
Review

The role of mammalian antimicrobial peptides and proteins
in awakening of innate host defenses and adaptive immunity
D.Yanga, O. Chertov b and J. J. Oppenheima,*

a Laboratory of Molecular Immunoregulation, National Cancer Institute at Frederick, Building 560, Room 21-89A,
Frederick (Maryland 21702-1201, USA), Fax +1 301 846 7042, e-mail: oppenhei@mail.ncifcrf.gov
b Intramural Research Support Program, SAIC at Frederick, Frederick (Maryland 21702-1201, USA)

Received 22 January 2001; received after revision 19 February 2001; accepted 26 February 2001 

The content of this publication does not necessarily reflect the views or policies of the Department of Health and 
Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the
US Government. The publisher or recipient acknowledges right of the US Government to retain a nonexclusive,
royalty-free license in and to any copyright covering the article.

Abstract. Since we live in a dirty environment, we have
developed many host defenses to contend with microor-
ganisms. The epithelial lining of our skin, gastrointestinal
tract and bronchial tree produces a number of antibacte-
rial peptides, and our phagocytic neutrophils rapidly in-
gest and enzymatically degrade invading organisms, as
well as produce peptides and enzymes with antimicrobial
activities. Some of these antimicrobial moieties also ap-
pear to alert host cells involved in both innate host de-
fense and adaptive immune responses. The epithelial
cells are a source of constitutively produced b defensin
(HBD1) and proinflammatory cytokine-inducible b de-
fensins (HBD2 and -3) and cathelicidin (LL37). The neu-
trophils-derived antimicrobial peptides are released on
demand from their cytoplasmic granules. They include
the enzymes cathepsin G and chymase, azurocidin, a de-

keratinocytes and epithelial cells lining our gastrointes-
tinal tract, genitourinary tract, and tracheobronchial tree
provide an initial barrier, and phagocytic neutrophils and
monocytes patrol our circulation. However, these barriers
are often breached, and we would be overcome were it not
for the secretion and release of numerous antimicrobial
peptides by these barrier epithelial cells and phagocytes

CMLS, Cell. Mol. Life Sci. 58 (2001) 978–989
1420-682X/01/070978-12 $ 1.50 + 0.20/0
© Birkhäuser Verlag, Basel, 2001 CMLS Cellular and Molecular Life Sciences

fensins and cathelicidin. In contrast, C5a and C3b are
produced by activation of the serum complement cas-
cade. The antimicrobial moieties direct the migration and
activate target cells by interacting with selected G-pro-
tein-coupled seven-transmembrane receptors (GPCRs)
on cell surfaces. The b defensins interact with the CCR6
chemokine GPCRs, whereas cathelicidins interact with
the low-affinity FPRL-1 receptors. The neutrophil-deriv-
ed cathepsin G acts on the high-affinity FMLP receptor
(GPCR) known as FPR, while the receptors for chymase
and azurocidin have not been identified as yet. The se-
rum-derived C5a uses a GPCR known as C5aR to me-
diate its chemotactic and cell-activating effects. Conse-
quently, all these ligand-receptor interactions in addition
to mediating chemotaxis also activate receptor-expres-
sing cells to produce other mediators of inflammation.
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Introduction

Our environment is contaminated by an enormous num-
ber and variety of microorganisms, and we have numer-
ous defenses against invasion by these organisms. Skin
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[1, 2] Over 400 antimicrobial peptides have been identi-
fied to date in plants, insects and animals [3–7]. Re-
cently, some of the mammalian antimicrobial peptides
have been shown to have a second major function of ra-
pidly chemoattracting and activating host cells to engage
in innate host defense and/or adaptive immune responses
[8–10]. Since some of these antimicrobial peptides are
stored in barrier epithelial cells and phagocytes, they can
be exocytosed by degranulation in response to a number
of stimuli and rapidly become available at sites of micro-
bial invasion. The stimulants resulting in degranulation
include the process of phagocytosis, microbial products
such as lipopolysaccharide (LPS), cell injury and proin-
flammatory cytokines such as tumor necrosis factor
(TNF), interleukin (IL)-1 and IL-8 [8]. These latter endo-
genous mediators are induced in response to microbial in-
vasion and microbial products and therefore represent
products of the first line of defense that in turn can
stimulate the secretion by epithelial cells of more of the
inducible antimicrobial peptides [11–13].
This review will consider those antimicrobial peptides
and proteins that by activating phagocytic neutrophils and
monocytes/macrophages potentially enhance innate host
defenses. These agents include cathepsin G, chymase,
azurocidin, complement, defensins and cathelicidins. All
of these agents, including the enzymes and the comple-
ment components, also have the capacity to act on anti-
gen-presenting dendritic cells and/or T lymphocytes and
can potentially promote subsequent adaptive immune re-
sponses to microbial antigens [9, 14]. We will also outline
the experimental evidence showing that some of these an-
timicrobial peptides and proteins have potent in vivo im-
munoenhancing effects that may make them useful as
vaccine adjuvants [15, 16].

Cathepsin G

The acute stage of inflammation as typified by neutrophil
infiltration and edema is followed by subsequent predo-
minance of mononuclear cell infiltration at the chronic
stage. In contrast, in cases of clinical cyclic or experi-
mental neutropenia, mononuclear cell influx into inflam-
matory sites is significantly decreased and delayed. Res-
toration of circulating neutrophils reestablished the nor-
mal sequence of events in the development of the
inflammatory response [17, 18]. This suggests that neu-
trophils might produce chemoattractant(s) for mono-
nuclear cells and led us to identify a-defensins as che-
moattractants of T cells, as will be discussed. Since the
chemotactic response of monocytes to this neutrophil-de-
rived signal could be inhibited by protease inhibitors, it
was proposed that this signal might be a serine protease
[19]. Infiltration of neutrophils can be induced at injec-
tion sites by such chemoattractants as formyl peptides,

anaphylatoxin C5a and chemokines such as IL-8. We
therefore tested the possibility that an IL-8-induced neu-
trophil infiltrate generates a subsequent mononuclear cell
response. The injection of IL-8 subcutaneously into SCID
mice that had been given human peripheral blood lym-
phocytes (PBLs) resulted in an initial neutrophil infiltra-
tion, followed by the subsequent appearance of a consid-
erable infiltrate of human T cells and murine monocytes
by 72 h [20]. This happened despite the fact that a human
chemokine was used to attract human cells in a murine
milieu, necessitating the interaction of human cells with
murine adhesion proteins. This in vivo chemotactic effect
on human PBL appeared to depend on the prior infiltra-
tion by murine neutrophils. Since IL-8 is capable of induc-
ing degranulation of neutrophil azurophilic and specific
granule components [20], we hypothesized that some of
the granule-derived proteins may be responsible for the
subsequent monocyte and T cell migration. Biochemical
purification of a monocyte chemotactic factor from neu-
trophil granules led to the identification of cathepsin G
[21]. Cathepsin G is a neutral serine proteinase that is pre-
sent primarily in azurophilic granules of neutrophils, and
to a lesser extent in a cytoplasmic membrane-bound
form. It is referred to as a chymotrypsin-like enzyme be-
cause it hydrolyzes peptide bonds after leucine, methio-
nine and phenylalanine residues. Cathepsin G is consider-
ed to be a rather inefficient proteinase, degrading colla-
gen and proteoglycan more slowly than neutrophil
elastase [22]. Various physiological effects are ascribed to
this cathepsin G, such as antimicrobial activity, degrada-
tion of extracellular matrix, vasoregulation [22], activa-
tion of neutrophil elastase [23] and IL-8 processing [24].
The activities of cathepsin G relevant to antimicrobial im-
munity are outlined in figure 1. The monocyte chemotac-
tic activity of cathepsin G appeared to be dose dependent
with an optimal concentration range of 0.5–5 mg/ml. Ca-
thepsin G appeared to be a much more potent chemoat-
tractant for monocytes than either azurocidin or thrombin
[21]. To determine the relationship of the chemotactic ac-
tivity of cathepsin G to its enzymatic activity, cathepsin G

Figure 1. Activities of cathepsin G relevant to host antimicrobial
immunity. Abbreviations used: HIV, human immunodeficiency 
virus; IL-1, interleukin-1; TNFa, tumor necrosis factor a; IFNg, 
interferon g.



The sensitivity of cathepsin G-induced chemotaxis of
macrophages to pertussis toxin implies the involvement
of a Gi-protein-coupled seven-transmembrane receptor
(GPCR). In an effort to identify the GPCR used by
cathepsin G, we have evaluated the capacity of prior ex-
posure to various ligands to inhibit subsequent chemotac-
tic responses of monocytes and neutrophils to cathepsin
G. Although a number of chemoattractants had no effect,
FMLP desensitized chemotactic response of monocytes
to cathepsin G, implicating the high-affinity receptor for
FMLP (FPR) as a receptor for cathepsin G. This was sup-
ported by experiments showing that cell lines transfected
with FPR developed chemotactic responses to cathepsin
G as well as to FMLP. This observation suggests that FPR
mediates the chemotactic effect of cathepsin G but does
not rule out the possibility that cathepsin G interacts with
other GPCRs as well [O. Chertov et al., unpublished]. 
It was reported recently that pretreatment of macrophages
with cathepsin G rendered them much more susceptible
to human immunodeficiency virus-type (HIV-1) infec-
tion. In contrast, the infectivity of CD4+ T lymphocytes
by HIV-1 was not affected by cathepsin G [29]. The in-
fectivity of macrophages exposed to pertussis toxin was
not enhanced by subsequent treatment with cathepsin G,
suggesting the involvement of GPCRs and Gi-protein-
mediated signal transduction. On the other hand, more
prolonged exposure of macrophages to cathepsin G re-
duced HIV infection of macrophages; this effect was in-
hibited by a specific inhibitor of cathepsin G – a1-
antichymotrypsin. Although FPR is not known to be a
coreceptor for HIV-1 cell entry, more prolonged exposure
to FPR to cathepsin G may result in heterologous desen-
sitization and downregulation of CCR5 coreceptor [30].
The physiologic importance of cathepsin G was sug-
gested by the finding that neutrophils from vitamin A-de-
ficient rats contain lower levels of cathepsin G [31]. The
levels of other neutrophil proteases such as elastase, plas-
minogen activators and gelatinase, unlike cathepsin G,
were not altered by vitamin A deficiency. It is known that
vitamin A deficiency is associated with increased sever-
ity and rate of infections and mortality in humans. Neu-
trophils from vitamin A-deficient rats also have reduced
chemotactic response to FMLP [32]. The relationship
between cathepsin G deficiency and impaired neutrophil
chemotaxis to the integrity of host defense remains to be
established.
Mice with homologous deletion of cathepsin G gene have
been generated and appear to be phenotypically normal
[33]. Neutrophils from cathepsin G–/– mice have normal
morphology and display normal phagocytosis and super-
oxide production. The cathepsin G–/– mice do show a
decrease in their wound-healing capacity with a more
prolonged influx of increased numbers of neutrophils
into the site [34]. However, the chemotactic responses of
their neutrophils to C5a, IL-8 and FMLP was reported to
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was modified by diisopropylfluorophosphate (DFP) or
phenylmethanesulfonyl fluoride (PMSF). The inhibition
of proteolytic activity of cathepsin G by these agents also
led to inactivation of its monocyte chemotactic activity,
clearly indicating that proteolytic activity of cathepsin G
is essential for its chemotactic activity. The polyclonal T-
cell-activating (mitogenic) activity of cathepsin G [25]
was also inhibited by pretreatment of cathepsin G by
PMSF [O. Chertov et al., unpublished observation].
The activities of serine proteinases in the blood are reg-
ulated by specific inhibitors (serpins) [26]. Chymotryptic
activity is inhibited by a1-antichymotrypsin. At a fourfold
molar ratio a1 -antichymotrypsin almost completely in-
hibited monocyte chemotaxis to cathepsin G in parallel
with inhibition of its enzymatic activity. a1-Antichymot-
rypsin may have a regulatory role in inflammation since
it behaves as an acute phase protein [27]. The plasma con-
centration of this acute phase protein rapidly increases se-
veralfold above normal to about 5–7 mM during tissue in-
jury, autoimmune diseases, malignancies and infections
in response to systemic proinflammatory cytokines such
as IL-1, IL-6, TNF-a and LT [27]. Despite the fact that
human serum containing a1 -antichymotrypsin efficiently
inhibited the in vitro chemotactic effect of cathepsin G,
subcutaneous injection of cathepsin G in mice induced
local inflammatory reactions [21]. This suggests that se-
rum inhibitor(s) are not present in sufficient concentra-
tion in the tissues during initial stages of inflammation.
The fact that cathepsin G can stimulate an influx of in-
flammatory cells into the site of injection in spite of high
concentration of proteinase inhibitors in plasma may in-
dicate that the outcome of proteinase-inhibitor interac-
tion, depends on the kinetics of the reaction, the rate of
diffusion of inhibitors from the circulation, inactivation
of proteinase inhibitors by oxidation and protection of
cathepsin G enzymatic activity by DNA fragments [28].
Recently, Moriuchi et al. confirmed that cathepsin G is an
efficient chemoattractant for macrophages [29]. Macro-
phages stimulated by the bacterial product LPS migrated
more efficiently in response to cathepsin G than unstimu-
lated cells. Cathepsin G induces the expression of proin-
flammatory cytokines TNF-a and IL-1b by macrophages
and interferon (IFN)-g by T cells [29]. Administration of
cathepsin G together with an antigen stimulates enhanced
production of immunoglobulin (Ig) G1 and IgG2a anti-
bodies. This was associated with increased production of
IFN-g and IL-4 by lymph node lymphocytes from immu-
nized mice. Thus, cathepsin G appears to have adjuvant
effects on both Th1 and Th2 limbs of the immune response.
Cathepsin G augments in vivo T cell responses to antigen
and enhances both cellular and humoral adaptive immune
reactions [O. Chertov, et al., unpublished observation].
Chemotaxis of macrophages to cathepsin G is mediated
by Gi protein-mediated signal transduction, as suggested
by inhibition of chemotaxis by pertussis toxin [21, 29].



be normal. Cathepsin G-deficient mice have also report-
ed to be more susceptible to the lethal effects of fungal
pathogens and to be more resistant to endotoxin shock
[35]. These data also suggest that cathepsin G contributes
to antimicrobial host defenses. 

Chymase

Recently, it was shown that injection of human mast cell
chymase into the skin of guinea pigs or into the perito-
neum of BALB/c mice induced marked neutrophilia and
eosinophilia. Chymase is a major chymotrypsin-like se-
rine proteinase expressed in the secretory granules of
mast cells. Chymase-induced leukocyte infiltration in
both these species was dependent on enzymatic activity.
Coinjection of proteinase inhibitors or heat inactivation
of the enzyme markedly reduced cell accumulation [36].
Tani et al. demonstrated that mast cell chymase acts di-
rectly on monocytes and neutrophils, resulting in their
chemotactic migration [37]. Pretreatment of chymase
with enzyme inhibitors reduced both its enzymatic ac-
tivity and monocyte chemotactic activity to the same ex-
tent. Chymase also stimulated cell migration of T lym-
phocytes, although the effect appeared to be chemokine-
tic rather than chemotactic. These results suggest that
mast cell chymase may also play a role in the accumula-
tion of inflammatory cells in the development of chronic
inflammatory responses. The general substrate specifi-
city of cathepsin G and chymase is the same [38], which
may account for the fact that they both have considerable
chemotactic activity. Other serine proteases such as
elastase, thrombin, trypsin and chymotrypsin exhibit only
modest or no chemotactic activity. The basis for the 
marked chemotactic effects of chymase and cathepsin G
remains to be determined.

CAP37/azurocidin

A cationic antimicrobial protein (CAP37) was first isolat-
ed in 1984 from human neutrophil granules as one of the
components of oxygen-independent phagocytic defenses
[39]. Several years later, another group purified and iden-
tified nine polypeptides in neutrophil granules that dis-
play antimicrobial activities, with one of them referred to
as azurocidin being identical to CAP37 [40]. CAP37/azu-
rocidin is synthesized as a precursor of 351 amino acids
and processed to a glycosylated mature form of 222
amino acids [41, 42]. CAP37/azurocidin bears substantial
similarities to serine proteases, especially neutrophil
elastase (45% homology), but has no enzymatic activity.
Apart from its antimicrobial activity, CAP37/azurocidin
has been shown to have moderate chemotactic effects on
monocytes/macrophages [21, 43, 44] and T cells [8], to

bind LPS [45] and to be capable of heparin binding [44].
Very recently, it has been shown that CAP37/azurocidin
can serve as an opsonin [46] and as a modulator for LPS-
induced monocyte activation [47], such as enhancing
TNF production by monocytes in response to LPS [48].
Thus, CAP37/azurocidin, presumably like other anti-
microbial peptides and proteins, may potentially play a
role in promoting host antimicrobial immunity.

Complement system

The complement (C) system was discovered more than a
century ago as a heat-labile ‘factor’ in fresh serum capa-
ble of causing lysis of bacteria and erythrocytes [49]. De-
spite the existence of three pathways of complement ac-
tivation, namely classical [50], alternative [51] and lectin
[52] pathways, all pathways converge and activate the
central component, C3, leading to the covalent binding 
of C3b to the surface of microorganisms or aged
erythrocytes and culminating in the formation of an iden-
tical terminal membrane attack complex (MAC). MAC,
being composed of C5b, C6, C7, C8, and as many as 18
C9, induces pores in cell membranes of microorganisms
or aged erythrocytes through which ions, small mole-
cules and water enters bringing about osmotic lysis of the
targets. Thus, the complement cascade may, in a broader
sense, be considered to consist of antimicrobial proteins.
In addition to its direct microbicidal effect, MAC has also
been demonstrated to induce activation of numerous host
cell types, resulting in degranulation, proliferation, re-
lease of inflammatory mediators, and secretion of cyto-
kines and chemokines (e.g. IL-8 and MCP-1), as review-
ed recently [53].
Besides MAC, several other products of complement ac-
tivation, in particular C3a, C3b, C3d and C5a, participate
in the awakening of innate host defense and adaptive im-
munity against microbial invasion [50, 51]. Binding of
C3b to microorganisms enhances phagocytosis through
interaction with complement receptor (CR) 1 and CR3
present on phagocytic cells (opsonization), thus promot-
ing innate host defense against microbial invasion [50,
51]. C3a and C5a are potent leukocyte chemoattractants
(C5a > C3a) with powerful anaphylactic actions
(C3a > C5a) on phagocytic cells (neutrophils and mono-
cytes/macrophages), eosinophils, mast cells and baso-
phils [50, 51]. By interacting with their corresponding re-
ceptors, C3a and C5a on one hand contribute to the
recruitment of neutrophils, monocytes/macrophages, eo-
sinophils, basophils and mast cells to sites of infection,
and on the other activate those leukocytes to release nu-
merous inflammatory mediators, including lipid metabo-
lites, cytokines and chemokines, providing another way
for the complement system to augment innate antimicro-
bial defenses [50, 51, 54, 55].
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The C5a receptor is also expressed by dendritic cells
[56–58]. We recently demonstrated that both immature
and mature dendritic cells express functional C5a recep-
tors [59], suggesting that C5a may participate both in the
recruitment of immature dendritic cells to inflammatory
sites and in the trafficking of mature dendritic cells into
lymphoid tissues. It is reported that B [60, 61] and T lym-
phocytes [62] also express C5a receptors. We therefore
proposed that C5a may participate in bringing antigen-
presenting dendritic cells and lymphocytes together in T
cell areas and/or B cell follicles of secondary lymphoid
tissues [59]. Furthermore, attachment of C3d to micro-
bial antigens facilitates antigen uptake by follicular den-
dritic cells and B cells through interaction with CR2 and,
to a lesser extent, CR1, thereby promoting antigen-speci-
fic humoral immune response against invading microor-
ganisms (reviewed in [63]).Thus, the complement system
also contributes to adaptive antimicrobial immune re-
sponse by several distinct pathways.
The contribution of the complement system to innate host
defense and adaptive immunity has been confirmed by
numerous experiments utilizing complement-deficient or
CR knockout mice. For example, when investigated in the
cecal ligation and puncture model of acute septic periton-
itis, mice deficient in C3 or C4 have 100% mortality at
24 h compared with less than 25% mortality in wild-type
control mice [64]. In addition, knockout of CR1 and CR2
impairs the immune response of mice to T-dependent an-
tigens [65]. Furthermore, knockout of C5a receptor
renders mice susceptible to intrapulmonary-instilled
Pseudomonas aeruginosa [66]. Complement products
can also be used as immunoadjuvants as demonstrated
initially by Dempsey et al. that coupling of multiple cop-
ies of C3d to soluble antigen significantly enhances its
immunogenicity [67].

Defensins

Defensins were initially isolated from rabbit and human
neutrophils in an effort to characterize phagocyte-derived
oxygen-independent antimicrobial activities [68, 69].

Subsequently, defensin molecules were characterized
from plants [4], insects [5], and many other vertebrate
species [1, 6, 7, 70]. All defensins are cationic, microbi-
cidal and contain six to eight highly conserved cysteine
residues which form three to four pairs of intramolecular
disulfide bonds. Defensins are classified into three fami-
lies according to their origins (table 1). Based on their
numbers and patterns of disulfide bridges, vertebrate de-
fensins are divided into a-, b-, and q-defensin subfami-
lies (table 1). The q-defensin subfamily currently has only
one member that is cyclic, with its six cysteine residues
linking C1 to C6, C2 to C5, and C3 to C4 [71]. The three
disulfide bonds of a-defensins are paired C1 to C6, C2 to
C4, and C3 to C5 [72], whereas those of b-defensins are
C1 to C5, C2 to C4, and C3 to C6 [73]. Both a- and b-de-
fensins have similar tertiary structures, showing triple-
stranded antiparallel b sheets [74, 75]. 
In mammalian species, more than 50 defensins have been
identified which are either stored in the granules of neu-
trophils, monocytes/macrophages and Paneth cells, or are
generated by keratinocytes and mucosal epithelial cells of
the respiratory, digestive, urinary and reproductive sys-
tems. However, the number and cell source of mammal-
ian defensins varies in different species. As many as 14
bovine b-defensins are produced by neutrophils and ton-
gue epithelial cells [76, 77]. In the mouse, at least 17 a-
defensins (also called cryptdins) are generated by Paneth
cells and skin [78, 79], whereas four b-defensins are ex-
pressed by keratinocytes or various epithelial cells
[80–83]. In humans, six a- and three b-defensins have
thus far been characterized. Human a-defensins 1–4
[also termed human neutrophil peptides (HNPs) 1–4] are
predominantly stored in the granules of phagocytes [69,
84] and have also recently been shown to be produced by
B and gdT lymphocytes [85]. Human Paneth cell gran-
ules express two a-defensins called human defensin
(HD) 5 and 6 [86, 87]. Human b-defensins (HBDs) 1, 2
and 3 are the products of keratinocytes and various
epithelial cells [11, 12, 88–90]. In both mice and hu-
mans, the genes encoding both a- and b-defensins are
clustered on a syntenic location, mapping to the proximal
region of chromosome 8 in each species [81–83, 90–94].

Table 1. Classification of defensins.

Classification Origin Intramolecular disulfide bridge

Family Subfamily Number Pattern

Plant defensins – Plant cells 4 C1–C8, C2–C5, C3–C6, C4–C7

Insect defensins – Insect cells 3 C1–C4, C2–C5, C3–C6

Vertebrate a Mammalian leukocytes and Paneth cells 3 C1–C6, C2–C4, C3–C5
defensins b Avian and mammalian epithelial cells 3 C1–C5, C2–C4, C3–C6

and keratinocytes
q Primate leukocytes 3 C1–C6, C2–C5, C3–C4



Degranulation by the recruited neutrophils release defen-
sins [8, 20, 105] and consequent generation of more IL-8
[102, 103]; both result in a positive feedback loop that en-
hances neutrophil accumulation at sites of infection. Fur-
thermore, human a-defensins can bind to complement
C1q [106] and enhance [107] or suppress [108] the ac-
tivation of the classical pathway of complement in vitro,
raising the possibility that defensins in vivo may partici-
pate in the regulation of complement activation. The ca-
pacity of defensins to kill microorganisms, to enhance
phagocytosis, to promote neutrophil recruitment and to
regulate complement activation indicates that defensins
contribute to innate host defenses against microbial inva-
sion.
Our studies indicate that defensins also participate in
awakening of host adaptive immunity (fig. 2). The ear-
liest suggestion that defensins may play a role in adaptive
immunity is perhaps the finding that HNP1and -2 are
chemotactic for human T cells both in vitro and in vivo
[8]. Subsequent studies revealed that human neutrophil
a-defensins are selectively chemotactic at nanomolar
concentrations for resting CD4/CD45RA and CD8 T
cells, whereas human b-defensins are chemotactic for
CD45RO memory T cells [10, 109]. Although in vivo a-
defensins are synthesized by immature myeloid cells (es-
pecially metamyelocytes and myelocytes) [110] and stor-
ed in granules of neutrophils, monocytes and macropha-
ges, they can be released into extracellular environment
by neutrophil disruption or degranulation [8, 20, 105].
Production of b-defensins 2 and 3 is induced by contact
with microbes or bacterial products such as LPS or pro-
inflammatory cytokines such as IL-1 and TNF, whereas
b-defensin 1 is a constitutive product of epithelial cells
and keratinocytes [11–13, 77, 80–83, 89–91]. Conse-
quently, both a- and b-defensins are presumably present
at sites of microbial invasion, forming chemotactic gra-
dients. Thus, defensins in vivo are likely to play a role in
recruiting effector T cells to inflammatory sites, thereby
contributing to the effector phase of adaptive immunity.
The induction of adaptive antimicrobial immunity is ini-
tiated in infected tissues by immature dendritic cells that
phagocytize microbial antigens [111–113]. Both a- and
b-defensins have the capacity to chemoattract immature,
but not mature, dendritic cells [10, 14, 109]. The che-
motactic activity of human b-defensins for immature den-
dritic cells and memory T cells is mediated by human CC
chemokine receptor 6 [10, 14], which is selectively ex-
pressed by immature dendritic cells [114, 115]. The re-
ceptor that mediates the chemotactic activity of human a-
defensins has not been identified yet. Nevertheless, the
formation of localized a- and b-defensin gradients at sites
of microbial entry presumably facilitates the recruitment
of immature dendritic cells to sites of antigen deposition,
thereby enhancing antigen uptake, processing, presenta-
tion and ultimately the induction of antigen-specific im-
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Defensins are synthesized as prepropeptides and proces-
sed posttranslationally into mature forms as reviewed in
reference [70].
Defensins (mature form) are multifunctional and their ac-
tivities relevant to host antimicrobial immunity are out-
lined in figure 2. Numerous studies demonstrate that de-
fensins, when used at concentrations above 2 mM, have
the capacity to kill a broad spectrum of microorganisms,
including bacteria, protozoa, fungi and some enveloped
viruses in vitro under low salt (<0.15 M of NaCl) and se-
rum-free conditions (for details, see [6, 7, 70]). In vivo
under physiological conditions, this direct microbial kil-
ling is likely to occur only in the phagocytic vacuoles of
phagocytes (including neutrophils and monocytes/
macrophages) after the ingestion of microorganisms or
on the surfaces of skin and mucosal epithelia, thereby
contributing to innate host defenses against microbial in-
fection.
In addition to their direct microbicidal activity, a number
of other activities of defensins (fig. 2) may also enhance
host innate antimicrobial defenses. Human a-defensins
are capable of enhancing phagocytosis by macrophages
[95]. Human, rabbit and guinea pig a-defensins are able
to induce degranulation of mast cells, resulting in the re-
lease of mast cell granule products including histamine
[96, 97|. Human a-defensins can stimulate bronchial
epithelial cells to augment IL-8 gene transcription and
IL-8 production [98, 99]. Since mast cell granule pro-
ducts increase neutrophil influx [100, 101] and IL-8 is a
potent neutrophil chemotactic factor [102, 103], defen-
sin-induced mast cell degranulation and IL-8 production
at inflammatory sites would promote the recruitment and
accumulation of neutrophils. This scenario is supported
by the facts that subcutaneous injection of human a-de-
fensins causes an infiltration of neutrophils as well as
mononuclear cells at the site of injection [8] and that in
vivo administration of a-defensins increases the ability of
mice to resist local infection by enhancing neutrophil
recruitment to infected tissues [104]. 

Figure 2. Schematic illustration of the activities of defensins rele-
vant to host antimicrobial immunity. Defensins can enhance (≠)
suppress (Ø) or regulate (Ø≠) the production of molecules as well as
the activation and/or migration of immune cells. iDC, immature
dendritic cells.



munity. This scenario is supported by studies showing that
human a-defensins markedly enhance antigen-specific
immune responses when administered simultaneously
with antigens in vivo [15, 16]. Defensins also promote
dendritic cell maturation. As dendritic cells mature, they
process antigens and display antigenic epitopes on their
surfaces in the form of antigen-major histocompatibility
class (MHC) class II complexes [59, 111, 112, 114]. Ma-
ture dendritic cells then migrate via afferent lymphatics to
the T cell areas of lymphoid tissues (lymph nodes, spleen
and Peyer’s patches), where they present antigens to ac-
tivate antigen-specific naive T cells [111–113, 116].
Several features of defensins make them useful candida-
tes for immunoadjuvants (i) Both a- and b-defensins are
able to induce the migration of immature dendritic cells
[10, 14, 109]. (ii) Human a-defensins have been shown to
enhance antigen-specific immune responses when ad-
ministered together with antigens in vivo [15, 16], and
human b-defensins may have a similar effect. (iii) Defen-
sins are endogenous products and small in size, so they
are likely to be nonimmunogenic. (iv) In addition to being
produced by recombinant technology, since defensins are
small in size, they can also be chemically synthesized in
highly pure forms in reasonable amounts [117, 118].
Nanomolar concentrations of a-defensins have also been
reported to inhibit the production of immunosuppressive
adrenal steroid hormones [119–121] by blocking the ad-
renocorticotropin receptor [121, 122]. During systemic
infections, a-defensin levels in plasma can reach up to
100 mg/ml, a concentration sufficient to interfere with the
production of adrenal glucocorticoids [123, 124]. Since
glucocorticoids are potent immunosuppressive media-
tors, a-defensins may thus also enhance systemic innate
host defense and adaptive immunity in vivo by inhibiting
the production of glucocorticoids.
The importance of defensins in host innate defense and
adaptive immunity against microbial infection has been
supported by several clinical and experimental studies.
Cystic fibrosis patients manifest exacerbation of chronic
microbial infection of the lung due to the inhibition of the
activities of both a- and b-defensins by abnormally high
salinity of their airway surface fluid [125–127]. Patients
with Chediak-Higashi syndrome and specific granule de-
ficiency, two disorders characterized by a deficiency in
neutrophil defensins, also have increased susceptibility to
recurrent bacterial infection [128, 129]. A very recent
study showing that genetic knockout of the gene of ma-
trilysin, which is involved in the processing of murine a-
defensins, prevents the production of mature murine a-
defensins and reduces the resistance of mice to bacterial
challenge [130]. The fact that matrilysin-deficient mice
become more susceptible to orally administered Salmo-
nella typhimurium provides direct support for the impor-
tance of defensins in host defense [130].
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Cathelicidins

Cathelicidins comprise another family of antimicrobial
proteins in mammals [6, 7, 131]. Cathelicidins consist of
a putative N-terminal signal peptide, a highly conserved
cathelin (cathepsin L inhibitor)-like domain in the middle
of the molecule and a less conserved C-terminal anti-
microbial domain (fig. 3). About 30 cathelicidin mem-
bers have been identified from various mammalian spe-
cies; however, humans produce only one cathelicidin,
called hCAP18 [6, 7, 131–135]. The C-terminal anti-
microbial domain is cleaved off by appropriate proteases.
For example, human cathelicidin/hCAP18 is cleaved by
neutrophil elastase to liberate its C-terminal antimicro-
bial domain, a peptide called LL-37 because it begins
with two leucine residues and is 37 amino acid residues
long [136]. The C-terminal antimicrobial peptides of ca-
thelicidins are markedly variable in structure. Some are a
helical (e.g. hCAP18/LL37 and rabbit CAP18) [136–
138]. Others (e. g. porcine PR-39 and bactenecins) are
proline/arginine-rich, showing a polyproline-type struc-
ture [139, 140]. Porcine protegrins, on the other hand,
have b-sheet structures [141, 142]. Cathelicidins are
primarily stored in the granules of neutrophils of various
species and can be released extracellularly upon neutro-
phil activation [131, 133]. However, hCAP18/LL-37 is
also expressed by epithelial cells [132, 143], monocytes,
NK cells, B cells and gdT cells [85], and is induced in 
keratinocytes in response to inflammatory stimuli [137,
144]. 
The activities of cathelicidins are summarized in figure 3.
The function of the cathelin domain is unclear. The C-ter-

Figure 3. The structure, function and species distribution of cathe-
licidins. Many cathelicidins have been identified in various mam-
malian species (lower panel). All cathelicidins have a common pri-
mary structure (upper panel) that contains an N-terminal signal
peptide, a highly conserved cathelin-like domain in the middle and
a highly variable C-terminal antimicrobial domain. The function of
the cathelin-like domain is not known, whereas several activities
have been identified for the C-terminal antimicrobial domain of ca-
thelicidins (middle panel). DC, dendritic cells.



minal antimicrobial peptides of all cathelicidins are
microbicidal against a broad spectrum of microorga-
nisms, including bacteria, fungi and leptospirae, with a
wide overlap in specificity, but they exhibit significant
differences in potency from one another [131]. Therefore,
cathelicidins are generally considered to contribute to
host innate antimicrobial defense. In addition, some ca-
thelicidins (e.g. hCAP18/LL-37 and rabbit CAP18) bind
LPS with high affinity and neutralize its biological ac-
tivity [134, 135, 138, 145]. This has pathophysiological
relevance, since both rabbit CAP18 [106–142], and trun-
cated LL-37, a 27-residue LPS-binding fragment corre-
sponding to hCAP18 [109–135], can protect galactosa-
mine-sensitized mice from LPS-mediated lethality [134,
146]. Thus, cathelicidins may also ameliorate the symp-
toms of endotoxic shock and thereby contribute to host
innate defense.
The effects of cathelicidins on host leukocytes have re-
cently been reported. PR-39, one member of the porcine
cathelicidins, is capable of inducing chemotaxis of and
mobilizing Ca2+ in porcine neutrophils [147]. We and
others have found very recently that hCAP18/LL-37 is
chemotactic for human neutrophils, monocytes and T
cells [9, 10, 85]. The T cell chemotactic activity of LL-37
shows selectivity since it induces the migration of CD4,
but not CD8, T cells [85]. LL-37 is also able to induce
Ca2+ mobilization in leukocytes [9, 10]. The capacity of
LL-37 to induce Ca 2+ mobilization in monocytes can be
cross-desensitized by ligands specific for human formyl
peptide receptor-like 1 (FPRL1), which led us to the iden-
tification of FPRL1 as a receptor for LL-37 [9, 10]. Since
interaction of a chemotactic ligand with its corresponding
receptor results in the activation of target cells [54], LL-
37 is thus an endogenous activator of FPRL1-expressing
cells.
Cathelicidins are presumably present at the sites of
microbial entry due to extracellular release or secretion
(see above) to form a chemotactic gradient which results
in the recruitment and activation of various subsets of
leukocytes. This contributes to the elimination of inva-
ding pathogens, thereby contributing to innate host de-
fense. The recruitment to inflammatory sites and activa-
tion of in situ effector T cells would enhance the effector
phase of host adaptive immunity against infection. Al-
though LL-37 does not seem to activate dendritic cells
[9], it is also reported to be capable of degranulating mast
cells [148] and to enhance HLA-DR expression by hu-
man dendritic cells [149], suggesting that it may have an
enhancing effect on the induction phase of adaptive im-
munity. The participation of cathelicidins in host innate
and adaptive immunity against microbial invasion has
been demonstrated by an in vivo study showing that
adenoviral vector targeted systemic overexpression of ca-
thelicidin/LL-37 in vivo results in decreased bacterial
load and mortality of experimental mice following chal-

lenge with Pseudomonas aeruginosa or Escherichia coli
[150].

Concluding remark

It appears as though a number of granule proteins with
antimicrobial activities also have the capacity to act on
proinflammatory cells or immune cells. Since exocytosis
of granules results in the rapid release of their contents,
these molecules are potentially the first to alert the innate
and immune host defense systems. Although not all anti-
microbial peptides nor all granule proteins have these
capabilities, we predict more of these interesting moieties
will be identified in the future.
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