILI test set. We used
the Jaccard similarity coefficient score (as implemented in scikit-learn
v1.1.167) to compare the similarity of predictions, that is, the
predicted DILI vectors from each model. The Jaccard similarity
coefficient measures the similarity between two sets of data counting
mutual presence (positives/toxic) as matches but not the absences.

Models for Prediction of Cmax. Next, we trained two Random
Forest regressor models to predict the median pMolar unbound
plasma concentration and median pMolar total plasma concentration
for 515 and 718 compounds, respectively (Figure 1 Step 2). We used
the selected 189 bit-vector structural fingerprints and 668 molecular
descriptors as features to train the models with a 5-fold stratified
cross-validation and random halving search hyperparameter opti-
mization as described above. The best estimator was refit on the
entire data set, the final model was used to generate predictions for
compounds, and these predicted features were used for training DILI
models.

Models for Prediction of DILI. In this study, we built models
(Figure 1 Step 5) using (a) selected 189-bit structural fingerprints,
(b) selected 688 molecular descriptors, (c) a combination of selected
189-bit structural fingerprints and selected 668 molecular descriptors,
(d) predicted nine proxy-DILI labels and two predicted pharmaco-
kinetic parameters which refers to a FeatureNet approach, and (e) a
combination of all three features spaces.

For each feature space, we used repeated nested cross-validation.
First, the DILI training data was split into 5-folds. One of these folds
was used as a validation set while the data from the remaining 4 folds
were used to train and hyperparameter optimize a Random Forest
Classifier (as implemented in scikit-learn v1.1.167). We optimized the
classifier model using a random halving search (as implemented in
scikit-learn v1.1.167) and 4-fold cross-validation (see Supplementary
Table S5 for hyperparameter space). Once hyperparameters were
optimized, we then used the fitted model to generate 4-fold cross-
validated estimates for each compound in the fitted data. These
predicted probabilities along with the real data were used to generate
an optimal threshold using the J statistic value (see released code for
implementation). Finally, we predicted the DILI end point for the
validation set and used the optimal threshold to determine the DILI
toxicity. The process was repeated 5 times in total until all 888
compounds in the DILI training data were used as a validation set.
This entire nested-cross validation setup was repeated ten times with
different splits. The model with the highest AUC was fit on the entire
DILI training data and we obtained the optimal threshold using the J
statistic value on the 4-fold cross-validated estimates for each of these
compounds. Finally, this threshold was used to evaluate our models
(Figure 1 Step 6) on the held-out DILI test set (223 unique
compounds). Thus, for each model using a feature space (or the
combination), we obtained evaluation metrics on (a) the nested
cross-validation (on training data) and (b) the held-out test set. The
best-performing model (Figure 1 Step 7), as shown in the Results and
Discussion section, was the combination of all three feature spaces.
This model was retrained (Figure 1 Step 8) on the complete gold-
standard DILI data set consisting of 1,111 distinct compounds. This
model, DILIPredictor, can be accessed through a web application
https://broad.io/DILIPredictor and have all code available for local
use on GitHub at https://github.com/srijitseal/DILI.

To calculate the structural similarity of the held-out test to training
data, we first calculated pairwise Tanimoto similarity (using 2048-bit
Morgan fingerprint, see released code for implementation) for each
test compound to each training compound. Finally, we calculated the
mean of the three highest Tanimoto similarities (that is the three
nearest neighbors), which was used to define the structural similarity
of the particular test compound.

Evaluation Metrics. All predictions (nested-cross validation and
held-out test set) were evaluated using sensitivity, specificity, balanced
accuracy (BA), Mathew’s correlation constant (MCC), F1 scores,
positive predictive value (PPV), likelihood ratio (LR+),73 average
precision score (AP), and area under curve-receiver operating
characteristic (AUC-ROC) as implemented in scikit-learn v1.1.1.67

Feature Importance Measures to Understand the Chem-
istry and Biological Mechanisms for Common DILI Com-
pounds. For the final model released publicly that used a
combination of all feature spaces, we used SHAP values (as
implemented in the shap python package74) to obtain feature
importance for each input compound. This included proxy-DILI data,
pharmacokinetic parameters, physicochemical features, and also
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MACCS key substructures that contributed to DILI toxicity/safety.
Further, we show how the DILIPredictor can be used to elucidate the
causes of DILI, both in chemistry and via mechanisms on the
biological level using the importance measures on proxy-DILI labels.
We analyzed 4 compounds that were not present in the training data
of these models. Two of these compounds, enzalutamide and
sitaxentan, are known to cause DILI in humans while two compounds,
2-butoxyethanol and astaxanthin, did not cause DILI in humans.
Additionally predicted profiles from another 12 compounds (also
present in the training data) are shown in Supplementary Table S6.
Several of toxic compounds were related to the study by Chang et al.,
who compiled compounds causing DILI in patients undergoing
chemotherapy.75 We also included two pairs of compounds studied by
Chen et al. such as doxycycline/minocycline and moxifloxacin/
trovafloxacin; these pairs were defined by a similar chemical structure
and mechanism of action but differed in their liver toxicity effects.76

Statistics and Reproducibility. We have released the data sets
used in this proof-of-concept study, which are publicly available at

https://broad.io/DILIPredictor. We released the Python code for the
models which are publicly available on GitHub at https://github.
com/srijitseal/DILI.

■ RESULTS AND DISCUSSION
In this work, we trained models on each of nine proxy-DILI
end points related to liver toxicity. We used these models to
obtain predicted proxy-DILI labels for 1,111 compounds in the
gold standard DILI data set (as defined in Methods), none of
which overlapped with the proxy-DILI data set. We then
trained new models using those predicted proxy-DILI labels as
inputs, which refers to a FeatureNet approach, together with
the compounds’ structural fingerprints, physicochemical
properties, and a combination thereof, for 888 compounds
the gold standard DILI data sets. We then evaluated the
models on a held-out test set of 223 compounds.

Figure 2. Concordance of compounds overlapping across nine labels in the proxy-DILI data set (13,703 compounds) including compounds that
overlapped with DILI data (1,111 compounds). Concordance is given using Cohen’s kappa (and the number of overlapping compounds given as
annotations). Overall, the human-related proxy-DILI labels and diverse heterogeneous DILI labels showed high concordance with DILI
compounds and among each other.
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Comparing Chemical Spaces for the Proxy-DILI and
Gold Standard DILI Data Sets. We first examined the
diversity and representation of compounds in the proxy-DILI
and gold standard DILI data sets, to ensure the evaluation
would be reasonable. The distribution of compounds in each
of the nine labels of the proxy-DILI data set covers a diverse
range of physicochemical parameters as shown in Supple-
mentary Figure S1. Gold standard DILI compounds effectively
capture the diversity and representativeness of the compounds
in the proxy-DILI data set as shown in Supplementary Figure
S2 for the physicochemical space of the 1,111 compounds in
the gold standard DILI data set compared to 12,133
compounds in the proxy-DILI data set. Further, the held-out
DILI test set (223 compounds) was also representative in the
physicochemical parameter space of the training DILI data
(888 compounds) as shown in Supplementary Figure S3. The
main caveat to consider is that the six characteristic
physicochemical descriptors capture the variability of phys-
icochemical space only to a certain extent. Overall, we

conclude that the chemical space covered by the data sets is
sufficiently similar for our evaluation to be reliable.

Concordance of Proxy-DILI Data Sets and DILI
Compounds. Next, we aimed to evaluate the concordance
of labels in the proxy-DILI data set with the gold standard
DILI data set. To do so, we compared all 13,703 compounds in
the proxy-DILI data set to the 1,111 compounds in the gold
standard DILI data set. It is important to note that these
compounds (that overlapped between the proxy-DILI and gold
standard DILI data set) were only used to analyze concordance
in this section and not in training the models, because that
would leak information. As depicted in Figure 2, we observed a
strong concordance between the data sourced from human
hepatotoxicity data set and preclinical data (Cohen’s Kappa =
0.60), and the two diverse DILI data sets (0.49 and 0.55) used
in this study. The lack of perfect concordance is reasonable
given these data sets are primarily derived from human-related
data, as opposed to animal data or in vitro assays. Note,
concordance between DILI and proxy-DILI labels may be
affected as the proxy-DILI data set used here includes some of

Figure 3. Performance metrics for models built on nine proxy-DILI labels when predicting labels for the other proxy-DILI in the model, evaluated
using (a) AUC-ROC and (b) likelihood ratio (LR+).

Figure 4. Performance metrics AUC-ROC and balanced accuracy achieved by each of nine individual models built on the proxy-DILI labels and a
model built on two pharmacokinetic parameters (Cmax total and unbound) when tested on the 223 compounds in the held-out DILI data set.
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the DILI compounds (these overlapped compounds were
removed later when training models).

Individual Proxy-DILI Models Are Complementary to
Each Other and Distinct in Their Prediction for DILI
Compounds. We next used the individual models built on the
nine proxy-DILI labels to predict the other proxy-DILI labels
(with evaluation metrics as shown in Supplementary Table
S7). As shown in Figure 3, we observed the human
hepatotoxicity was well predicted using preclinical hepatotox-
icity (LR+ = 3.63, F1 = 0.79). Bile salt export pump inhibition
(BESP) and mitochondrial toxicity were strongly predictive of
each other (LR+ = 2.16, F1= 0.36 when using BSEP to predict
mitotox and LR+ = 3.35, F1 = 0.77 when using Mitotox to
predict BSEP). Overall, the assays in the proxy-DILI data set
can be used to train individual models to generate predicted
proxy-DILI labels, which then provide a complementary source
of information.
We next analyzed the nine individual proxy-DILI models

and a model built on the two PK parameters (Cmax unbound

and total) for their predictions on the 223 compounds in the
held-out compounds of the gold standard DILI data set. As
shown in Figure 4 (further details in Supplementary Table S8),
the best-performing models were the model built on the
preclinical animal hepatotoxicity (AUC = 0.61, LR+ = 1.63)
and the model built on diverse DILI C data set (AUC = 0.59,
LR+ = 1.32). Further the proxy-DILI datasets have compounds
covering a wider biological and chemical space coverage, which
also warrants their inclusion in our study as shown by Jaccard
similarity for predictions on the held-out DILI data set.
Predictions from models built on animal hepatotoxicity labels
were not similar to predictions from models built on human
hepatotoxicity labels (Figure 5; mean Jaccard similarity of
0.12). We found that predictions from models built on human-
related labels were similar (e.g., predictions from the preclinical
hepatotoxicity model have a Jaccard similarity of 0.42).
However, predictions from human-related labels were
dissimilar to predictions from in vitro assays (e.g., predictions
from the preclinical hepatotoxicity model had only a 0.04

Figure 5. Jaccard similarity of predictions on the held-out DILI data set (223 compounds) for individual models built on nine proxy-DILI labels in
the proxy-DILI data set.
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Jaccard similarity to predictions from the Mitotox model and
0.02 Jaccard similarity to predictions from the reactive
metabolite formation model). Overall, we conclude that each
model built on a proxy-DILI label and the PK parameters was
distinctive in its prediction (albeit insufficiently accurate on its
own), thus providing complementary information on com-
pounds’ potential for DILI.

Models Combining Chemical Structure, Physico-
chemical Properties, PK Parameters and Predicted
Proxy-DILI Data Outperform Individual Models. We
next compared models built on combinations of proxy-DILI
labels (including PK parameters), chemical structure, and
physicochemical properties including Mordred descriptors
(Table 2). When comparing results from 55 held-out test
sets from the repeated nested cross-validation (as shown in
Figure 6 with the comparison of differences in distribution
using a paired t test), the models combining structural
fingerprints, physicochemical properties, Mordred descriptors,
PK parameters, and predicted proxy-DILI labels achieved a
mean balanced accuracy (BA) of 0.64 (mean LR+ = 1.84),
comparable to models using only physicochemical properties
and Mordred descriptors with a mean BA of 0.64 (mean LR+
= 1.83) and models using structural fingerprints, physicochem-
ical properties, and Mordred descriptors, which also achieved a
mean BA of 0.63 (mean LR+ = 1.81). Models using only
structural fingerprints achieved a mean BA of 0.63 (mean LR+
= 1.78) while models using only predicted proxy-DILI labels
and PK parameters as features achieved a mean BA of 0.61

(mean LR+ = 1.77) in the nested cross-validation. Supple-
mentary Figure S4 compares the distribution of positive
predictive value for all model combinations using all feature
sets (predicted proxy-DILI labels and PK parameters,
structural features, and Mordred physicochemical descriptors).
We next retrained all hyperparameter-optimized models on

the DILI training data (888 compounds) and evaluated the
final models on the held-out DILI test set (223 compounds)
rather than via cross validation as in the above analysis. The
DILIPredictor model (combining all predicted proxy-DILI
labels and PK parameters, structural features, and Mordred
physicochemical descriptors) achieved an AUC = 0.63 (LR+ =
1.40) on the held-out DILI dataset (Table 2). The model using
only proxy-DILI and PK parameters achieved an AUC = 0.67
(LR+ = 1.76). Other models achieved AUC = 0.62 (LR+ =
1.47) using structural, Mordred, and physicochemical
descriptors, AUC = 0.54 (LR+ = 1.31) using chemical
structural only, and AUC = 0.61 (LR+ = 1.32) for the
model using Mordred and physicochemical descriptors.
One metric relevant in predictive safety/toxicology is the

positive likelihood ratio73 in the detection of toxic compounds
with a lower false-positive rate. Improved detection with lower
false positive rates aids in evaluating model performance across
various threshold settings, shifting the focus from AUC as a
singular statistical value to a more nuanced examination along
the AUC-ROC curve from a false positive rate of 0 to 1. When
predicting the first 29 true positive compounds (or
approximately 13% of the 223 compounds in the held-out

Figure 6. Performance metrics balanced accuracy for combination models from 55 held-out test sets from repeated nested cross-validation using
(a) selected 189-bit structural fingerprints, (b) selected 668 molecular descriptors, (c) selected 189-bit structural fingerprints and selected 668
molecular descriptors, (d) predicted nine proxy-DILI labels and 2 PK parameters, and (e) a combination of all three feature spaces, compared with
a paired t test.
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test set), DILIPredictor achieved the highest LR+ score of 2.68
(25 toxic compounds correctly predicted out of 29
compounds, PPV = 0.86) compared to the structural model,
which achieved an LR+ score of 1.65 (23 toxic compounds
correctly predicted out of 29 compounds, PPV = 0.78). This
improvement is mainly from being able to detect compounds
at a wider range of structural similarity to training data (as
shown in Supplementary Figure S5 using the distribution of
the top true positives detected with low false positive rates for
each model). Overall, this shows that using all feature types in
DILIPredictor allows for the detection of a greater number of
toxic compounds with a low false-positive rate.
We subsequently compared our models to those reported in

earlier publications. Table 3 presents a selection of recent DILI
prediction models that employ chemical features and biological
data to predict liver toxicity. Since most previous studies did
not emphasize likelihood ratios, and often not scaffold-based
splits, it is not possible to compare LR+ scores; therefore, we
can only make comparisons within the models developed in
this study. It is important to note that the size, source, and
consequently the quality of training and test data sets vary
across the previous literature, rendering direct comparisons
infeasible. In our study, the final DILIPredictor model achieved
a AUC-ROC of 0.63 and AUC-PR of 0.79 on the held-out gold

standard DILI data set (223 compounds), which is lower than
the average AUC-ROC(0.73) from prior studies. The balanced
accuracy of DILIPredictor in this study, standing at 0.59, is
lower compared to previous models, averaging 0.64. This
difference is likely caused by a stringent scaffold-based split for
the external test set used in this study, which decreases the
numerical score but better mirrors the real-world drug
discovery process. We also adopted a fixed held-out test set
that is scaffold-split, in contrast to less rigorous random splits
and external data sets used in other studies (which contain
some similar compounds to training data). Furthermore, we
delved beyond the statistical value of AUC-ROC to examine
likelihood ratios and improved detection with low false-
positive rates. This approach allows us to evaluate the quality
of the AUC-ROC curve rather than reducing it to a single
statistical value.

Feature Interpretation. We next used feature interpreta-
tion to analyze the chemical and biological mechanisms for
compounds known to cause DILI. Four compounds are shown
in Table 4, of which two were known for their DILI75 (namely,
enzalutamide and sitaxentan) and two compounds that do not
cause DILI in humans (namely, 2-butoxyethanol and
astaxanthin). DILIPredictor could detect structural informa-
tion relevant to causing DILI (four compounds shown in

Table 3. Previously Published Models Used in the Evaluation of Hepatotoxicity/Liver Injury (for Test Sets Only)

model features
compounds in
train set

compounds in
test set test splitting strategy

balanced
accuracy AUC-ROC

ensemble of RF
and SVM

Molecular fingerprints 1241 286 external data set 0.82 0.9

Random Forests imaging phenotypes and chemical descriptors 346 41 literature survey 0.52 0.74
ensemble models molecular features, physicochemical properties 1254 204 literature survey 0.72 0.73
Random Forests 2D molecular descriptors 996 341 external data set 0.67 0.71
Random Forests 2D molecular descriptors 996 921 external data set 0.57 0.59
SVM Morgan fingerprints 923 49 external data set 0.67
SVM predicted protein targets 923 49 external data set 0.59
Random Forests 0−2.5D molecular descriptors 1075 554 external data set 0.77 0.81
GA-SVM 2D and 3D molecular descriptors 3712 269 proprietary data set 0.64 0.68
Random Forests Morgan fingerprints 845 362 random splits (repeated

100 times)
0.75

naiv̈e Bayes Morgan fingerprints 336 84 random split 0.73 0.81
SVM MACCS keys 1317 88 external data set 0.68 0.62
rule-based physicochemical properties and common

toxicity mechanisms
200 N/A 0.32

average 0.64 0.73
Random Forests structural, physicochemical, predicted in vitro, in

vivo and PK parameters
888 223 scaffold-split 0.59

(scaffold-
split)

0.63
(scaffold-
split)

Table 4. DILI Predictions for 14 Compounds Known to Cause DILI and 2 Compounds That Do Not Cause DILI in Humans
(Not Used in Training Models in This Study) and Top 3 Proxy-DILI Labels Positively and Negatively Contributing to the
Prediction

most contribution proxy-DILI end points to
prediction

compound
name

DILI
(literature)

DILI
prediction

DILI
probability remarks ranked 1 ranked 2 ranked 3

2-
butoxyethanol

not toxic not toxic 0.56 known DILI in mice, not in human Mitotox human
hepatotoxicity

animal
hepatotoxicity B

astaxanthin not toxic not toxic 0.6 vitamin A derivative; high structural similarity
to retinoid but does not cause DILI

diverse DILI A preclinical
hepatotoxicity

diverse DILI C

enzalutamide toxic toxic 0.82 preclinical
hepatotoxicity

human
hepatotoxicity

Mitotox

sitaxentan toxic toxic 0.82 withdrawn preclinical
hepatotoxicity

human
hepatotoxicity

Mitotox
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Figure 7 and Table 4 and Supplementary Figure S6). As shown
in Figure 7, sitaxentan (a sulfonamide-based ETA receptor
antagonist) was predicted toxic, with a positive contribution
from the MACCS substructure near the sulphonamide, which
is known to cause human liver injuries.77 The MACCS feature
most contributing to the toxicity for paclitaxel, docetaxel, and
cabazitaxel, (which contain a taxane group as shown in
Supplementary Figure S6) was found to be the presence of a
taxadiene core. These compounds stabilize microtubules by
binding to the β-tubulin and are known to cause mitochondrial
toxicity.78 Further, DILIPredictor correctly predicted com-
pounds such as 2-butoxyethanol and astaxanthin to be
nontoxic in humans even though they cause hepatic injury in
animal models23,31 (Figure 7). In 2-butoxyethanol, proxy-DILI
features associated with either animal hepatotoxicity or
preclinical hepatotoxicity contributed to predicting toxicity in
humans; however, the proxy-DILI indicators related to human
hepatotoxicity ultimately led to the prediction of nontoxicity.
Finally, among structurally similar pairs of compounds,

acitretin was correctly predicted as toxic while astaxanthin was
correctly predicted to be nontoxic. For acitretin, the preclinical
hepatotoxicity label contributed to the toxicity prediction.
Conversely, labels associated with human hepatotoxicity
contributed to correctly predicting astaxanthin as nontoxic.
Among tetracyclines, pairs of compounds doxycycline
(prediction scores = 0.66) and minocycline (0.66), and
among fluoroquinolones, pairs of compounds moxifloxacin

(0.74) and trovafloxacin (0.84) were correctly predicted toxic.
For fluoroquinolones, the prediction scores obtained from
DILIPredictor were in agreement with the less-toxic or more-
toxic DILI annotations collated by Chen et al.76 Among
compounds withdrawn from market, sitaxentan and trova-
floxacin were flagged with prediction scores above 0.80
threshold; many compounds currently on the market such as
docetaxel and paclitaxel were also flagged in the 0.70 to 0.75
threshold as being DILI-toxic. Overall, DILIPredictor
combined chemical structures and biological data to correctly
predict DILI in humans.

Limitations and Future Directions. The primary focus of
this study was the generation of binary classification models for
drug-induced liver injury, and this is empirically based on
known data sets. Like most previously published models,
empirical models can still be very useful for decision making,
provided they are well predictive, in particular for novel
chemical space.79,80 Besides using predicted Cmax (unbound
and total), we did not incorporate factors such as dose or time
point into this study due to its scarcity in available public data.
Labeling schemes are not always binary but sometimes include
an “ambiguous” class (such as in the DILIrank data set), and
these compounds are hence not included in this study. While
in vitro data can provide valuable insights into drug toxicities,
they are still proxy end points for the in vivo effects. Toxic
compounds detected in in vitro assays can often cause
corresponding toxicity in vivo, but compounds that appear to

Figure 7. MACCS substructure (highlighted) and proxy-DILI labels contributing to DILI when using DILIPredictor (SHAP values) for two
compounds known to cause DILI and for two compounds, which do not cause DILI in humans (further details in Table 4, and for another 12
compounds in Supplementary Figure S6 and Supplementary Table S6). The highest contribution to toxicity/safety from the MACCS substructure
is highlighted with the chemical structure.
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be safe in in vitro are not necessarily safe in humans.29,30 In the
future, with the availability of larger relevant -omics data sets,
such as from the Omics for Assessing Signatures for Integrated
Safety Consortium (OASIS) Consortium,81 multitask learning
models such as Conditional Neural Processes can be
implemented, which can train on several predictive tasks
simultaneously by shared representation learning.82 In the
future, with the availability of larger -omics data sets and
histopathology readouts, it could be possible to explore
mechanistic underpinnings regarding Molecular Initiating
Events or Key Events pathways of toxicity.

■ CONCLUSIONS
In this work, we trained models to predict drug-induced liver
injury (DILI) using not only chemical data but also
heterogeneous biological in vivo (human and animal) and in
vitro data from various sources. We found a strong
concordance in observed data between compounds with the
proxy-DILI labels and DILI compounds. The nine proxy-DILI
models were not predictive of each other − this comple-
mentarity suggests that they could be combined to predict
drug-induced liver injury. Random Forest models that
combined different types of input data − structural finger-
prints, physicochemical properties, PK properties, and proxy-
DILI labels − improved predictive performance, especially in
detection with low false positive rates, with the highest LR+
score of 2.68 (25 toxic compounds with PPV = 0.93).
DILIPredictor accurately predicted the toxicity of various
compounds known to cause DILI, including 14 notorious
DILI-inducing compounds, by recognizing chemical structure
as well as biological mechanisms. DILIPredictor was further
able to differentiate between animal and human sensitivity for
DILI and exhibited a potential for mechanism evaluation for
these compounds. DILIPredictor was trained on existing in
vitro and in vivo data. Using only chemical structures as the
input and a FeatureNet approach, it can predict DILI risk more
accurately, thus aiding decision-making for new compounds
before new in vivo toxicology and pharmacokinetic data is
collected (which typically involves animal experiments that we
aim to reduce). DILIPredictor can also be integrated into
Design-Make-Test-Analyze (DMTA) cycles to aid in the
selection and modification of compounds before more
extensive and expensive testing is conducted.83 Overall, the
study demonstrated that incorporating all complementary
sources of information can significantly improve the accuracy
of DILI prediction models. Furthermore, the availability of
larger, high-quality, and standardized data sets for DILI in the
public domain can greatly enhance the development of
predictive models for drug-induced liver injury such as from
the Omics for Assessing Signatures for Integrated Safety
Consortium (OASIS).81 DILIPredictor required only chemical
structures as input for prediction. We released our final
interpretable models at (with all code available for download at
GitHub at https://github.com/srijitseal/DILI) and data sets
used in this study at https://broad.io/DILIPredictor. Further,
DILI Predictor is available for direct implementations via
https://pypi.org/project/dilipred/ and installable via “pip
install dilipred”.
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