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 Abstract: A large family of enzymes with the function of hydrolyzing peptide bonds, called peptidas-
es or cysteine proteases (CPs), are divided into three categories according to the peptide chain in-
volved. CPs catalyze the hydrolysis of amide, ester, thiol ester, and thioester peptide bonds. They can 
be divided into several groups, such as papain-like (CA), viral chymotrypsin-like CPs (CB), papain-
like endopeptidases of RNA viruses (CC), legumain-type caspases (CD), and showing active residues 
of His, Glu/Asp, Gln, Cys (CE). The catalytic mechanism of CPs is the essential cysteine residue pre-
sent in the active site. These mechanisms are often studied through computational methods that pro-
vide new information about the catalytic mechanism and identify inhibitors. The role of computational 
methods during drug design and development stages is increasing. Methods in Computer-Aided Drug 
Design (CADD) accelerate the discovery process, increase the chances of selecting more promising 
molecules for experimental studies, and can identify critical mechanisms involved in the pathophysi-
ology and molecular pathways of action. Molecular dynamics (MD) simulations are essential in any 
drug discovery program due to their high capacity for simulating a physiological environment capable 
of unveiling significant inhibition mechanisms of new compounds against target proteins, especially 
CPs. Here, a brief approach will be shown on MD simulations and how the studies were applied to 
identify inhibitors or critical information against cysteine protease from several microorganisms, such 
as Trypanosoma cruzi (cruzain), Trypanosoma brucei (rhodesain), Plasmodium spp. (falcipain), and 
SARS-CoV-2 (Mpro). We hope the readers will gain new insights and use our study as a guide for po-
tential compound identifications using MD simulations.  
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1. INTRODUCTION 

The large family of enzymes with the function of hydro-
lyzing peptide bonds, called peptidases or cysteine proteases 
(CPs), are divided into three categories according to the pep-
tide chain involved: i) endopeptidases (bromelain, ficain, 
papain, and cathepsins), and, ii) exopeptidases (carboxypep-
tidase B, and cathepsin X) [1, 2]. Regarding the catalytic 
mechanism, exopeptidases promote cleavage close to the  
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C- or N-terminus of substrates, while endopeptidases pro-
mote cleavage in distant regions of the C- or N-terminus [2]. 
Furthermore, they can be categorized based on the reactive 
group involved in catalysis: serine, cysteine, aspartic endo-
peptidases, and metalloendopeptidases [1]. Cysteine carbox-
ypeptidases are exopeptidases that cleave polypeptides at the 
C-terminus [1]. They are proteases with a reactive thiol, one 
of the oldest in the literature, present in several microorgan-
isms, including viruses, bacteria, protozoa, plants, and oth-
ers, constantly explored as main targets in medicinal chemis-
try and drug development work [3-7]. 

CPs have an average molecular mass between 21-30 kDa 
and have the function of catalyzing the hydrolysis of peptide 
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bonds of amide, ester, thiol ester, and thioester and can be 
divided into five clans: i) papain-like (CA); ii) viral chymo-
trypsin-like CPs (CB); iii) papain-like endopeptidases of 
RNA viruses (CC); iv) legumain-type caspases (CD); and v) 
showing active residues of His, Glu/Asp, Gln, Cys (CE) [2, 
8]. Most CPs are evolutionarily related to papain and show a 
common fold. A central feature is that activation requires 
proteolytic cleavage of the N-terminal pro-region, also func-
tioning as an enzyme inhibitor [2]. In drug design studies, it 
is essential to know the CP category and start the design pro-
cess based on the catalytic mechanism [9, 10].  

 The basis of the catalytic mechanism of CPs is the essen-
tial cysteine residue present in the active site, with the func-
tion of hydrolysis of peptide bonds [11, 12]. The thiol reac-
tivity is commonly increased due to the proximity of a histi-
dine residue that acts as a base, in which the sulfhydryl 
group (SH) and imidazole form a thiolate-imidazolium cata-
lytic dyad (Fig. 1). Often, this histidine load is stabilized by a 
highly conserved proximal asparagine residue. Furthermore, 
glutamine residues commonly form the oxyanion hole, 
which is crucial for producing an electrophilic center and 
stabilizing the tetrahedral intermediate in hydrolysis [11, 12]. 
Interestingly, the thiolate-imidazolium ionized groups allow 
for a wide pH range for optimal enzyme activity, with pKa 4 
for cysteine and 8.5 for histidine. Further, other active site 
residues function as charge stabilizers. Hydrolysis mecha-
nisms are well elucidated, in which the enzyme binds to un-
stable tetrahedral intermediates before returning to its active 
state [12]. Often, these mechanisms are studied through 
computational methods that aid in discovering new infor-
mation about the catalytic mechanism and identifying possi-
ble inhibitors [13-15].  

The role of computational methods during drug design 
and development stages is increasingly prominent [16]. 
Methods in Computer-Aided Drug Design (CADD) acceler-
ate the discovery process, increase the chances of selecting 
more promising molecules for experimental studies, and can 

identify critical mechanisms involved in the pathophysiology 
and molecular pathways of action [16-18]. Among these 
methods, Molecular dynamics (MD) simulations are essen-
tial in any drug discovery program due to their high capacity 
for simulating a physiological environment capable of un-
veiling significant inhibition mechanisms of new compounds 
against target proteins, especially CPs [19]. It is a physics-
based computational simulation method that studies the mo-
lecular motions of atoms and molecules using Newton's 
equations of motion [20]. In this way, it is possible to under-
stand mechanistic events that occur at a macromolecular 
scale and unlock essential information that can be used in the 
hit-to-led drug discovery process [20-22]. 

Due to the importance of cysteine proteases for maintain-
ing the normal physiology of several microorganisms, their 
promising potential in drug discovery studies, and the versa-
tility of MD simulations, current trends in drug discovery 
against CPs using simulations of MD will be presented here. 
MD. Here, a brief approach will be shown on MD simula-
tions and how the studies were applied to identify inhibitors 
or critical information against Trypanosoma cruzi (Cruzain), 
Trypanosoma brucei (Rhodesain), Plasmodium spp. (Falci-
pain), and SARS-CoV-2 (Mpro). We hope the readers will 
gain new insights and use our study as a guide for potential 
compound identifications using MD simulations.  

2. MOLECULAR DYNAMICS SIMULATIONS 

 The study of macromolecular structures and their biolog-
ical functions has been critical in understanding their interac-
tions and bodily functions [23]. Implementing X-ray crystal-
lography and Nuclear Magnetic Resonance (NMR) tech-
niques originate 3D databases of macromolecule information 
[23, 24]. These structures' study and prediction have sup-
ported the understanding of biological events through com-
putational methodologies. Among these tools, Structure-
Based Drug Design (SBDD) has been the basis for using 3D 
macromolecule structures by application in molecular dock-

 
Fig. (1). General catalytic mechanism of cysteine proteases using cruzain (PDB id: 1AIM): A) active site and B) mechanism. (A higher reso-
lution / colour version of this figure is available in the electronic copy of the article). 
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ing, molecular modeling, and molecular dynamics simula-
tions [25]. 

To provide flexibility and solve several problems related 
to molecular docking, theoretical techniques, such as molec-
ular dynamics (MD) simulations, emerge as a great approach 
to obtaining an image of macromolecular dynamic proper-
ties. In this process, several conformations are generated 
through the movement of particles as a function of time [20, 
26]. For example, there are studies involving proteins in so-
lution [27], protein-ligand complex [28], membrane-
embedded proteins [29], or large macromolecular complexes 
such as DNA [30]. The following sections will highlight new 
studies and issues to understand the theoretical foundations, 
computational resources, software performance, and applica-
tions in drug design and discovery. 

2.1. Theoretical Fundamentals 

A molecular system, such as proteins of interest, is repre-
sented in atoms as point masses. Given the positions of all 
the atoms in the system (e.g., a protein surrounded by water) 
can calculate the force exerted on each atom [31]. This sys-
tem has a random initial velocity influenced by a classical 
force field from molecular mechanics (MM). This force field 
fits with quantum mechanical (QM) calculations. Then there 
is a time propagation in femtoseconds, integrating Newton's 
equations of motion in small time steps. Once the system is 
built, force fields obtain the forces acting on all atoms, deriv-
ing these equations [32, 33]. They are called force fields be-
cause they describe the contributions of various atomic forc-
es that govern molecular dynamics. Using complex equa-
tions, they are estimated from an interaction equation be-
tween chemically bonded and non-bonded atoms [33]. In this 
way, connections' length, angles, and rotation are modeled 
using simple springs and dihedral angles. In this way, un-
bound forms arise through van der Waals interactions, using 
the Lennard-Jones potential [34], and charged interactions 
(electrostatic) using Coulomb's law [35].  

Among the existing and commonly used force fields in 
MD simulations are AMBER [36], CHARMM [37], and 
GROMOS [38], differing in their parameterization but 
providing similar results. These parameters are not inter-
changeable, and not all existing force fields can represent all 
types of molecules. For example, CHARMM has optimized 
and validated parameters for proteins, lipids, and drug-like 
ligands [37]. On the other hand, AMBER is commonly used 
for proteins, DNA, RNA, carbohydrate, lipid, ligands, and 
ions [36], while GROMOS is compatible with mono-, di-, 
oligo-, or polysaccharides [38, 39]. 

After calculating the forces on each of the atoms in the 
system, the other configurations are done manually. Thus, 
the objective is to create a box and insert molecules repre-
senting a biological system of interest. This process implies 
correcting structural errors, ionizing amino acids, adding 
counter-ions and solvents, minimizing energy, and applying 
system equilibrium at the desired temperature and pressure 
[31]. All parameters are chosen to simulate the right envi-
ronment for the targeted analysis. After creating the box con-
taining the balanced system, this propagation moves the sys-
tem forward in time. In it, forces are used by differentiating 

the potential of the force field on the interactions between 
atoms, new velocities, and positions for all particles. This 
results in a molecular system trajectory in a 3D movie de-
scribing its evolution over time and the set of conformations 
[40].  

The MD simulation interpretability arises through the 
generation of statistical analysis, visualized in graphs, which 
indicate the observed deviations of the system. The Root-
Mean-Square Deviation (RMSD) is responsible for identify-
ing, frame by frame, the deviation variation. Thus, it is pos-
sible to observe through the plateau if the system stabilizes. 
In this way, the RMSD can be calculated for any molecule in 
the system, such as macromolecules or ligands [41]. On the 
other hand, the Root-Mean-Square Fluctuation (RMSF) cor-
responds to an RMSD over time, identifying which residues 
are more spatially mobile. In this context, it is possible to 
determine which regions within the macromolecule have the 
greatest and least deviation [42].  

Furthermore, the most reported in the literature, other 
evaluations can be observed. The Radius of Gyration (Rg) 
can evaluate the folding of peptides and proteins, identifying 
the displacement of the mass center concerning an axis. The 
bulkier the protein, the greater it's Rg [43]. On the other 
hand, the hydrogen bond (H-bond) plots to calculate and 
analyze hydrogen bonds are determined based on the angle 
and distance between hydrogen, donor, and acceptor. The -
OH and -NH groups are considered donors, while the -O and 
-N are acceptors by default [44]. 

2.2. Activity Determination 

MD simulations can add flexibility to the ligand and a 
biological target and estimate binding affinity. Linear inter-
action energy (LIE) [45], Molecular Mechanics Poisson–
Boltzmann Surface Area (MM-PBSA) [46, 47], and alchem-
ical perturbation (AP) [48] are examples of methods that can 
be employed to estimate free energy dissociation constants 
or other related affinity measures. The first method is sim-
pler and considers only End Points, the bound and unbound 
state, to estimate affinity. The last two methods consider 
statistical mechanics with more rigorous or accelerated sam-
pling, being, however, more computationally expensive [48]. 
The first of these methods is the linear interaction energy 
(LIE) [45], which estimates the interaction through an empir-
ical equation (eq. 1). This equation is derived from the ener-
gies of interactions between a simulated ligand when inter-
acting with a binding site and the same interactions of the 
free ligand in the solvent: 

�� � � ����
�� � � ����

�� � � � ����
��� � ����

��� � ����    (1) 

In terms, �����  and �����  are the electrostatic interaction en-
ergies of the ligand in the complex and free in the solvent; 
���
��
�and ����� are van der Waals interactions, and the α, β, and 

γ derive from a parameterized linear fit to reproduce free 
energies of known interactions. Therefore, they are arbitrary 
parameters. 

The MM/PBSA [47] method is a state's free energy being 
estimated from the following sum (eq. 2): 

� � ��� � ��� � ��� � ��� � ����� � ���                      (2) 
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These three terms represent standard force field terms 
(EFF), electrostatic interactions (EQQ), and van der Waals 
(ELJ) interactions. The polar and non-polar contribution to 
the solvation-free energy is Gpol and Gnp, respectively. A 
generalized Born (GB) (MM/GBSA) model can be used to 
estimate Gpol, and a linear relationship is used to estimate the 
non-polar term based on the Solvent Accessible Surface Ar-
ea (SASA). A normal-mode analysis of the vibrational fre-
quencies yields a normal-mode entropy estimate, S and T as 
the system temperature. It is usual to simulate only the lig-
and-protein complex and then subtract the appropriate terms 
(EFF) to obtain the ensemble average of the free receptor and 
ligand, simplifying the computation of ΔGbind [47]. 

MM-PBSA successfully verified the affinity of two com-
pounds with the trioxane group, the compound (1) (-55,1 
kcal mol-1) and the compound (2) (-62,2 kcal mol-1) (Fig. 2) 
against P. falciparum targeting falcipain in MD simulations 
of 10 ns, using the Discovery Studio 2020 software [49]. In 
another study in 2021, this technique was successfully used 
to determine the affinity of a compound screened from one 
of the Maybridge databases towards Cathepsin B. The cyste-
ine protease can catalyze the degradation of amyloid plaque 
precursor protein [50]. The compounds would then have 
helpful activity in treating Alzheimer's disease. Free-binding 
energy was estimated using 20 ns simulations performed 
with the AMBER10 program [50].  

 

 
Fig. (2). Chemical structure of trioxane analogs (1) and (2).  

 

2.3. Software’s Performance 

MD programs have been fueled by their impact on com-
putational research. This simulation emerged as a powerful 
computational tool, possibly simulating various systems in 
and out of thermodynamic equilibrium [31]. In recent years, 
MD software has been used by researchers, among which 
GROMACS [51], NAMD [52], CHARMM [53], and AM-
BER [54] stand out, which run efficiently on clusters of 
computers with distributed memory. 

The number of MD tool combinations with graphical in-
terfaces has increased over the years. For example, Martinez 
and coworkers (2009) [55] developed PACKMOL, a pack-
age for building initial setups for MD simulations. This code 

makes it possible to pack millions of atoms grouped into 
complex molecules within several 3D regions. The user can 
only provide the structure of each molecule of each type and 
the geometric constraints each molecule must satisfy. This 
way, building complex mixtures, interfaces, solvate biomol-
ecules in water, and other solvents is possible. 

Another reported program is RIN-MD, a tool that makes 
it possible to analyze the residue interaction networks (RIN) 
in protein molecular dynamics. This program acts as a Visual 
Molecular Dynamics (VMD) plug-in, facilitating the study 
of structures. In a RIN analysis, the nodes represent the ami-
no acid residues, their connections, and the non-covalent 
interactions. In this way, the RINs are generated through the 
MD trajectory files, including non-covalent bonds, such as 
H-bond, salt bridges, van der Waals, cation-π, π–π, arginine–
arginine and Coulomb interactions, showing the information 
a 2D interface [56].  

Zaczek et al. (2019) [57] created the MDMS (Molecular 
Dynamics Made Simple) program to guide users through the 
entire process of performing MD. MDMS uses accessible 
language and flexibility for complex cases, making MD via-
ble for beginners and experts in this field. Initially, it assists 
in choosing the protein structure, model preparation, parame-
terization, and simulation execution. 

Another program is MDBenchmark, developed by Gecht 
et al. (2020) [58] to speed up the setup, shipping, simulation 
analysis, and scale study. Developed as open-source soft-
ware, users can run benchmarks, scale studies, engines, and 
cluster computing. Streamlining the process and simplifying 
finding ideal simulation parameters also sends simulations to 
the queuing system, varying the number of nodes, Central 
Processing Unit (CPU), and Graphics Processing Units 
(GPU) usage.  

The SINAPs tool was created to analyze and visualize in-
teraction networks from MD simulations in python language, 
and available free of charge, the program arises to solve the 
main interactions that distinguish two states of proteins. Ad-
ditionally, these interactions can be presented in a 3D view 
through a UCSF Chimera plug-in [59].  

Other tools and Web servers have emerged to facilitate 
structural analysis and provide additional features to the tra-
ditionally described methods. ENCoM, a free tool, emerged 
as a coarse-grained analysis method that considers the nature 
of amino acids. The study additionally aims to help predict 
the effect of single-point mutation on protein dynamics and 
thermostability [60]. 

CHARMM-gui is a web-based graphical user interface 
that prepares complex biomolecular systems for MD simula-
tions [61]. Other web servers are MDMoby and MDWeb 
[62], with automatic configuration functionality, where 
MDMoby provides all configuration, simulation, and analy-
sis operations. On the other hand, MDWeb is an easy-to-use 
web-based interface where users can check the input struc-
ture's quality and customize their configuration protocols 
[62]. The PREFMD (Protein REFinement via Molecular 
Dynamics) implements a more extensive MD-based refine-
ment protocol based on the highest-performing refinement 
method [63].  
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LARMD was created to perform and analyze MD of up 
to 4 ns, through a free and easy-to-use online standard proto-
col, for ligand binding and unbinding analysis [64]. The pro-
gram calculates Normal Mode Analysis (NMA) from static 
structures. It also computes Principal Component Analysis 
(PCA), protein lattice analysis, MM-PBSA, and Dynamic 
Cross-Correlation (DCC) calculations.  

NAPS is a free web server that performs MD simulations 
and data network analysis. Its applications may indicate 
analysis of subtle conformational change, flexibility in pro-
teins, and alternative binding pockets for drugs. Its upgrade 
complements interactive graphics and MD execution on bi-
omolecules such as proteins, protein-protein, protein-nucleic 
acid complexes, MD pathways, and RNA [65]. 

DynaMut2 emerged to evaluate changes in the stability 
and flexibility of protein mutations. This free web server 
allows it to combine NMA methods, such as LARMD and 
graph-based signatures, to show protein movement. Fur-
thermore, the program presents the possibility of accurately 
predicting the effects of mutations on protein stability [66]. 

The free web server MDM-TASK-web combines other 
software, such as MD-TASK and MODE-TASK, to perform 
granular protein analysis. The server allows for performing 
network analysis of dynamic residuals, perturbation, cross-
correlation, and mode analysis. The program aims to investi-
gate the global movement of proteins and intrinsic and ex-
trinsic disturbances, such as aesthetic and orthosteric chang-
es, temperature, pH, and mutations. It also includes metrics 
such as Residue Interaction Network (RIN) and weighted 
waste contact maps [67].  

Atomevo, developed by Hao et al. (2022) [68], is a free 
web server that integrates a series of easy-to-use tools: i) 
homology modeling of proteins by MODELLER, ii) molecu-

lar docking by Autodock Vina, iii) MD simulation through 
GROMACS and iv) Molecular Mechanics/Poisson-
Boltzmann Surface Area (MM/PBSA) analysis. The user can 
upload input files, configure parameters, and download out-
put files on this server. 

In recent years MD has become more accessible. Until 
recently, most jobs required a supercomputer. However, 
computer hardware with GPUs was introduced to run simu-
lations at lower costs [69]. The search for an increase in 
computing power and data processing over the years has 
been reported by several researchers. These solutions 
demonstrate possible and applicable options for academia 
and research. Among the examples, we can highlight the 
development of new functional forms for interactions [70, 
71], new force fields [72, 73], and new integration algo-
rithms [74, 75]. All programs vary in their capabilities and 
feature set. 

2.4. Applications in Drug Design and Discovery 

 CADD methods have seen rapid growth in recent years. 
Drugs such as dorzolamide (3), saquinavir (4), ritonavir (5), 
indinavir (6), captopril (7), and tirofiban (8) (Fig. 3) have 
benefited from using CADD, demonstrating the accuracy of 
the validated results and their importance in pharmaceutical 
applications [76]. Molecular docking studies, mainly involv-
ing explicit solvents, have supported the characterization of 
flexible binding sites and the evaluation of binding path-
ways, kinetics, and thermodynamics. However, limitations 
related to flexibility instigate researchers worldwide to asso-
ciate molecular docking with other approaches. Thus, the 
MD simulations become essential in any drug design cam-
paign [31, 77].  

MD simulation is becoming increasingly important to 
identify which molecular properties are essential and the 

 
Fig. (3). Chemical structure of some drugs discovered using CADD approaches.  
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molecular interactions responsible for the binding of ligands 
in a macromolecule [31, 77]. In this way, the study of Ska-
riyachan et al. (2018) highlighted the screening of 104 po-
tential inhibitors against targets of multi-drug-resistant Aci-
netobacter baumannii [78]. Molecular docking results 
demonstrated strong interactions with nine targets taken 
from the PDB, and three compounds (Fig. 4) were selected 
for MD simulations (limonin (9) to diaminopimelate epi-
merase, ajmaciline (10) to aspartate semaldehyde dehydro-
genase and strictamin (11) to UDP-N-acetylglucosamine 1-
carboxyvinyltransferase). Thus, MD simulations showed 
stability up to 250 ns for all compounds, which could be con-
firmed in vitro�

In another study, Lourenço et al. (2020) [79] performed 
virtual screening based on molecular docking to identify the 
supposed action mechanism of quercetin (12) (Fig. 4) ex-
tracted from the plant Bryophyllum pinnatum (Lam.) Oken. 
The authors confirmed the PDE4 (phosphodiesterase-4) en-
zyme as a promising target by in vitro assays, indicating 
more excellent selectivity for PDE4B than PDE4A. In addi-
tion, MD simulations were performed to evaluate the stabil-
ity of the complex with PDE4B using the five best poses 
extracted from the docking at a time of 5 ns. The stability of 
the conformations was presented in the RMSD, while the 
MM-PBSA highlighted that two of the five poses showed the 
best energy values (-72.58 kcal mol-1 and -72.38 kcal mol-1). 
After extending the simulation time, the two poses demon-
strated high stability up to 14 ns, with two π-π interactions 
and eight H-bonds, identifying the flavonoid derivative quer-
cetin as a promising PDE4B inhibitor. 

Yan et al. (2020) performed an initial screening using 
3D-QSAR models, resulting in the identification of two anti-
oxidant tripeptides: GWY (13) and QWY (14) (Fig. 5) [80]. 
Furthermore, molecular docking was applied to identify the 
potential mechanism resulting in KEAP1. MD simulations 
confirmed the stability of the compound at 30 ns, being the 
same site found for NRF2 binding with KEAP1. The RMSD 
indicated that KEAP1 binding with GWY (13) or QWY (14) 
reached equilibrium faster than KEAP1 not binding with the 
ligand. Regarding energy, the compounds were strongly 
linked, with electrostatic and van der Waals interactions sig-
nificant for combination, and Rg results showed that GWY 
(13) seemed more stable than QWY (14). 

On the other hand, Jairajpuri et al. (2021) identified natu-
ral compounds as inhibitors of the SARS-CoV-2 Mpro [81]. 
Initially, 90,000 compounds obtained from the ZINC data-
base were analyzed under ADMET and toxicity parameters. 
Of these, 32,902 compounds were used in molecular dock-
ing, which consisted of a filter to identify candidates with the 

best profile. The most promising compound was selected for 
MD. The simulation was carried out in two systems: the free 
protein and the complex with the inhibitor. RMSD demon-
strated the stability of the complex, and RMSF showed min-
imization of fluctuations in the presence of the complex. 
Thus, initial fluctuation of up to 15 ns in the Rg must be due 
to the packing adjustment of Mpro, which then remained bal-
anced up to 100 ns. The stability of the complex demonstrat-
ed that the compound ZINC02123811 (15) (Fig. 5) presented 
stable conformations and interactions at 100 ns, maintaining 
the interaction with the amino acid residue Cys145 and His41. 
Thus, computational analysis indicates that this compound 
can be a scaffold for developing potential inhibitors.  

Another computational study was validated in vitro, aim-
ing at inhibiting arylhydrazothiazolylsulfonamides analogs 
for antibacterial and antifungal infections [82]. The best 
compound (16) (Fig. 5) showed activity against B. cereus, P. 
aeruginosa, E. coli, and C. albicans. The molecular docking 
and MD simulations were performed with tyrosyl-tRNA 
synthetase, dihydropteroate synthetase, and N-myristoyl 
transferase to evaluate its possible biological target. MD 
showed a good binding profile for the simulations, with 
RMSD and RMSF of <3.5 Å and 1 Å, respectively, over the 
entire period for the systems. The Rg demonstrated that the 
simulation compaction was similar to the co-crystal ligand. 
Also, MM-PBSA indicated that the dihydrofolate reductase 
complex (-144,349 kcal/mol) was the best binding free ener-
gy. In this way, the presence of H-bonds that formed the 
complexes was thermodynamically highly stable. 

The existence of native substrates, active sites, and SARs 
studies of fatty acid amide hydrolase (FAAH) inhibitors and 
cholinesterases led Maleki et al. (2021) to evaluate the action 
of carbamates as possible inhibitors [83]. Thus, compound 
(17) (Fig. 5) was evaluated as having the best in vitro inhibi-
tory activity against the enzymes. In 100 ns of simulation, 
MD could determine its form of inhibition in three targets: 
FAAH, acetylcholinesterase (AChE), and butyrylcholines-
terase (BuChe). When comparing with the Apo form of the 
proteins, the RMSD indicated that the complex with the lig-
and has more stability. The RMSF shows that the active site 
was less flexible when linked to compound (17) inhibitor. 
Kinetic studies confirmed the inhibition of compound (17), 
indicating that it inhibits AChE through the mixed-mode 
mechanism, and for BuChE, the inhibition mechanism is the 
non-competitive one. 

Computational methods have studied carcinogens due to 
the wide availability of 3D information in several databases. 
Thus, Eldehna and colleagues (2022) evaluated the activity 
of novel 3-(naphthalen-1-yl)-4,5-dihydropyrazoles as EGFR 

 
Fig. (4). Chemical structure of limonin (9), ajmaciline (10), strictamin (11), and quercetin (12).  
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inhibitors as anticancer agents [84]. The inhibitory activity at 
the nanomolar scale for the most active compound (18) (Fig. 
5), with IC50 267 ± 12 nM. Molecular docking was per-
formed to explore the binding mode, highlighting a similar 
pose related to EGFR inhibitor erlotinib (19) (Fig. 5). The 
MD simulation of compound (18) and erlotinib (19) shows 
the stable RMSD for both, with lower values than the Apo 
form of the EGFR (1.8, 1.7 and 4.2 Å, respectively). RMSF 
concluded similarly, with greater flexibility of amino acid 
residues for the Apo form. The new inhibitor achieved free 
energy results similar to erlotinib (19), consistent with in 
silico and in vitro analysis. 

3. MD SIMULATIONS TO DISCOVER CYSTEINE 
PROTEASE INHIBITORS 

MD simulations have been widely used to evaluate the 
internal movement, physical arrangements, and structural 
changes induced by the environment in proteins and their 
interactions with other chemical molecules. The MD simula-
tions can describe the dynamics of the binding mechanism of 
a small molecule to a protein under interference from water, 
pressure, temperature, and ions [85]. In addition, it is a 
method constantly explored to discover cysteine protease 
inhibitors useful against several diseases, mainly parasitic 
and viral diseases [3, 19]. The following topics will address 
the main studies using MD simulations to discover cysteine 
protease inhibitors. 

3.1. Cruzain (Trypanosoma cruzi) 

Chagas disease is caused by the protozoan flagellated 
parasite Trypanosoma cruzi and was first described by Car-
los Chagas in 1909. The disease was initially endemic to 
Latin America, but it has spread to other places such as Can-
ada, the United States, Europe, Australia, and Japan, affect-
ing 6-7 million people worldwide, and the number of deaths 
is approximately 50,000 annually. Despite that, no vaccines 
are available, and the chemotherapeutic drugs (benznidazole 
and nifurtimox) are effective only in the acute phase. In addi-
tion, 20% of cases must be stopped, providing several side 

effects necessary to develop the most effective new drugs 
[86, 87]. In this way, studies focus on the T. cruzi enzyme 
cruzain or cruzipain, a cysteine protease abundant during the 
parasite's life cycle and are necessary mainly in the 
amastigote forms [86, 87]. 

To discover helpful information for cruzain inhibitors de-
sign, Luchi and collaborators (2019) performed structure-
activity relationship (SAR) by applying the quantum theory 
of atoms in molecules (QTAIM) methodology with ML tools 
and MD simulations, using known analogs of K777 to inves-
tigate the influence of the substituents in P2 and P3 (Fig. 6) 
[88]. After analyzing 17 known inhibitors (21 – 36) (Fig. 6), 
they identified interactions that are prevalent in the most 
active group (for example, 32), such as H-bond between side 
chains of protonated His162 and Asn182, which favor the thio-
late-imidazolium ion pair (Cys25-His162) necessary for cataly-
sis. In contrast, less active (34), the indole ring of Trp184 oc-
cupied the space where this interaction was observed, sug-
gesting that Trp184 might act as a “switch” for this interac-
tion. MD simulations of the complex with compound (32), 
the His162 was closer to Asn182, while in the complex with 
compound (34), His162 was part of the time far away from 
Asn182, confirming the hypothesis proposed by the authors. 

Compound K777 (20) (Fig. 6) is the most successful cru-
zain inhibitor, with efficacy in acute and chronic Chagas 
disease models. However, biological studies stopped due to 
its poor tolerability, possibly because of an irreversible inhi-
bition, which forms an adduct with the sulfur atom of the 
active site cysteine thiol in cruzain. Therefore, Silva and 
collaborators (2020) designed a reversible covalent inhibitor 
based on the formation of thioimidate adduct with the thiol 
of the catalytic cysteine, which resulted in Neq0682 (37) 
(Fig. 7) that bears a nitrile, losing the aryl sulfone region of 
K777 (20) and maintaining the same scaffold [89]. The MD 
simulations showed that the two inhibitors performed the 
same type of interaction in the active site of cruzain. Finally, 
the QM/MM shows that Neq0682 (37) is a reversible cova-
lent inhibitor, and the reaction free energy of K777 (20) is 
significantly more negative than the reaction for Neq0682. 

 
Fig. (5). Chemical structure of some compounds identified using MD simulations.  
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Therefore, the barrier for the reverse reaction is higher for 
K777 (20), explaining why it is an irreversible inhibitor and 
providing insights into a covalent inhibition mechanism. 

Experimental data suggest that dipeptidyl nitrile inhibi-
tors bind tightly inside the active site of cruzain, and the in-
hibition occurs through the reversible formation of a cova-
lent bond. Further investigations through MD simulations 
related to the reaction mechanism of dipeptidyl nitrile de-
rivatives Neq0409 (38), Neq0410 (39), and Neq0570 (40) 
(Fig. 7) were reported by Santos et al. (2018) [90]. The re-
sults demonstrated a concerted mechanism where the com-
pounds' proton transfer from His162 to N1 occurs with a nu-
cleophilic attack from negatively charged Cys25 at C1 of the 

compounds. Although the binding enthalpy was exothermic 
for all ligands in the isothermal titration calorimetry (ITC), 
Neq0570 (40) (ΔGbind= -9.0 kcal/mol) and Neq0409 (38) 
(ΔGbind= -8.9 kcal/mol) demonstrated better binding affinities 
than Neq0410 (39) (ΔGbind= -7.5 kcal/mol) and therefore are 
thermodynamically more favorable. 

To evaluate the differentiation capacity of MD simula-
tions among cruzain inhibitors, Sartori et al. (2019) [87] se-
lected the dipeptidyl nitriles from the literature, compounds 
(41), (42), (43), and (44) and an inactive, compound (45) 
(Fig. 7). Concerning (42), the simulations identified a poor 
geometry for a non-covalent complex with cruzain, even 
though it is a promising inhibitor of the enzyme. In addition, 

 
Fig. (6). Chemical structures studied by Luchi and collaborators (2019). 

 

 
Fig. (7). Chemical structure of some cruzain inhibitors studied by MD simulations. 
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the complex of (45) with cruzain showed excellent stability 
and geometry. However, the relative orientations of groups 
are not conducive to nucleophilic attack, which is explained 
by the fact that this ligand is a poor inhibitor.  

Regarding the covalent nitrile-enzyme complexes, Cianni 
et al. (2018) [91] identified favorable substitutions in dipep-
tidyl nitriles through three replicates of 100 ns MD simula-
tions with compounds (46), (47), (48), (49), (50), and (51) 
(Fig. 8). A better interaction pattern was highlighted between 
the Ser61 hydroxyl group and the chlorine atom at the meta-
position of compound (48) compared with orto-chlorophenyl 
in compound (47) (most constrained) and para-chlorophenyl 
in compound (49) (most flexible). Bromine and iodine at the 
meta-position (compounds (50) and (51)) also can perform 
an H-bond interaction with residue Ser61 of the cruzain S3 
cavity, suggesting the existence of the halogen bond inter-
mediating the bimolecular recognition process.  

Continuing the analysis of the influence of P3/S3 interac-
tions by MD simulations, Cianni et al. (2020) [92] per-
formed modifications through meta-substitution in P3 in the 
compounds (52), (53), and (54) (Fig. 8) to obtain the potent 
and selective inhibitors (55) and (56) (Fig. 7). Beyond inter-
actions with Gly66 and Asp161 by H-bonds, residues that di-
peptidyl nitrile-like molecules usually bond in the covalent 
complex. Two different modes of binding (MoB) to the ac-
tive site were identified: the P3 region of compound (54) was 
in contact with the S3 surface, and CF3 was exposed to the 
solvent (MoB I). CF3 interacted with the S3 surface for the 
other compounds, while the P3 group formed an intramolec-
ular π stacking interaction with the phenyl group at P1 (MoB 
II) during most of the simulation. The difference is justified 
by the pyrimidine ring in the meta position, which interacts 
with Ser61 by H-bond only during MoB I and do not interact 
with the same residue when pyrimidine is in para-position 
such as in compound (56) and performed the MoB II. How-
ever, the difference in pKi values among these compounds is 
very small, ranging from 8.3 to 9.2. It can be assumed that 
both MoBs contribute to cruzain inhibition.  

 In another study, Hoelz et al. (2015) [93] performed MD 
simulations to understand the cruzain behavior before and 

after binding to the inhibitor by using two systems in an 
aqueous solvent under pH 5.5, one free (the apo form) and 
the other bound to the Neq 176 (57) (Fig. 9). The analysis 
showed no significant stability variation during the simula-
tion, so the inhibitor binding does not change the protein 
fold. According to the Cα-RMSF plot, only loop-3 (between 
Cys56 and Leu67) and loop-4 (between Asp87 and Thr107) pre-
sented structure fluctuations. The binding mode of Neq176 
(57) occurred only by H-bonds, mainly with Gly66, Met68, 
Asn69, and Leu160 residues. Additionally, the PCA analysis 
demonstrated that the movements in the apo form system led 
to an open conformation. However, while the enzyme is 
bound to the inhibitor, the Rg analysis confirmed a closed 
conformation, where the cruzain apo system showed higher 
values. Therefore, the inhibitor binding induced conforma-
tional changes in the enzyme structure to accommodate the 
inhibitor. 

To identify new cruzain inhibitors based α-Keto scaffolds 
Saraiva et al. [94] selected 31 from the literature, synthesized 
and tested in the same experimental conditions, aiming to 
construct 3D-QSAR models. The most active compound (58) 
(Fig. 9), and the least, compound (59) (Fig. 9) presented 
pIC50= 9.191 and pIC50= 7.284, respectively. Thus, MD sim-
ulations described that the RMSD value for compound (58) 
is below compound (59). Still, both ligands maintained low 
deviations, given the presence of strong disulfide bonds that 
contributed to the stability of the complex. The interactions 
at the active site were performed mainly with Gln19, Cys25, 
Gly65, Gly66, and Asp158 for the least active compound, while 
the most active one interacted with Asn175 because of the 
sulfonamide group. These hydrophobic groups in compound 
(59) promoted instability, whereas the polar group in com-
pound (58), sulfonamide, induced strong interactions. Ac-
cording to the RMSF plot, the residues Lys58, Thr59, Asp60, 
and Ser61 are responsible for the highest fluctuation (2.45 Å). 
Finally, the binding free energy of the most active compound 
(58) was favorable (ΔGbind= -50 kcal/mol) and stable along 
the simulation, indicating inhibitory interaction.  

In another work, Costa et al. (2022) applied the de novo 
approach to propose new sulfonamide derivatives with po-

 
Fig. (8). Chemical structure of the compounds developed by Cianni et al. 
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tential action against cruzain based on 146 sulfonamide 
fragments that were filtered to 5 best compounds (60), (61), 
(62), (63), and (64), and with compound (65) (Fig. 9) as the 
reference [95]. Thus, molecular docking suggested that 
Cys25, Gly65, Leu67, Asn69, His159, and Ala133 played an es-
sential role in molecular recognition. Also, MD simulations 
revealed the values of RMSD for the compounds (60), (61), 
(62), and (65) were all below 1.50 Å, and in RMSF analysis, 
some regions, as Trp7-Val34, Glu50-Met68, Ala92-Ala110, 
Val135-Leu166, and Ile194-Ser211 were the most flexible of cru-
zain. In addition, the Rg presented minor variations during 
the simulation, suggesting the stability of the folded protein. 
Concerning the MM/GBSA calculations for binding free 
energy, (60) displayed the lowest values among all evaluated 
compounds, including the reference compound CP6 (65). 

Souza and collaborators (2021) [96] performed a QSAR 
study to design new cruzain inhibitors. Thus, were obtained 
the compounds (66), (67), (68), (69), and (70) (Fig. 10). The 
compound (69) showed high interaction energy and potent 
biological activity (pIC50= 6.93). The MD simulations 
demonstrated the complex stability, and the loop regions 
with more significant fluctuations according to RMSF are 
Val54-Leu67, Glu95-His106, and Thr148-Gln159 (S3 subsite), the 
binding free energy values determined by MM-GB/PBSA 
and LIE methods were low (ΔGMM-GBSA= -29.61 Kcal/mol, 
ΔGMM-PBSA= -26.55 Kcal/mol, and ΔGLIE= -14.48 Kcal/mol). 
Besides, compound (69) interacted with several residues, 
highlighting Gly23, Cys25, Trp26, Ser64, Gly65, Gly66, Gly67, 
and His162, contributing to the fixation and stabilization of 
the complex. 

Additionally, Freitas et al. (2018) [97] reported in a pre-
vious paper the antileishmanial activity of nine alkyl-

substituted benzophenones analogs (71), (72), and (73) (Fig. 
10) that evaluated against cruzain. Thus, compounds (71) 
and (72) demonstrated potential inhibition with IC50 values 
of 9.51 and 10.86 μg/mL, respectively, and compound (73) 
showed no inhibition. Next, MD simulations were per-
formed, and the RMSD values of the complex with the com-
pounds (71) and (72) achieved values up to 0.168 and 0.161 
nm that indicated downward movement of the enzyme. Simi-
larly, RMSF for complexes with the compounds (71) and 
(72) were 0.085 ±0.053 and 0.082 ±0.042, respectively. Ad-
ditionally, compound (71) shows the average value of an H-
bond of 2, with 53.5% and 74.1% occupancy for Gln37 and 
Val214, while compound (72) does not show an H-bond. Fi-
nally, the hydroxyl group in the compound (71) ring can also 
be related to the greater interaction affinity, resulting in the 
lower IC50 value for cruzain. 

Cruzain is regulated by chagasin, an endogenous inhibi-
tor of papain-like cysteine protease. Furthermore, site-
directed mutagenesis analysis in chagasin residues has been 
executed to elucidate evolutionarily conserved residues' 
functional role in the inhibition of cruzain. Among them, the 
mutation in T31 decreased 40-fold the binding affinity for 
cruzain and, when combined with T32, decreased 140-fold, 
so these residues are essential for cruzain inhibition. Another 
mutant, W93A, only impacted cathepsin L. (110-fold lower 
affinity). In this context, Toman et al. (2020) [98] could not 
relate the lower affinity of chagasin variants T31A and 
T31A/T32A for cruzain to conformational changes. Howev-
er, they noticed that the introduction of mutation W93A in-
creased the number of polar interactions with cruzain. The 
most common was a salt bridge between residue Arg91 of 
mutant W93A and Asp18 of cruzain during 95% of the MD 

 
Fig. (9). Compounds identified against cruzain using MD simulations. 
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simulation. Moreover, three hydrogen bonds appeared more 
than 10% of the time, involving the following W93A-cruzain 
residue pairs: Asp99 and Gln21, His98 and Glu95, Ala93, and 
Gln187. 

After combining a high-throughput and virtual screening, 
Martins et al. (2017) [99] discovered compound (74) (Fig. 
10), and its optimization provided a series of analogs, high-
lighting the compound (75) (Fig. 10) with IC50= 15 μM. MD 
simulations demonstrate the quinoline ring was placed at the 
S2 subsite interacting with Glu208, and the morpholinyl group 
at S3 corroborant with many crystallographic complexes of 
cruzain inhibitors. The N1 protonated form generated a more 
stable complex with cruzain than the deprotonated one. Ac-
cording to the predicted pKa and simulation results, it is the 
experimental binding protonation state of the compound 
(75). In addition, favored ionization of Glu208 carboxyl and 
propyl-morpholinyl interactions occurred with Cys25 and 
Asp61. The RMSF of the clusters showed similar patterns and 
was not statistically different among them, indicating similar 
ligand stability.  

Exploring MD methods, Silva et al. (2021) [15] executed 
a virtual screening including 120 analogs against Cruzain. In 
this way, fourteen 1,4-naphthoquinone-based compounds 
were selected and synthesized, and the compound JN-11 (76) 
(Fig. 10) was identified as a hit with IC50= 6.3 μM. Moreo-
ver, the results of Cα RMSF of MD simulations identified 
values ranging from 0.1 to 0.15 nm, and stabilization oc-
curred after 15 ns and remained during all simulation time 
(100 ns). Also, the area accessible to the solvent did not pre-
sent significant variations. Thus, JN-11 (76) did not favor 
significant conformational changes in primary amino acid 
residues and remained at the active site. JN-11 (76) demon-
strated interactions with Leu67, Ala138, and Leu160 (π-alkyl); 
Cys25 and Met68 (π-sulfur); Trp26, Gly65, Gly66, and His159 

(van der Waals), and Gly23 and Gly163 (H-bonds) residues, 
which are associated with the inhibition of the target. 

Santos et al. (2019) [100] developed non-covalent ben-
zimidazole inhibitors, and after SAR and QSAR studies 
against Cruzain, the binding mode of the lead compound 
(77) (Fig. 10) to cruzain. The X-ray crystallography has been 
solved to comprehend the benzimidazole ring's contribution, 
which is essential for enzyme inhibition. MD simulations 
showed significant changes in the H-bond profile for differ-
ent protonation states. The ligand protonation in the linker 
region was more stably bound to the enzyme by H-bonds 
with Gly66 and Asp161 backbone atoms, as noticed in crystal-
lographic complexes with cruzain. Moreover, the extra H-
atom in the benzimidazole ring formed H-bonds with Asp161 
and Ser64 with occupancy between 45% and 80% during the 
simulation. The benzimidazole ring was the ligand region 
with higher flexibility, while the bromophenyl ring and the 
linker anchored the compound in the binding site. 

3.2. Rhodesain (Trypanosoma brucei)  

Human African Trypanosomiasis (HAT), also known as 
sleeping sickness, is an endemic parasitic disease and affects 
36 countries in sub-Saharan Africa, with approximately 
10,000 new cases reported yearly. This disease is caused by 
two subspecies of Trypanosoma, which are Trypanosoma 
brucei gambiense and Trypanosoma brucei rhodesiense, 
responsible for the chronic and acute forms of the disease, 
respectively and the last one possesses a higher mortality 
rate. The current HAT therapy involves suramin and pentam-
idine for the hemolymphatic stage, while melarsoprol, 
eflornithine, and nifurtimox are applied in the neurological 
stage. More recently, the nitroimidazole derivative fexini-
dazole was approved by the FDA for both stages. However, 
the antitrypanosomal agent's available present problems with 
dosing schedules, toxicity, and drug resistance, revealing the 
need to develop new effective drugs against novel targets 
[101-103]. 

Therefore, Previti et al. (2017) [102] developed peptide-
based rhodesain inhibitors with Michael acceptors groups to 

 
Fig. (10). Several chemotypes identified against cruzain studied by MD Simulations. 
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promote covalent inhibition, identifying the compounds the 
vinyl ketone analogs (78), (79), (80), and (81) (Fig. 11) as 
the most promising (Ki values ranging from 0.038 nM to 0.9 
nM). Further studies against cultured T. b. brucei showed the 
most active compounds (79) and (80) with IC50 of 2.48 and 
2.97 μM, respectively. In addition, parasites treated with 
compound (80) exhibited growth retardation with an EC50 
value of 3 μM. Molecular docking of compound (80) showed 
H-bonds with Gly66 and Asp161 and accepted two H-bonds 
from Trp184. For the P2 region, the studies confirmed that 
bulky Phe residue fitted better into the hydrophobic S2 bind-
ing site, including Ala208, Leu160, Ala138, Met68, and Leu67 
residues, which justifies the increased activity of the Phe-
containing derivatives. The covalent complex with com-
pound (80) was analyzed by MD simulation at 80 ns, and out 
of the 5 H-bonds 4 were maintained for more than 50% of 
the time, supporting the predicted contacts.  

Chio et al. (2022) [101] performed a preliminary screen-
ing at 10 μM, and all compounds (82-91) (Fig. 11) were re-
vealed to be reversible inhibitors with Ki values ranging 
from 16 to 122 nM, with compound (83) better than the 
standard (Ki= 35 nM). Next, molecular docking of com-
pound (83) covalently docked formed a series of H-bonds 
with close residues (Gly66 and Asp161). In MD simulations, 
the RMSD stability during the simulation did not deviate 
more than 3.2 Å during 100 ns. However, in the last 20 ns, a 
slightly different conformation was observed closer to the 
S1’ subpocket (Gln19, Met145, His162, and Trp184). It formed 
charge-transfer interactions with the aromatic residues of 
His162 and Trp184, and the thioimidate NH demonstrated a 
preference towards Trp184 instead of Asp161 for H-bonding. 
Regarding the fluctuations, it is noted that most of the ligand 
is stable, and the P1 position-hPhe is flexible due to the sol-
vent exposure and the shift mentioned previously. In addi-
tion, the P3 phenyl ring and the fluorine substituent in the 
meta position presented moderate fluctuation. 

In contrast to classical electrophilic groups such as Mi-
chael-acceptor systems, there are (hetero)aromatic electro-
philes that react through nucleophilic addition or substitution 
reactions. In this context, Klein et al. (2020) [104] used these 
groups to design new rhodesain inhibitors. Thus, in a screen-
ing identified, the compounds (92) and (93) (Fig. 11) were 
pointed out as the most active (75 and 45%, respectively). In 
addition, compound (93) was hydrolyzed, yielding the free 
acid compound (94) (Fig. 11) (Ki of 4 nM). Molecular dock-
ing for compound (93) shows multiple poses closer to the 
cysteine (3.2 Å), suitable for nucleophilic attack initiating 
the ester hydrolysis. The inhibitor sometimes left the enzyme 
in MD simulations, but the enzyme-inhibitor complex never 
split completely. For compound (94), the electrophilic aro-
matic ring distance to cysteine was low (2.7 Å) compared to 
compound (93). MD simulations indicated a very stable 
complex and more stable conformation between the sulfur 
center of Cys25 and the proton of the NH substituent occurred 
when the distance decreased around 2.2 Å, indicating a 
strong H-bond. Finally, compounds (93) and (94) presented 
EC50 values of 0.0953 and 18.5 μM in the T. b. brucei cell 
survival assay. These differences are related to the hydro-
philicity of the acid (94), which resulted in different cell 
permeabilities of the compounds.  

In previous studies, Santos et al. (2019) [100] showed 
that a novel class of benzimidazole inhibitors presented ac-
tivity against rhodesain at nanomolar and had trypanocidal 
activity, which led to a SAR for this class against the en-
zyme. MD simulations were performed and reveled the pro-
tonated and neutral states were analyzed due to the coexist-
ence of the two possible states at the assay pH value of 5.5 
using the compound (77) (Fig. 10). The protonation of com-
pound (77), its linker region, was more stably bound to the 
enzyme due to the formation of H-bonds with Gly66 and 
Asp161 backbone atoms. Also, it was observed that the extra 
hydrogen atom in the benzimidazole scaffold could bond 
with the side chains of Asp161 and Gly64 with occupancy be-
tween 45-80% of the simulation time, while in the neutral 
state, the benzimidazole nitrogen hydrogen formed bonds 
mostly with water molecules.  

Due to the potential of 1,4-naphthoquinone-based com-
pounds demonstrated trypanocidal properties, Silva et al. 
(2021) [15] executed a virtual screening of a small in-house 
library of 120 natural and nature-based compounds against 
rhodesain and selected fourteen compounds potentially ac-
tive. Thus, 2-OH-NPQ (95), lapachol (96), AS12/15 (97), 
IK-01 (98) (Fig. 11), and JN-11 (76) (Fig. 10) were the most 
active compounds (IC50 values of 33, 58, 28, 20 and 1.8 μM, 
respectively). MD simulation on rhodesain complexed with 
the compound (76) shows complex stabilization after 15 ns, 
remaining stable during all the simulation time (100 ns). 
RMSF plot revealed low fluctuations for the residues and 
even minor fluctuations for the catalytic triad. Rg plot pre-
sented conformational changes ranging from 1.62 to 1.63 
nm, suggesting high rigidity and compactness. The SASA 
analysis did not show significant modifications varying from 
93 to 103 nm2, confirming that JN-11 (76) does not change 
the protein structure and remains at the active site.  

3.3. Falcipain (Plasmodium spp.) 

Malaria is one of the most prevalent diseases in the 
world. Despite intense efforts to fight the disease, hundreds 
of people are infected, and approximately 1 to 2 million 
deaths occur yearly [105]. Plasmodium falciparum is the 
most lethal malaria parasite among all other Plasmodium 
strains. These parasites are unable to biosynthesize some 
essential amino acids. Therefore, parasite survival ultimately 
depends on generating free amino acids by degrading hemo-
globins in the host's erythrocytes. Several proteases are in-
volved in this degradation cascade, such as falcipains, a 
group of cysteine proteases similar to papain, which are well 
characterized. Among falcipains, falcipain-2 (FP-2) is the 
most crucial protease in this cascade. It is overexpressed 
during the erythrocyte stage of the parasite. It cleaves the 
skeletal proteins of the erythrocyte membrane in the late 
stages of parasite development, causing membrane instabil-
ity, which facilitates the release of the parasite in vivo [105]. 
So far, several antimalarials, for example, quinine, chloro-
quine, artemisinin, and atovaquone, have been discovered. 
However, resistance to available drugs is becoming a signifi-
cant health problem, and it becomes necessary to discover 
new antimalarials [106]. 
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Fig. (11). Chemical structure of the compounds rhodesain inhibitors studied by MD simulations. 

 

Two cysteine C1, FP-2, and falcipain-3 (FP-3) proteases 
were identified as promising drug targets among the current-
ly known P. falciparum hemoglobinases. Thus, Hernández-
González et al. (2018) explored MD simulations using the 
compounds (99) and (100) (Fig. 12) against FP-2 in a 100 ns 
trajectory [106]. The condensed aromatic rings of both com-
pounds occupy the S2' portion of the enzyme. They probably 
establish stacking interactions π-π with the residue Trp206, as 
described for other complexes involving cysteine C1 prote-
ases. In addition, the fractions 2,3-dihydrobenzofuran-5-yl 
and p-methoxyphenyl of compounds (99) and (100), respec-
tively, are placed in the subsite S2, the primary determinant 
of FP-2 specificity. This observation agrees with the well-
known preference of FP-2 for hydrophobic (aliphatic and 
aromatic) amino acid side chains in the P2 position. The car-
bonyl groups occupy subsite S1, according to the already 
established propensity of electrophilic groups to interact with 
the catalytic residue (Cys42).  

Another study, performed by Rajguru et al. (2022) [107], 
evaluated the stability and flexibility of FP-2 complexes with 
PubChem compounds (101), (102), (103), and (104) (Fig. 
12) by MD simulations at 20 ns. In this way, the RMSD 
shows that all systems are stable during the simulation. The 

mean value of RMSD varies from 2 to 3.5 Å for the protein-
ligand complexes. However, compound (104) showed lower 
stability than the other complexes. The compound (101) 
showed a comparable RMSD with the standard compound, 
suggesting it is more promising than the other three com-
pounds analyzed. The RMSF showed that the amino acid 
residues fluctuations were higher around the residues 50-60 
and 150-250. The Rg for the (101), (102), and (103) were 
more stable than compound (104). Also, compound (101) 
shows more H-bond around the trajectory. However, H-
bonds were interrupted at three-time intervals, around 7500 
ps, 12500 ps, and 15000 ps. Thus, H-bond analysis suggest-
ed a better binding mode between the receptor and the prom-
ising compounds, as seen with the standard compound.  

Uddin et al. (2020) [85] conducted MD simulations last-
ing 30 ns to evaluate the conformational changes, stability, 
and interaction mechanism of the selected compounds (105) 
and (106) (Fig. 12). In the RMSD, the mean deviation was 
up to 10 ns, possibly due to initial orientation in the falci-
pain-2 (FP-2) binding site. Subsequently, in FP-2, the lig-
ands showed equilibrium along the simulation trajectory, 
suggesting sufficient stability of the protein-ligand complex-
es. The ligands achieved a larger Rg than the free FP-2, 
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which balances during the simulations, with a lower struc-
tural deviation after bonding. The RMSD, RMSF, and Rg 
showed that the FP-2-JMI-105 complex was more compact 
and stable. The H-bond plots show an average of three for 
both around the simulations. It was observed that compound 
(105) and compound (106) bind at the FP-2 binding site with 
5 to 6 conventional hydrogen bonds. Finally, the authors 
suggested that the compound (105) can be a potential leader 
against FP-2 and can be evaluated for developing drugs 
against malaria.  

Through the studies of Salawu (2018) [108], it is possible 
to analyze the atomic details of how E-64 (107) (Fig. 12) 
binds to FP-2. Thus, the studies show that E-64 (107) inter-
acting with Asp170, Gln171, Cys168, Gly169, Ala151, and Gly230 

(recruiter group A - RA) or interacting with Lys76, Asn77, and 
Asn81 (recruiter group B - RB). The results show that, in 
most cases, E-64 (107) does not bind directly/immediately to 
the active site of FP-2 but approaches FP-2 by interacting 
first with the residues in RA and RB at about 80% and 14% 
of the time, respectively. On average, the movement of E-64 
(107) to the binding site reached equilibrium and stabilized 
around 55 ns. From the results of MD simulations with adap-
tive polarization (ABMD), the Gibbs free energy is approx-
imately −12,2 ± 1,1 kJ/mol based on the three sets of reac-
tion coordinates/collective variables used. The ABMD simu-
lations reveal interaction favorably with Asn173, Asp170, 
His174, Ser149, Ser205, Lys172, Asn38, Asn81, and Asn86, compa-
rable to those of the X-ray structure (with RMSD of 3.19 Å, 
3.08 Å, and 2.90 Å). 

Nkungli et al. (2022) [109] investigate hybrid benzimid-
azole-tiosemicarbazone (108 – 115) (Fig. 12) as potential 
inhibitors of falcipain-2 (FP-2). Thus, compound (109) ex-
hibits the lowest mean free binding energy (-30.32 kcal/mol) 
calculated by MM/PBSA, and compounds (111) and (112) 
showed less affinity. In addition, complex FP-2 with com-
pound (109) led the most stable RMSD between 55 and 150 
ns of simulation, and no sharp fluctuation was observed dur-
ing the simulation. Interestingly, the mean RMSD of the 
protein in the (109) complex remained below 3 Å, indicating 
the stability of the complex is strongly bound to the protein 
without significantly disturbing its secondary structure. Also, 
RMSF shows fluctuating residues within the 185-195 range, 
corresponding to a region randomly wrapped protein loop. 
Next, Rg was between 1.80 - 1.87 nm, which implies that the 
binding of compound (109) to FP-2 does not induce any no-
ticeable structural change. Finally, the H-bonds play a cru-
cial role in determining the binding strength of the protein-
ligand. 

3.4. Mpro (SARS-CoV-2) 

Given the crucial role of SARS-CoV-2 in viral replica-
tion, inhibition of SARS-CoV-2 Mpro is considered an attrac-
tive target for addressing small molecule oral antiviral thera-
pies to treat COVID-19 [110]. Its potential as a drug target is 
due to the characteristic cleavage of peptide sequences after 
the glutamine residue, in which no human protease has this 
function. This makes it an excellent drug target [5, 14, 19, 
111-113].  

 
Fig. (12). Chemical compounds studied by MD simulations against FP-2. 
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In this context, Alhadrami et al. (2022) [114] screened 
100 extracts, including 20 marine and 15 terrestrial fungi 
extracts cultivated in different culture media against SARS-
CoV-2 Mpro, and identified Aspergillus fumigatus extract 
derived from the Red Sea as potential. Studies have led to 
the identification of the isolated metabolites as two Dice-
topiperazines indol prenylated (DKP), neoechinulin A (116) 
and equinulin (117); an indole dimer DKP eurocrystalline 
(118); and an isocoumarin derived from eurotiumide G (119) 
(Fig. 13). Next, MD simulations of Eurocrystalline (118) 
was the least stable structure within the Mpro, with an initial 
binding pose, and achieved RMSD > 7 Å at the end of MD. 
Neoequinulin A (116) and equinulin (117) achieved stability, 
with mean RMSDs of 2.16 Å and 2.21 Å, respectively. The 
neoequinulin A (116) and equinulin (117) bonding poses 
revealed stable H-bonds with Leu141, Asn142, Gly143, and 
Glu166 and significant hydrophobic interaction with His41. 

Gupta et al. (2022) [114] performed the MD simulation 
at 100 ns to understand the stability of the protein-ligand 
complexes of usnic acid (120), gyrophoric acid (121), vario-
laric acid (122), identified against Mpro (Fig. 13). Thus, the 
RMSD values for usnic acid (120) (0.1 to 0.15 nm), gyro-
phoric acid (121) (0.12 to 0.26 nm), and variolaric acid (122) 
(0 to 0.1 nm) indicating stability at the active site. In addi-
tion, the RMSF (0.1 to 1 nm) indicates the stability of the 
complexes. The Mpro-gyrophoric acid (121) complex pre-
sented more significant fluctuation in the number of H-bonds 
(6 to 4), and minimal fluctuation in the number of hydrogen 
bonds was observed in the Mpro-usnic acid (120) complex (0 
to 2) during the 100 ns simulation. The usnic acid (120) and 

variolaric acid (122) complexes seem to have lower RMSD 
values, minimum fluctuation in the RMSF values, adequate 
H-bonds, and low Rg, indicating they were forming a highly 
stable complex.  

Mohan et al. (2021) [115] screened 8.722 antiviral com-
pounds from the ASINEX library against SARS-CoV-2 Mpro. 
The Glide score was used and selected as the four most 
promising (Fig. 13). Next, MD simulations with the com-
pounds (123), (124), (125), and (126) (Fig. 13) show the 
most excellent values of RMSD for the complexes (6.1 Å, 
6.3 Å, 10.8 Å, and 10.6 Å, respectively), and RMSD values 
of the ligand (4.7 Å, 6.3 Å, 8.8 Å, and 5.9 Å, respectively). 
The compounds showed RMSF 2.7, 1.9, 1.6, and 4.8 Å, re-
spectively. The H-bond plots revealed the compound (123) 
interacted with Thr98, Gln189, and Asn142. On the other hand, 
compound (124) shows interactions with Cys145, Thr26, 
Glu166, and Pro168, and compound (125) with the residues 
Phe8, Ser10, Asn142, and Glu166. Finally, compound (126) in-
teracted with Gln189, Ser10, and Asn142. All these interactions 
resulted in increased stability of the protein-ligand complex. 

Shreea et al. (2020) [116] performed MD simulations of 
six compounds (127 – 132) (Fig. 14) against Mpro to under-
stand the structural deviations in 20 ns of simulation. Thus, 
the compounds show RMSD acceptable. Except for tino-
cordiside (128) and vicenin (130) (Fig. 14), at initial 8 ns, all 
other compounds showed minor and stable deviations from 1 
to 2.5 Å. Tinocordiside (128) and vicenin (130) compounds 
showed variations of up to 3 Å, mainly from 2 to 4 ns of the 
MD simulations. Ursolic acid (132) shows great activity with 

 
Fig. (13). Main compounds identified and evaluated using MD simulations targeting Mpro from SARS-CoV-2. 
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the binding of loop structures at the Mpro binding site, show-
ing 3 Å to 4 Å of RMSD between the 10-20 ns time scale of 
the MD simulations. Tinocordiside (128) offers H-bonds 
with Arg188 and Gln189. It was noted that the similarity of H-
bonds decreases after 8 ns, impacting the upward movement 
of the RMSD from 9 to 20 ns. The ligand Isorientin 4'-O-
glucoside 2''-O-p-hydroxybenzoate (131) (Fig. 14) showed 
8-12 H-bonds up to 10 ns. This impact was revealed in 
RMSD values, but interestingly, one of the amino acid resi-
dues, Glu166, was playing a vital role in maintaining Isorien-
tin 4'-O-glucoside 2''-O-p-hydroxybenzoate (131) throughout 
the MD simulations. During the MD simulations, the With-
anoside V (127) (Fig. 14) resulted in high residual fluctua-
tions between the regions of the 130-190 position. The ami-
no acid residue Glu166 was also vital in maintaining With-
anoside V (127), although large deviations were observed in 
the positions of the residual amino acids. 

Sacco et al. (2020) [117] evidenced that most Mpro inhibi-
tors developed contain 2-pyrrolidone or 2-piperidinone at 
site P1 as a mimetic of glutamine residue. Their studies per-
formed MD simulations on specific Mpro inhibitors, such as 
compound (133) and their analogs (134), (135), and (136) 
(Fig. 14). Previous studies showed that SARS-CoV-2 Mpro 

cleaves polyproteins in P2-P1, where P1' is a residue with a 
small side chain (Ala, Ser or Gly), P1 is glutamine and P2 is 
a large, hydrophobic residue such as leucine or phenylala-
nine. Therefore, the pyrrolidone of the compound (134) oc-
cupies the subsite S1 leading to additional stabilizing H-
bonds. In addition, the small cyclopropyl group in (134) fits 
in the subsite S1', avoiding steric repulsions with the subsite 
S1' amino acids. The benzyl group P2 in (135) fits in the 
subsite S2 resulting in van der Waals interactions with Met49, 
His41, and Met165. The MD simulations verified the stability 
of the interactions within the bond cavity Mpro. The com-
plexes formed are stable, and the positions of the ligands did 
not deviate significantly from crystallographic, with values 
of Cα RMSD less than 2.4 Å and a general ligand RMSD 
less than 3.5 Å. 

4. CHALLENGERS AND OPPORTUNITIES IN MD 
SIMULATIONS TO DESIGN CYSTEINE PROTEASE 
INHIBITORS 

Although MD simulations are at the top of the techniques 
currently used for identifying potential inhibitors and pre-
dicting mechanisms related to catalysis, several challenges 
remain to be overcome [118, 119]. Among them, the pro-

 
Fig. (14). Other compounds identified against Mpro from SARS-CoV-2 using MD simulations.  
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cess's high computational and financial cost stands out [120, 
121]. On the other hand, GPUs accelerate the speed in ob-
taining results, the equipment may not always be affordable, 
and speed is still a limiting factor if the objective is to identi-
fy inhibitors on a large scale (high throughput screening - 
HTS) [19, 120]. 

In addition, some studies highlight shorter simulations 
(between 10 and 50 ns) to identify active compounds. In 
general, ligands that require more adjustments to find their 
ideal conformation at the binding site leave the site in more 
extended simulations. Thus, during the simulation, the lig-
ands change their interactions to adapt to potential energies 
calculated by force fields based on force field physics, in 
which van der Waals interactions and electrostatic energies 
unfavorable result in complex separation. Thus, shorter sim-
ulations can more accurately assess the stability of the com-
plex. This can help in more accurate validation of com-
pounds identified by molecular docking at greater speed and 
scale up at high throughput. Therefore, standardizing this 
protocol style can considerably improve the speed with 
which hits and leads are identified [120]. 

Another considerable problem is the accuracy of existing 
force fields. MD simulations unveil numerous biological 
mechanisms at the atomic and molecular level, including 
protein folding, protein-protein or protein-DNA/RNA inter-
actions, membrane proteins, drug transport, and interactions 
between lipids. However, parameters related to the fields of 
strength are still limited. This includes amino acid folding, 
carbohydrates (extended and less defined structures than 
proteins), and single-stranded nucleic acids. Furthermore, 
force fields are limited in eventful cellular environments, as 
interactions involve multiple factors in real-time. Thus, en-
hancing force fields should provide new opportunities to 
study these environments in complex biosystems containing 
various cellular conditions [122, 123]. 

Further, another problem is the inability to simulate elec-
tronic properties to identify catalytic mechanisms involved 
in cysteine proteases. Despite the growth of hybrid methods, 
such as the QM-MM that treat the active site as quantum 
mechanics (QM) through techniques based on density func-
tional theory (DFT) and the rest of the protein as molecular 
mechanics (MM), there are deficiencies in software that are 
easy to instrumentation and computational power and simu-
lation time are still high to use this approach. The next chal-
lenge is developing more straightforward software to explore 
this approach faster for high-throughput applications to in-
crease the speed of in silico identification of promising mol-
ecules [19]. 

In fact, cysteine proteases constitute excellent drug tar-
gets and are constantly explored as targets against the most 
differentiated types of diseases. However, one of the signifi-
cant limitations is selectivity. In many cases, cysteine prote-
ase inhibitors fail in clinical trials (ex. K11777) due to high 
reactivity with cysteine proteases present in the human body, 
which produces side effects that make their development 
unfeasible. Thus, more and more advances in medicinal 
chemistry strategies are needed, especially using in silico 
methods such as MD simulations, to identify increasingly 

high standards of target selectivity and thus enable the clini-
cal development of inhibitors of these targets [3, 7, 19]. 

CONCLUSION AND FUTURE OUTLOOKS 

CPs are essential for maintaining the normal physiology 
of many microorganisms and are considered excellent drug 
targets. In recent years, their potential as drug targets has 
become clear, mainly in the search for new drugs against 
Chagas disease, sleeping sickness, Malaria, and COVID-19. 
Drug developers increasingly seek higher standards of target 
selectivity to avoid off-target reactivity, resulting in more 
selective inhibitors with fewer side effects. In this way, the 
potential of molecular dynamics simulations emerges, with 
the function of unlocking aspects involved in the catalysis of 
these targets that help design promising inhibitors. Despite 
advances in software development, high-performance com-
puting, and improved force fields, challenges remain for MD 
simulations to provide an increasingly accurate simulated 
biological environment for high-throughput screening appli-
cations. In this way, it accelerates the speed at which leads 
and hits are discovered and increases the probability of de-
veloping molecules against various pathogens that threaten 
the health of the world's population. 
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