
The neurotrophic factors in non-neuronal tissues
H. Sariola

Developmental Biology Research Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 
00014 Helsinki (Finland), Fax: +358 9 191 25140, e-mail: hannu.sariola@helsinki.fi

Abstract. Although neurotrophic factors are defined as
molecules that maintain neuronal cells, they possess a
range of functions outside the nervous system. For exam-
ple, glial cell line-derived neurotrophic factor is essential
for ureteric branching in kidney morphogenesis and for
regulating the fate of stem cells during spermatogenesis.
Leukemia inhibitory factor, a member of the interleukin-
6 (IL-6) ciliary neurotrophic factor family, inhibits differ-
entiation of embryonic stem cells, induces tubulogenesis
in the embryonic kidney, and regulates sperm differentia-
tion. Other IL-6 family members are important in cardiac

as a chemoattractant [2]. Ultimately, the use and defini-
tion of the term ‘neurotrophic factor’ seems to be based
on the perspective of the scientist rather than the actual
function and tissue specificity of the signalling molecule.
I will briefly review the known non-neuronal effects of
the neurotrophin, interleukin-6/ciliary neurotrophic fac-
tor (IL-6/CNTF) and GDNF families. Although they are
well-known from their functions in central and peripheral
nervous systems, they possess several critical roles out-
side the nervous system, for example, in kidney and car-
diac development, spermatogenesis, and maintenance of
immune cells. An intriguing question concerns the simi-
larity of functions of IL-6 and GDNF families in sperma-
togenesis, raising the possibility that these neurotrophic
factors could act in concert or on the same downstream
signalling pathways. Furthermore, the functions or low-
and high-affinity neurotrophin receptors in non-neuronal
tissues provide a long-standing dilemma.

Neurotrophins and their receptors

The neurotrophin family consists of four members: nerve
growth factor (NGF), brain-derived neurotrophic factor
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differentiation and they have pleiotropic functions in the
hematopoietic and immune systems. Although neurotro-
phin receptors have been found on a number of non-neu-
ronal tissues, they represent mostly truncated receptor
isoforms that are incapable of signal transduction and
may have scavenger or dominant negative functions.
However, several examples can be presented of essential
non-neuronal functions played by neurotrophins in e.g.,
cardiac, hair follicle, and vascular differentiation, and the
maintenance of immune cells.
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Introduction

Neurotrophic factors are defined as target-derived, anti-
apoptotic molecules that maintain embryonic or adult
neuronal cells. The word ‘trophic’ is derived from Greek
‘trophé’ meaning nourishment or taking up of nutrients.
Originally, neurotrophism implied that the target tissues
feed the neurones that innervate them [1]. The food is
now known to consist of signalling molecules secreted by
the target tissues. While evidence is accumulating that a
number of multifunctional signalling molecules, such as
fibroblast growth factors, transforming growth factors,
and bone morphogenetic proteins, act as neurotrophic
factors, the class of neurotrophic factors by tradition in-
cludes only molecules that preferentially act on neuronal
cells or that were originally discovered as antiapoptotic
molecules for neuronal cells. However, even these defini-
tions are somewhat arbitrary, because some ‘typical’ neu-
rotrophic factors, such as neurotrophin (NT)-3, glial cell
line-derived neurotrophic factor (GDNF), and leukemia
inhibitory factor (LIF), affect critical morphogenetic pro-
cesses outside the nervous system. On the other hand, a
GDNF homologue, neurturin, does not maintain neuronal
cells, although it promotes their differentiation and acts



(BDNF), NT-3 and NT-4/5. They share the same low-af-
finity neurotrophin receptor p75NTR, but use different
members of the Trk receptor tyrosine kinase family for
high-affinity binding and signal transduction. NGF
preferentially activates TrkA, BDNF and NT-4/5 prefer
TrkB, and NT-3 uses TrkC. The low- and high-affinity
neurotrophin receptors are widely distributed in non-neu-
ronal tissues (table 1).
The Trk receptors outside the nervous system represent
mostly truncated isoforms, suggesting that they do not
transduce neurotrophin signals but rather act as scavenger
or dominant negative receptors [3–8]. Although their role
is unknown in most tissues, gene-targeted mice and trans-
genic mice overexpressing truncated receptor isoforms
have shown that TrkC is important in the morphogenesis
of the cardiac outflow tract [9]. TrkC is also important in
the differentiation, maintenance, and function of lym-
phocytes, monocytes, and mast cells [10–12]. Targeted
disruption of other trk receptor genes has not revealed 
severe defects outside the nervous system.
The low-affinity neurotrophin receptor p75 (p75NTR) is
widely expressed in embryonic and adult tissues [13–
16], and has been suggested to affect spermatogenesis
[17], nephrogenesis [18–19] and the length of the hair
follicle cycle [20]. However, not all of these functions are
supported by the phenotype of p75NTR-deficient mice that
are fertile and develop normal kidneys [21]. p75NTR is ex-

pressed in hair follicles, and mice deficient for p75NTR

show significantly accelerated hair follicle morphogene-
sis with an early progression to the regression (catagen)
stage characterized by extensive apoptosis in the hair root
[20]. p75NTR is also expressed by the hepatic stellate cells
that secrete interstitial collagens, a critical process in the
pathogenesis of liver cirrhosis. The stellate cells undergo
massive apoptosis in vitro when exposed to NGF, raising
the possibility that NGF must be considered in the
therapy of liver cirrhosis [22].
The most striking defect outside the nervous system in
neurotrophin-deficient mice has been found in mice
lacking NT-3 [23, 24]. They exhibit a series of cardiac de-
fects that appear to be related to abnormal neural crest
development. The variety of cardiac defects range from
pulmonary stenosis, tetralogy of Fallot, persistent truncus
arteriosus to ventricular septal defects that are typically
caused by a defect in the migrating neural crest cells that
contribute to the development of the cardiac outflow tract
[25]. Furthermore, NT-3 shows a highly stage-specific
expression pattern during the hair follicle cycle, and
transgenic mice with either increased or reduced NT-3 ex-
pression display either precocious or delayed hair follicle
regression, respectively [26]. A similar function has also
been ascribed to BDNF and NT-4/5 [27]. Several neu-
rotrophins are expressed by vascular smooth muscle cells
(SMCs): they act as chemoattractants in vitro for SMCs,
and both they and their receptors are highly upregulated
in vessel walls in experimentally induced endothelial 
damage [28].
NGF promotes the differentiation of B lymphocytes [29].
It maintains memory B lymphocytes [30], neutrophils,
and peritoneal mast cells [31, 32]. Furthermore, NGF is
expressed by testis and epidydymis in rat and mouse, and
its expression is downregulated by testosterone, but its
function in spermatogenesis has remained unresolved
[33]. 

GDNF family factors and their receptors

GDNF and the related molecules, neurturin, artemin, and
persephin, signal via the same high-affinity receptor, the
Ret receptor tyrosine kinase [2]. The signalling receptor
complex also includes phosphatidylinositol-linked co-re-
ceptors, the GDNF family receptor as (GFRa1–4).
GDNF-, Ret- and GFRa1-deficient mice show relatively
similar phenotypes. They all die during the first postnatal
day [34–39], because of the lack of enteric innervation
below the stomach as well as renal aplasia or hypodys-
plasia [2, 40]. 
Kidney differentiation is regulated by an inductive tissue
interaction between the ureteric bud and the nephrogenic
mesenchyme [41]. The ureteric bud induces epithelial
differentiation of the nephrogenic mesenchyme which, in
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Table 1. Distribution of high- and low-affinity neurotrophin recep-
tors in non-neuronal tissues. 

Tissue/cell type TrkA TrkB TrkC p75

B lymphocyte + +

T lymphocyte, monocyte, +
granulocyte, mast cell +

Spleen + +

Astrocyte, oligodendrocyte, +
Schwann cell

Tooth + + +

Salivary gland + + +

Fat tissue +

Lung + + + +

Heart + + +

Pericardium +

Thyroid gland + + + +

Kidney + + + +

Aorta + + +

Muscle + + + +

Liver +

Testis + + + +

Hair follicle + + +

Expression in the peripheral nervous system is not included [9]. The
data were mainly collected from mRNA expression studies either
by in situ hybridization or Northern blotting.



turn, reciprocally promotes branching of the bud. GDNF
is expressed by the nephrogenic mesenchyme and Ret by
the adjacent epithelial cells, the tips of the ureteric bud
[42, 43]. The co-receptor GFRa1 is expressed by both the
nephrogenic mesenchyme and the ureteric bud [44].
Thus, this ligand-receptor pair was considered a good
candidate to regulate ureteric branching. Indeed, organ
culture experiments and transgenic approaches have now
shown that GDNF is an essential signal to trigger the in-
itial ureteric budding and subsequent branching [35–37,
44, 46] (fig. 1). Neurturin is expressed by the tips of the
ureteric bud, by the same cells that express Ret, and it
promotes ureteric budding in organ culture, suggesting
that cell-autonomous signalling is also involved in the re-
gulation of ureteric branching morphogenesis [47]. How-

ever, neurturin-deficient mice do not show renal defects,
indicating that neurturin is not important in normal kid-
ney differentiation [48]. In addition, pharmacological 
doses of persephin promote small ureteric buds. How-
ever, mRNA levels of persephin are very low in the em-
bryonic kidney and transgenic mice lacking persephin do
not show renal defects, suggesting that it is not essential
in kidney differentiation [49].
GDNF was recently implicated in sperm differentiation.
GDNF is expressed by Sertoli cells that are known to re-
gulate spermatogenesis, and its receptors are displayed by
a subset of spermatogonia including the stem cells for
spermatogenesis [50]. Gene-targeted mice with one
GDNF-null allele show depletion of spermatogenic stem
cells, whereas mice overexpressing GDNF accumulate
undifferentiated spermatogonia [50]. Thus, GDNF con-
tributes to the paracrine regulation of spermatogonial
self-renewal and differentiation (fig. 2). GDNF-overex-
pressing mice are infertile and develop testicular tumors
in adulthood, which makes GDNF signalling a promising
target for therapeutic intervention for men suffering from
infertility or testicular cancer. In accordance with this
proposal, testicular cancers express both Ret and GFRa1
[51].
The regulatory functions of GDNF in spermatogenesis
and kidney morphogenesis clearly show the haploinsuffi-
ciency of the GDNF gene. The dosage of GDNF has
dose-dependent effects in the target tissue, and these are
not only quantitative, such as the dose-dependent in-
crease in the number of branches from the ureteric bud
[35, 44], but also qualitative, such as the dose-dependent
cell lineage determination of spermatogonia [50]. Thus,
the expression of the GDNF receptors on a cell obviously
defines the target cell type for GDNF, but both the quan-
tity and nature of the response are regulated by the dosage
of the ligand. This mode of action is very similar to that
of neurotrophins that act as rate-limiting, target tissue-
derived molecules [1]. 
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Figure 1. Interplay between GDNF (red) and Ret (green) in the ur-
eteric branching during nephrogenesis. (A) In the undifferentiated
kidney rudiment, the entire nephrogenic mesenchyme expresses
GDNF which promotes budding from the Wolffian duct (expressing
Ret and GFRa1). (B) This so-called ureteric bud invades the me-
senchyme and induces two pretubular condensates that upregulate
their GDNF expression. (C) The double-gradient created by the for-
mation of the condensates triggers branching of the bud. (D) The
same event is repeated at all subsequent steps of nephrogenesis. The
ureteric bud will ultimately form the collecting duct network, and
the pretubular condensates, the nephrons. After epithelial transfor-
mation of the nephrons, GDNF expression is downregulated. 

Figure 2. Regulation of spermatogonial cell fate decision by
GDNF, as shown by gain- and loss-of-function in transgenic mice.
(A) In normal seminiferous tubules, the dosage of GDNF allows 
balanced differention and self-renewal of spermatogonia, the stem
cells of spermatogenesis. (B) If GDNF dosage is high, the sperma-
togonia form clusters in the tubules but do not differentiate (target-
ed overexpression). (C) When the GDNF dosage is low, the stem
cells differentiate in excess and are depleted (heterozygotes of
GDFN-deficient mice). The end result is a seminiferous tubule
without germ line cells, called the Sertoli-cell-only syndrome in 
human [50].



Mutations in the Ret gene leading to the constitutive ac-
tivation of the receptor cause two multiple endocrine neo-
plasia syndromes, MEN2A and MEN2B [52–54]. These
syndromes are characterized by medullary thyroid carci-
noma, pheochromocytomas and parathyroid adenomas.
Mutations inactivating the Ret gene lead to variable de-
fects in the enteric innervation causing congenital mega-
colon (Hirschsprung’s disease, OMIM 171400). It is
puzzling that the predisposition to renal and testicular
malignancies is not increased in MEN2 patients, although
GDNF signalling affects both kidney morphogenesis and
spermatogenesis, and testicular tumors develop upon
GDNF overstimulation. A plausible explanation could be
the tissue-specific distribution of the GFRas that may
modulate the oncogenic potential of the MEN2 mutations
in the Ret gene [55].
Sertoli cells also express neurturin [56]. The primary co-
receptor for neurturin, GFRa2, is expressed later than
GFRa1 on differentiating sperm cells, indicating differ-
ent functions for GDNF and neurturin during spermato-
genesis. Indeed, unlike the GDNF-overexpressing mice,
the testis-targeted mice overexpressing neurturin are 
fertile and show only segmental defects in spermatogen-
esis [50].

IL-6 family and its shared gp130 receptor

gp130 is the common signal-transducing component of
the functional receptor complexes for the IL-6/CNTF 
family of ‘neuropoietic cytokines,’ including IL-6, IL-11,
LIF, oncostatin M, CNTF, and cardiotrophin-1 (CT-1).
These cytokines exhibit pleiotropic biological activities
in immune, hematopoietic, and neural systems, and func-
tion in a redundant manner owing to the shared usage of
gp130 [57]. CT-1 was originally isolated for its hypertro-
phy-inducing effects on cardiac myocytes, whereas IL-11
was identified due to its ability to stimulate an IL-6-de-
pendent plasmocytoma cell line [58]. Oncostatin M pro-
tects stellate cells from apoptosis in the liver [59].
LIF was recently shown to induce differentiation of kid-
ney tubules in organ culture after priming of the nephro-
genic mesenchyme with fibroblast growth factor-2 [60].
All IL-6 family members are potent inhibitors of em-
bryonic stem cell differentiation and LIF, at least, is criti-
cal for blastocyst implantation [61, 62]. In embryonic
stem cells, LIF activates Janus kinases and STAT-3 that
may be responsible for the maintenance of the undiffer-
entiated state [63].

Conclusions

The non-neuronal functions of neurotrophic factors share
some common and maybe educational similarities. GDNF

and IL-6 families seem to affect at least some overlapping
processes, such as kidney morphogenesis and spermato-
genesis. The neurotrophins play different roles outside the
nervous system, functioning in cardiac morphogenesis,
maintenance of immune cells, control of hair follicle
cycle, and angiogenesis. Common to all three classes of
signalling molecule seems to be their obvious dose-de-
pendent mode of action. Despite the well-defined non-
neuronal functions for neurotrophins, the widespread dis-
tribution of truncated Trk isoforms has in most cases re-
mained enigmatic, and the role of p75NTR inside and
outside the nervous system is still highly controversial. 
The term neurotrophic factor seems to be a historical mis-
nomer. When one tries to classify certain signalling mole-
cules into this category and exclude others, one easily
gets lost. This term is obviously a scientific relict of little
justification after the identification of the neurotrophic
activities of most if not all families of signalling mole-
cules, and because the neurotrophic factors have various
activities outside the nervous system. Ip and Yancopoulos
[64] stated in 1994: ‘As the actions of neurotrophic fac-
tors appear so strikingly different from those of growth
factors and cytokines operating elsewhere in the body, it
was long thought that neurotrophic factors might in some
way be fundamentally different from traditional growth
factors and cytokines. Recent advances in the under-
standing of the structure of the receptors for neurotrophic
factors reveals them to be much more like the receptors
used by other cytokines and growth factors than was
perhaps first anticipated. These findings suggest that
neurotrophic factors display distinctive actions not be-
cause they utilize novel receptor systems, but rather be-
cause they activate these receptors in neurons.’
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