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Abstract. One of the key questions in the current molec-
ular genetics of eukaryotes is how genetic information
is retrieved from tightly packed chromatin. Acetylation
of core histone N-termini is implicated in the regulation
of chromatin function, and I summarize what is known
about the mammalian enzymes that promote this post-
translational histone modification. Chromatin is impor-
tant in gene expression not only because of the acces-
sibility problem that it poses for the transcriptional ma-
chinery but also with regard to the phenomenon of

chromatin memory, i.e. the ability of alternative chroma-
tin states to be maintained through many cell divisions.
This phenomenon is believed to be central to epigenetic
inheritance [1], an important concept in developmental
biology, which is also emerging as a contributing factor in
cancer and other health disorders. Analyses of the com-
position of large multiprotein acetyltransferase com-
plexes suggest their role in the mechanisms of epigenetic
inheritance. The review will discuss some models perti-
nent to this function of histone acetyltransferases.
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Introduction

A key distinguishing characteristic of the eukaryotic ge-
nome is its tight packaging into chromatin, a hierarchi-
cally organized complex of DNA and histone and non-
histone proteins. The past several years have seen sub-
stantial progress in elucidating how the eukaryotic
genome operates in the chromatin context. Of the differ-
ent ways to modify chromatin, one of the most exten-
sively studied is acetylation of lysine residues of the core
histone N-termini. Its relation to the regulation of gene
activity was suggested more than 30 years ago [2]. Fol-
lowing the groundbreaking work of the Allis group [3],
many previously known coactivators of transcription
were found to be histone acetyltransferases (HATs). Con-
versely, many histone deacetylases (HDACs) have been
identified as corepressors of transcription. A convincing
mechanistic link between this histone modification and
regulation of gene expression has been established [4, 5].
These findings provide us with necessary tools to address
further questions of the precise role of histone acetylation
in the regulation of chromatin function. They also pro-
mise to provide us with new therapeutic targets for a va-
riety of health disorders.

This review will focus on mammalian HATs and empha-
size what the study of their interaction partners tells us
about the physiological role of these enzymes. In partic-
ular, we will review data that implicate some of these
acetyltransferases in epigenetic inheritance. For a more
general perspective on the subject of acetylation, the
reader is referred to recent reviews [6—8].

Mammalian acetyltransferases and their targets

Known and putative mammalian HATSs and their targets
are listed in table 1. Recent developments implicate these
enzymes in an expanding number of cellular activities,
from transcription regulation to replication to apoptosis.
Although histone acetylation is acknowledged to play an
important role in function of chromatin, little is known
yet about its exact mechanistic role. The functional con-
sequences of acetylation are likely to differ from one his-
tone type to another, and even between different lysine
positions on the same histone molecule [9]. One argu-
ment in favor of this possibility is often a narrow and non-
overlapping substrate specificity of different HATs. The
extreme examples are yGCNS and PCAF, which acetylate
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Table 1. Known and putative mammalian histone acetyltransferases.

Mammalian histone acetyltransferases and their complexes

Name Size, Targets Structural features Function Medical significance First HAT
kDa references
PCAF 95 H3/H4; H3#[15], bromodomain, coactivator regulation of cell cycle  [76]
GCNS5 nonhistone N-terminal p300/CBP  of transcription [76; 77], target of viral
proteins® interacting domain oncoproteins
[76; 78—80]
TAFII250 250 H3/H4; non- bromodomain, Kinase coactivator regulation of cell cycle  [86]
histone proteins®  domains [81], TBP- of transcription [83, 84], target of HIV
binding repressive (subunit of TFIID) Tat [85]
domain [82]
p300 260 H3, H4, H2A, bromodomain, PHD  coactivator of fusions in leukemia, [88, 89]
CBP H2B; nonhistone  finger, zinc fingers transcription Rubinstein-Taybi
proteins® syndrome [87]
SRC-1 150 H3/H4 LXXLL motifs nuclear receptor ACTR amplification in  [93, 94]
ACTR PAS/bHLH domain coactivator breast and other cancers
[90; 91; 92]
TIP60 60 H3/H4/H2A,; chromodomain coactivator of cellular response to [95]
H4/H2A% transcription, Repair DNA damage [16],
target of HIV Tat [95]
MORF 2000 H3/H4/H2A C-terminal activator activator/repressor neurogenesis? [97] [98]
and n-terminal repres-
sor domains
hMOF 50¢ H3/H4/H2A chromodomain dosage compensation? [99]
HBOL1 70 H3/H4 replication/silencing? [100]
MOZ 225 ND¢ zinc finger, regulation of fusion with CBP or [70, 102]
acidic domain transcription? TIF2 correlate with
AML [101]
TFHIC90 90 H3 zinc fingers relieving chromatin [53, 54]
TFIIIC110 110 H2A/H4? repression of Pol 11
TFIIC220 220 H2A/H4? transcription
ATF-2 50 H4/H2B bZIP DNA activation of [17]

binding domain

transcription

@ Targets of the corresponding HAT complexes on nucleosome substrates.

b See review [8] for more information.
¢ Molecular weight of the C-terminal part of the protein.

¢ Based on analysis of Querkopf mutant in the probable mouse homologue of MORF.

¢ The HAT activity has not been determined.

preferentially lysine 14 of H3 [10—12]; and Drosophila
MOF, which targets mainly lysine 16 of H4 [13]. Addi-
tional evidence is distinct genome-wide acetylation pat-
terns often observed for different histones and lysine po-
sitions [14]. Complicating the analysis of HAT function is
the finding of nonhistone substrates of the acetyltrans-
ferases [8].

More clues to the physiological role and in vivo targets of
particular acetyltransferases will be provided by analyz-
ing their interaction partners, as most of the acetylation in
vivo appears to be done by large multiprotein complexes,
reaching megadaltons in size. Examples from humans are
PCAF and TIP60 HAT complexes. The HATs themselves
serve as the catalytic subunits of these complexes, with
their substrate specificity depending on the interactions
with other proteins [15, 16].

Current models of transcription regulation involving
chromatin modifiers rely on their recruitment by tran-
scriptional activators (or repressors) that recognize speci-
fic DNA sequences and bring the chromatin-modifying
activities to the sites of transcription. In the case of tran-
scription-related HAT's, the only known exception to date
is ATF-2 [17], a transcription factor that recognizes a spe-
cific DNA sequence, and at the same time has an intrin-
sic HAT activity. Due to their comparatively weak and
transient nature, we will not consider the interactions be-
tween transcription factors and HAT's (or other coactiva-
tors) as a subject of this review. We will focus on more
stable multiprotein complexes that are believed to be
recruited as functional entities to the chromatin targets
and have been biochemically characterized.
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Complexes containing histonelike proteins

This family of HAT complexes comprises TFIID [18],
PCAF/GCNS [15], STAGA [19] and TFTC [20]. These
complexes share number of identical subunits (table 2),
most notably, H3 histone-like TAF31 and H2B-like
TAF20/15, whereas others are very similar: PCAF/GCNS
have a PAF65a and PAF65 3, similar to WD40-containing
hTAFII100 and H4-like hTAFII80, correspondingly. In
addition, both complexes possess a bromodomain contai-
ning acetyltransferase (PCAF/GCNS or TAFI1250). Uni-
que for TFIID is the TATA-binding protein TBP and some
additional TAFs (table 2). GCN5/PCAF complexes con-
tain Ada2, Ada3, Spt3 and TRRAP proteins, absent in
TFIID.

The function of TFIID, the most extensively studied of
these complexes, was originally investigated in the chro-
matin-independent context [18, 21]. It plays an essential
role in the preinitiation complex assembly, with TBP and
TAFs involved in recognition of core promoter sequences
[18]. It is also believed to contribute to the communica-

Table 2. Composition of the HAT complexes containing histone-
like proteins.

TFIID [18] PCAF/ STAGA TFTC
GCNS [15] [19] [20, 103]
TATA TBP - - -
binding
HAT TAFII250 PCAF/ GCN5-L  GCNS-L
GCNS5-S2
WD40 TAFII100 PAF65« ND°® TAFII100
repeats and PAF65a
H3-like TAFII31 TAFII31 TAFII31 TAFII31
H4-like TAFII80 PAF65p3 ND°® TAFII80
and PAF65p
H2A-like  TAFIII135 — - TAFII135
H2B-like  TAFII20/15 TAFII20/15 ND TAFII20/15
Histone fold°TAFII 28  hSPT3 hSPT3 hSPT3
Histone fold°TAFII18 hSPT3 hSPT3 hSPT3
ATM-like — TRRAP/  ND TRRAP/
PAF400 PAF400
Initiator TAFII150 ND ND TAFII150
interaction
TAFIISS ND ND TAFIISS
TAFII30  TAFII30  ND TAFII30
- hADA3 ND hADA3
- hADA2 ND ND

@ Epitope-tagged PCAF or GCN5-S were used in purification of
these complexes from HeLa cells.

b TAFII100 and TAFII80 are not present in the STAGA complex
[19]; however, the presence of PAF65a and PAF65 remains to be
determined.

The TAF(II)18 and TAF(II)28 atypical histone fold motifs are
also present in the N- and C-terminal regions of the SPT3 proteins
[104].

°
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tion between transcriptional activators and the basal tran-
scriptional machinery [21].

The parallel between TFIID and PCAF/GCNS5-contain-
ing complexes suggests that their functions are similar.
Accordingly, it was shown that TFTC can mediate activa-
tion of transcription in vitro, although it does not contain
TBP, previously considered necessary for transcription
activation [20]. Furthermore, genome-wide studies con-
firm that yTFIID and SAGA (yeast GCNS5-containing
complex) can in many cases compensate for each other in
vivo. Approximately 25% of yeast genes require either
TAF145 or GCNS (the acetyltransferase subunits of the
yTFIID and SAGA complexes, correspondingly) for nor-
mal expression [22].

As expected from the differences in yTFIID and SAGA
composition, the genome-wide analysis demonstrates
that these complexes have unique functions as well.
Thirty percent of the yeast genome is dependent on
TFIID-specific subunits only, whereas 12% of the ge-
nome depends on SAGA-specific subunits [22]. Inter-
estingly, some genes require both TFIID and SAGA for
normal levels of expression.

Histone octamer-like structure

Structural and biochemical studies strongly suggest that a
histone octamer-like substructure exists in TFIID
[23—25] and, by extension, in the PCAF/GCNS5-contain-
ing complexes [15]. Genetic evidence from yeast also
supports that the histone-like TAFs form a functional en-
tity [26]. More recent identification of the H2A-homolo-
gous subunits of TFIID and SAGA complexes, previously
unaccounted for, demonstrates the predictive power of the
octamer structure model [27, 28].

The octamer-like structure in TFIID might simply reflect
an evolutionary relation between histones and TAFs [29].
Histone fold is an ancient protein-protein interaction mo-
tif [30—32], identified in a number of proteins function-
ing mostly in DNA metabolism. Aside from the protein-
protein interactions, the TAF-histone similarity might not
have any other functional significance.

Alternatively, the histone octamer-like structure could re-
capitulate some additional functions of the regular hi-
stone octamer. Based on the interactions between TFIID
and promoters in vitro, it was suggested the TAFs organ-
ize DNA in the nucleosome-like structure [33—35]. An
intriguing consequence of this idea is that upon transcrip-
tional activation, the octamer-like structure could replace
the regular histone octamer and therefore have an archi-
tectural role in the establishment of the active state of a
gene. In this respect, the absence of regions correspond-
ing to histone amino-terminal tails in the TAFs might be
essential to the function of the octamer structures. Dyn-
amic acetylation of the histone tails relieves their repres-
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Table 3. Characterized and putative mammalian histone acetyl-
transferase complexes.

HAT complex General Histone Function
reference  targets
TFIID [86] [18] H3 coactivator of
transcription
PCAF/GCN5  [15,19, H3 coactivator of
[15,19,103] 103] transcription
TFIIC [105] H3/H4/ pol III transcription
[53, 54] H2A
TIP60 [16] [16] H4/H2A  coactivator of
transcription,
Repair, apoptosis
HBO1 [100] [100] H3/H4 replication? Silencing?
Mediator?? [107] H3?¢2 coactivator of
[106] transcription
MSL?® [13] H47° dosage compensation?®
Elongator?® [109] H3/H4/ transcription
[108] H2A/ elongation®
H2B?®

@ HAT activity of the human mediator might be expected on the ba-
sis of HAT activity of the yeast mediator complex.

b Existence of these complexes might be expected on the basis of
human homologues of MOF [61] and Epl3 (V.0.), the HAT sub-
units of corresponding Drosophila and yeast complexes.

sive role in chromatin function [36, 37]. Their abolish-
ment in the octamer-like structure would lead to a “per-
manently activated nucleosome’, unable to recruit core-
pressors or participate in formation of repressive higher-
order chromatin structure. Compared with acetylation,
this might be an alternative, more suitable for the consti-
tutively active genes such as housekeeping or lineage-
specific genes [15].

Despite the esthetic power of the nucleosome-like hypo-
thesis, direct evidence to support it is scarce. Moreover,
crystallographic analysis of the nucleosome structure at
the 2.8 A resolution [38] does not favor the nucleosome-
like model. The arginine residues in the histone-fold do-
mains, contributing significantly to histone-DNA inter-
actions within the nucleosome, are poorly conserved in
the TAFs and PCAF-associated factors (PAFs). Thus, the
mode of interaction between TAF/PAFs and DNA might
be different from that in the nucleosome [39].

It could be argued, however, that these arginine residues
might serve to accommodate almost any DNA sequence
wrapped into a nucleosome. On the other hand, the TAFs
recognize a particular DNA sequence [40, 41], and the
change of arginines into other residues could better serve
this specialized interaction. Alternatively, other subunits
in the TFIID/PCAF complexes could also contribute to
the stability of the nucleosome-like structure.
Regardless of the ability to wrap DNA into a nucleo-
some-like structure, the cell can still recognize and utilize
the octamer-like structure just as it recognizes the regular
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histone octamer. In this respect, it is noteworthy that the
WD40-repeat subunits of the TFIID and PCAF/GCNS
complexes are associated with the histone-like subunits
both functionally [26] and structurally [15, 42]. They
might play a role analogous to the WDA40-repeat
RbAp46/48 proteins, known to interact with core his-
tones and participate in chromatin replication and re-
modeling [43, 44]. A number of other nuclear proteins
shown to bind core histones, such as lamins [45, 46],
might also recognize the histone-like TAFs instead of his-
tones.

The possible functional significance of the octamer-like
structure might be also related to TFIID interaction with
the downstream promoter sequences via the histone-like
TAFs [40, 41]. A protein bound to DNA is generally ex-
pected to roadblock the RNA polymerase progression
along the template. On the other hand, such phenomena
as nucleosome remodeling [47, 48] or chromatin disrup-
tion during Pol II elongation [49] illustrate that the reg-
ular histone octamer structure allows the tight packaging
of DNA to be compatible with the dynamic nature of
chromatin. One might speculate that some octamer-like
properties of the TAFs (either intrinsic to the octamer
structure or recognizable by external proteins) can serve
a similar function and make the stable binding of TFIID
with downstream promoter DNA compatible with tran-
scription. Consistent with this interpretation, comparison
of single- and multiple-round transcription assays in vitro
indicates that TAFs play a role in facilitating reinitiation
events [50].

Thus, although evidences towards the nucleosome-like
structure formed by the histone-like factors are limited,
the structural similarity between the histone octamer and
the octamer-like structures in the TFIID and PCAF com-
plexes could have an additional functional significance
beyond their (in)ability to wrap DNA. In this respect, it is
noteworthy that protein fusion events, a common occur-
rence in the evolution of interacting proteins [51], have
not been observed between H3 and H4 (or H2A and H2B)
histones or corresponding TAFs, suggesting that in all of
these cases the histone folds do not serve only to mediate
protein-protein interactions.

TFIIIC

Many small non-protein-coding RNAs, such as tRNAs,
5S RNA, U6 snRNA and others are synthesized by
RNA polymerase III [52]. The short size of Pol III genes
and the highly efficient nature of Pol III-dependent
transcription makes it likely that the Pol III-dependent
genes, when transcribed, are not organized into a nucleo-
some structure, as they are maintained in transcriptional
complexes undergoing multiple rounds of reinitiation.
Thus, once established, Pol III-dependent transcription
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may not have to deal with chromatin. Nevertheless,
during activation (and replication) of the Pol III-depen-
dent gene, the nucleosomes would still pose a prob-
lem. TFIIIC, a general transcription factor in the RNA
polymerase III basal machinery, has been reported to
alleviate chromatin-mediated transcriptional repression
in vitro [53]. Not surprisingly, human TFIIIC possess
HAT activity, essential for its chromatin-combating role.
Moreover, three different components in hTFIIIC were
shown to possesses independent HAT activity in an in-gel
assay [53, 54] and are distinct with regard to acetylation
profile.

Comparing Pol II- and Pol III-dependent systems, TFIIIC
appears to be similar to TFIID. It has HAT activity, pre-
sumably needed to overcome the chromatin repression. It
is the first factor to be bound to the promoter. It has
contacts with DNA downstream of transcription initiation
start, which does not interfere with transcription [55, 56].
As suggested in the previous section, the octamer-like
properties of TAFs might be utilized to make the binding
of TFIID to downstream promoter sequences compatible
with RNA polymerase progression along the DNA tem-
plate. To serve the same purpose, much stricter con-
straints on the sequences of Pol Ill-transcribed genes
might have forced the corresponding proteins to diverge
beyond recognition.

TIP60 complex

TIP60 complex is another multiprotein acetyltransferase
recently purified by the Nakatani group [16]. Its specific-
ity is distinct and nonoverlapping with the PCAF and
TFIID complexes: whereas the main target of the PCAF
complex is the lysine 14 of H3 histone, the TIP60 com-
plex prefers H4 and H2A histones. Intriguingly, the
PCAF/GCNS complex subunit PAF400/TRRAP is also
present in the TIP60 complex. However, no traces of
other PCAF complex subunits are found in the TIP60
complex and vice versa [V. V. Ogryzko, Y. Nakatani, un-
published]. Overall, this complex appears to be the hu-
man counterpart of the NuA4 complex [57, 58], as it has
homologues of all subunits present in the NuA4. A not-
able exception is TAP54a and TAP54 8. The yeast homo-
logues of these proteins are not found in the NuA4 com-
plex.

TAP54a,p are human homologues of the bacterial ATP-
ase/helicase RuvB [59], involved in recombination and
recombination-dependent repair. RuvB acts as a motor
protein that catalyzes migration of the Holliday junction
during recombination and repair. Its similarity to TAP54
a,f, together with the association of TIP60 with ATM-
like PAF400/TRRAP, implicates TIP60 acetyltransferase
in DNA repair. Consistent with this idea, a dominant-
negative HAT mutation of TIP60, introduced into HeLa
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cells, negatively interferes with cellular response to DNA
damage [16].

Intriguingly, the 100-kDa protein in the TIP60 complex is
a human homologue of Drosophila E (Pc) (enhancer of
polycomb) gene product. E (Pc) is known to affect both
polycomb group (PcG) regulation and position effect va-
riegation (PEV), and is the only gene known so far that
links these two distinct cases of gene silencing in fruit
flies [60]. All other genes involved in PcG regulation and
PEV are different; nevertheless, both of these phenomena
rely on higher-order chromatin structure in their mecha-
nism of silencing. This implicates E (Pc) protein and thus
TIP60 complex, which contains E (Pc), in a more general
aspect of higher-order chromatin functioning, crucial for
both PcG- and PEV-dependent gene silencing. Support-
ing the idea of TIP60 complex involvement in higher-
order chromatin structure is the presence of a chromodo-
main in TIP60 itself and its close homology to Drosophila
MOF, the HAT subunit of the dosage compensation com-
plex [61].

HAT complexes and epigenetic inheritance

In addition to their roles in activation and/or repression of
gene activity, HATSs are likely to play a role in the main-
tenance of a particular state of a gene. Namely, they might
be involved in the mechanisms of epigenetic inheritance
[62], an important concept in developmental biology [1,
63] which is also emerging as a contributing factor to on-
cogenesis and other health disorders [64, 65].
Acetylation of histone tails was proposed to serve as an
epigenetic code that marks alternative transcriptional
states of a gene and can be propagated with generations
of cell divisions independently from the genetic sequence
[14, 66]. Although any HAT could contribute to this epi-
genetic coding, the composition of TFIID/PCAF and
TIP60 HAT complexes suggests alternative mechanisms
of epigenetic inheritance involving these HATS.

Based on the potential for the histone-like factors to form
a nucleosome-like structure on DNA, it was suggested
that TFIID might serve as a specialized chromatin com-
ponent that fulfills the topological requirements neces-
sary to mediate and maintain the inducibility of genes
[35]. The model of how the octamer-like structure in the
TFIID and PCAF/GCNS5 complexes can contribute to the
maintenance of an active state of chromatin through gen-
erations of cell divisions is shown in figure 1 A. It also in-
corporates the finding of a specific interaction between
the PCAF/GCNS and TAFII250 bromodomains and
acetylated lysines or histone tails [67, 68]. Regardless of
its ability to wrap DNA into a nucleosome-like structure,
the remarkable stability of TFIID association with pro-
moter DNA in vitro [18] and the fact that a significant
portion of TFIID (as judged by analysis of TBP and



688 V. V. Ogryzko

TAFII20, which is also a part of PCAF/GCNS5 comple-
xes) remains associated with mitotic chromosomes in the
cell cycle [69], strongly suggests its involvement in the
maintenance of a particular chromatin state. Some octa-
mer-like properties of the histone-like TAF subcomplex
in TFIID (and PCAF/GCN5 complexes) might remain
significant in this regard.

Unlike TFIID and PCAF, the TIP60 complex appears not
to contain histone-like factors. On the other hand, the
TIP60 relatives in yeast (SAS2 and SAS3) and Droso-
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phila (MOF), have been implicated in epigenetic regula-
tion of gene expression [61, 70]. The model for an epige-
netic role of TIP60 is based on its possible involvement in
the higher-order aspects of chromatin structure and func-
tioning (see previous section). According to the idea pro-
posed here (fig. 1 B), the newly replicated chromatin
exists in a ‘ground state’ which is neither transcriptionally
active nor silenced, with the histone tails engaged in the
interactions between the neighboring nucleosomes. In or-
der for chromatin to recruit corepressors or coactivators

a Activation
Silenced Recombination A ctive
chromatin chromatin
7 Y e \Y Y
Ground state

inaccessible tails

b Replication
Q-

Accessible
state

(co)repressors (co)activators
Silenced Active
chromatin chromatin

Figure 1. Histone acetyltransferases in epigenetic inheritance. (4) Role of histone octamer-like structure and PCAF/TAFII250 bromodo-
mains in establishment and maintenance of an active state of chromatin. (a) After acetylation of a nucleosome, PCAF/TFIID complexes
can replace it with the histone octamer-like structure. Given that the histone-like factors in the PCAF/TFIID complexes do not have the N-
terminal tails, this will create ‘permanently activated’ nucleosome, resistant to deacetylation. (b) During replication, the PCAF/TFIID com-
plexes remain associated with one of the daughter strands. A second complex can be recruited to the sister strand via interaction of the
PCAF/TAFII250 bromodomain with an acetylated nucleosome on this strand. (For the sake of space, the ‘ground state’ step (see fig. 2) is
skipped.) This recruitment via bromodomain can contribute to replication of the active chromatin state. (¢) During mitosis, most of the tran-
scription factors and other components of transcriptional machinery (TM) are displaced from DNA [111]. The nucleosomes, and presu-
mably, nucleosome-like structure in the PCAF/TFIID complexes remain on the DNA. After completion of mitosis, the PCAF/TFIID com-
plex can facilitate recruitment of transcriptional machinery back to the site of active transcription. Thus, these complexes can provide a
molecular bookmark that helps to reestablish transcription after mitosis [112]. (B) Transient histone acetylation in the mechanisms of epi-
genetic inheritance. Newly deposited acetylated histones H3 and H4 are deacetylated after their assembly into nucleosome (for review see
[113]. On other hand, histone tails have been suggested to be involved in internucleosome interactions [38, 110]. Accordingly, we propose
that the newly synthesized chromatin is in a ‘ground state’, with deacetylated histone tails engaged in the interactions between the neigh-
boring nucleosomes. The ground state is neither transcriptionally active or silenced, and in order to be converted to either of these states it
has to recruit silencing or activating factors, which could be accomplished through interaction of the histone tails with such repressors as
Tupl, Sir3 or Sir4 [114, 115], or a bromodomain of some coactivators [67, 68]. For this recruitment to occur, the histone tails have to be
made accessible and liberated from their interaction with the neighboring nucleosome, which is accomplished via their acetylation by
TIP60 or other acetylases. In this way histone acetylation may be required for epigenetic inheritance. Whether the resulting chromatin state
is silenced or active could depend on the replication timing or/and the environment of the particular gene.
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and mature into either a silenced or active state, these tails
have to be liberated from the internucleosome interac-
tions, which is accomplished by their acetylation by the
TIP60 complex (or other MY ST acetylases). In contrast
to the idea of an epigenetic code, which relies on stable
propagation of a modified histone state through genera-
tions of cell divisions, the model proposed here allows for
a transient acetylation of histones, sufficient to provide a
window of opportunity for cofactor recruitment. The hy-
pothesis of TIP60 acetylating newly synthesized chroma-
tin is consistent with the specific binding of TIP60 com-
plex to alternative DNA structures, which would direct it
to the sites of DNA metabolism [M. Grigoriev, personal
communication]. In agreement with the proposed role of
TIP60 in epigenetic inheritance, mutations in the yeast
NuA4 complex subunit Act3/Arp4 (and, probably, its
catalytic subunit Esal as well [58]) cause variegated
expression of some genes [71], reminiscent of the pheno-
mena of position effect variegation [72, 73].

Importantly, the concept of maintaining a particular state
of gene activity is more general than that of epigenetic in-
heritance. Even in nondividing cells, a particular state of
chromatin faces such challenges as, for example, DNA
repair [74, 75]. Links to DNA damage response, seen in
the case of TIP60 acetyltransferase complex [16], might
reflect its role in the maintenance of chromatin states in
processes other than replication.

Conclusion

Study of histone acetylation is helping us to understand
how the human genome operates in the context of chro-
matin. New insights into the function of histone acetyl-
transferases come with identification of interaction part-
ners of these enzymes. Future studies will show the
relevance of models for the role of PCAF/TFIID and
TIP60 in epigenetic inheritance, discussed in this re-
view.
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