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Abstract. Proteins of thermophilic organisms are
adapted to remain well structured and functional at ele-
vated temperatures. Nevertheless like their ‘cousins’ that
reside at medium temperatures, they require the assis-
tance of molecular chaperones to fold properly and pre-
vent aggregation. This review compares structural and
functional properties of the DnaK/ClpB systems of Ther-
mus thermophilus and, mainly, Escherichia coli (DnaKTth
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and DnaKEco). Many elemental properties of these sys-
tems remain conserved. However, in addition to a general
increase of the thermal stability of its components, the
DnaKTth system shows profound differences in its regula-
tion, and genetic as well as oligomeric organization.
Whether these differences are unique or represent general
strategies of adaptation to life at elevated temperatures re-
mains to be clarified.
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Introduction

Life for thermophilic organisms is a challenge. Unlike
microbes or higher organisms that live at high salt con-
centrations or exotic pH values, for example, they cannot
evade the unfriendly nature of their environment by sim-
ply adjusting their interior milieu through accessory pro-
teins such as ion or proton pumps or compatible solutes
to achieve more cozy (ambient) conditions [1, 2]. Rather
heat directly effects elementary constituents of the cell.
High temperature increases the fluidity of membranes
and affects the structure and function of proteins and nu-
cleic acids. Thermophilic organisms have evolved so-
phisticated mechanisms to cope with these problems.
One of the most prominent and interesting enigmas in
that respect is how protein folding and maintenance of
well-defined structures are achieved. Since this problem
is related to one of the most important and challenging
questions – ‘the protein folding problem’ – thermophilic
organisms and their proteins have attracted particular at-
tention in the last 2–3 decades. Identifying strategies of
how thermophilic proteins fold and gain stability might
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also lead to a deeper understanding of folding in general.
Indeed, investigation of thermostable proteins brought
substantial insights; however, the mechanisms by which
stability is achieved are much more diverse than initially
anticipated [3].
Although the native fold of a protein is encoded by its
amino acid sequence, after de novo synthesis, and espe-
cially under stress conditions, many proteins need the as-
sistance of molecular chaperones to reach their native state
efficiently. Because thermophilic organisms also provide a
complex cellular machinery of molecular chaperones, the
intriguing question, How do thermophiles adapt? becomes
even more complex. In any case the chaperone system
must meet the general requirements that affect every en-
zymatic function at elevated temperatures [4].
This review aims at a description of the organization and
functional properties of the DnaK system of Thermus
thermophilus, an organism that inhabitates environments
of 40–85°C. In comparison with the properties of the
best characterized DnaK system from Escherichia coli,
particular properties that are connected to the adjustment
to higher temperatures may be identified. 
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General roles and mechanisms of Hsc70/DnaK 
and Hsp104/ClpB

DnaK 
In the simplest case the assistance of chaperones in the
folding of proteins can be described by a passive ‘hold-
ing’ mechanism, according to which chaperones increase
the yield of folded proteins by binding and holding onto
unfolded or partially folded polypeptide chains [5–7].
This withdraws aggregation-prone species from free so-
lution and therefore helps to prevent protein aggregation.
Subsequent release of substrate proteins then allows for
further folding. 
Chaperones of the Hsp70 family (appear to) use the chem-
ical energy that becomes available upon ATP hydrolysis
also to drive this binding and release cycle and possibly
make it more efficient [8–14]. Since the nucleotide bound
to these molecular chaperones (ATP vs. ADP) determines
the affinities and exchange rates of substrate proteins [6],
the intrinsic ATPase activity of Hsp70 chaperone proteins
controls the switch between high and low affinity states
for substrate binding [15, 16].
The structural and mechanistic aspects of the Hsp70 sys-
tem are best understood for the Escherichia coli system,
which consists of three components. The principal mem-
ber of the prokaryotic Hsp70 chaperone system, DnaKEco,
binds and hydrolyses ATP. In the ATP-bound state of
DnaK, rapid substrate binding occurs. Stable holding 
of peptides involves a conformational change that is
achieved by hydrolysis of bound ATP to ADP. The two co-
chaperones or cohort proteins, the nucleotide exchange
factor GrpEEco [17] and the ATPase stimulating protein
DnaJEco [17, 18], control the switch between the two nu-
cleotide states and thereby regulate the interaction of
DnaK with its substrates. DnaJEco stimulates the intrin-
sically low ATPase rate of DnaKEco by a factor of
500–15,000 [19, 20], and GrpEEco accelerates nucleotide
exchange by a factor of 5000 [21].

ClpB
Members of the Clp/Hsp100 protein familiy exist in the cy-
tosol of eubacteria and some eukarya, as well as within eu-
karyotic organelles [22]. They are involved in a variety of
biological activities such as thermotolerance, proteolysis,
DNA transposition and gene regulation. In spite of their di-
verse functions they seem to employ a common biochemi-
cal mechanism: the disassembly of quaternary protein
structures and dissolvation of protein aggregates [23, 24].
Based on the number of nucleotide binding sites the
Hsp100-proteins are classified in two groups [25].
Prokaryotic ClpB is a member of class 1, typified by two
nucleotide binding domains, and is a homologue of yeast
Hsp104, which was the first protein to be characterized in
the B subfamily [26]. Recently, the functional coopera-

tion between the chaperones Hsp70 and Hsp104 in re-
covery of aggregated proteins has been described. In eu-
karyotes this cooperation enables yeast to recover from
heat stress in vivo and reactivate proteins that had been
chemically denatured and aggregated in vitro [27]. In
prokaryotes this functional interaction between the DnaK
and ClpB chaperone system was also reported for E. coli
[28–30] and T. thermophilus [31, 32].
ClpB contains two nucleotide-binding domains (NBD1
and NBD2). The two NBDs possess the classical Walker-
type consensus sequences and are highly conserved
throughout all members of class1 Hsp100 proteins, re-
spectively. However, a comparison of NBD1 and NBD2
shows limited sequence similarity [33, 34]. The NBDs
are separated by a middle region whose length varies
within the subfamilies and are flanked by amino- and car-
boxy-terminal regions. This might be an implication for
distinct conserved functions of the two binding sites. 

Organization of the dnaK/clpB operon

Genomic level
Chaperones are present in the three ‘primary kingdoms’of
life: bacteria, archaea and eukaryotes. The sequence ho-
mology between the proteins from eukaryotes and bacte-
ria illustrates a remarkable conservation of the heat shock
genes in evolution. For example, the DnaK protein from
E.coli is 48% identical to the Hsp70 protein of Drosophila
[35], the homology beween ClpB from Thermus ther-
mophilus and Hsp104 from yeast amounts to 45% (gen-
estream align). While bacteria and archea contain only
few hsp70-related genes, eukaryotes possess multigene
families related to hsp70 and its cochaperones (table 1). 
Despite the sequence homology of chaperones from dif-
ferent organisms the organization of the hsp70 loci dif-
fers. Generally, the two co-chaperones GrpE and DnaK
are included within the dnaK operon (fig. 1, Bacillus
species and archaea). An exception is E. coli where grpE
is not included. The dnaK operon of T. thermophilus is
different because besides dnaK and its co-chaperones, it
contains also dafA and clpB. Interestingly, ClpB has not
been identified in any other thermophilic organism so
far. Moreover, even Hsp70 has not been found in any of
the hyperthermophilic archaea investigated up to this
time [36]. The surprising conclusion one has to draw
from these data is that thermophilic organisms appar-
ently do not depend on a complete set of the DnaK/ClpB
system.

Structure
The structural organization of the DnaK/ClpB system is
described with respect to amino acid sequence, sec-
ondary, tertiary and quarternary structure.
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Table 1. Number of hsp70 and hsp104 related genes in different organisms (mainly derived from Prosite). In most species, there are many
proteins that belong to the Hsp70 familiy. Some of them are expressed under unstressed conditions and can be found in different cellular
compartments. Signatures of DnaJ are the N-terminal ‘J’ domain and a central domain containing four repeats of a CXXCXGXG motif
(‘CRR’ domain). Some proteins assigned to the DnaJ familiy only contain the ‘J’-domain. Whereas all Hsp70 proteins seem to cooperate
with J-domain-containing partners, some may be independent of a GrpE analog since ATP hydrolysis and not dissociation of ADP is usu-
ally limiting here. Additionally, nucleotide exchange factors like Bag-1, which is structurally unrelated to GrpE, may substitute in that re-
spect [87, 88].

dnaK (hsp70) dnaJ (hsp40) grpE clpB (hsp104)

Thermus thermophilus 1 1 1 1

Escherichia coli 3 (hsp70, hscA, hscC) 3 (dnaJ, cbpA, hscB) 1 1

Saccharomyces cerevisiae ≥ 10 (ssa, ssb, ssc, ssd, sse) ≥ 8 (ydj1, mdj1, xdj1, scj, sis) 1 (mge1) 2 (hsp104, hsp78)

Drosophila melanogaster ≥ 8 (hsp70, hsp68, hsc1–6) ≥ 2 (dnaJ60, csp) 1 (grpE, mitoch.) ?

Arabidopsis thaliana ≥ 3 (hsc1–3) 2 (atj, j10) ≥ 7 (mainly mitochondrial) 1 (clpB)

Mus musculus ≥ 8 (hspA1-6, hsc70, BiP) ≥ 16 (A, B and C subfamily) 2 (grpEL1, grpEL2) ?

Homo sapiens ≥ 8 (hspA1–6, hsc70, BiP) ≥ 15 (hdj1, hdj2, A, B and 1 (Mt-grpE) ?
C subfamily)

Figure 1. Graphic representation of the hsp70 (dnaK)-locus genes and their organization. The arrows represent the protein-coding regions
of the genes; figures below the arrows are numbers of amino acids encoded. References used were the EcoGene Database; Bac. subtilis
[89], Bac. thermoglucosidasius [36], Thermus thermophilus [37, 47, 90], archaea [91].



DnaKTth or DnaJTth, respectively, could not be observed
[47].
Oligomerization of ClpB is highly dynamic and depends
on several determinants: ClpB-concentration (obvious),
bound nucleotide, environmental factors such as temper-
ature and salt concentration. Furthermore it also seems
plausible that binding of substrate proteins and interac-
tions with cooperating chaperones could influence its
oligomeric state.
As demonstrated by gel-filtration chromatography, cross-
linking studies and electron microscopy for ClpB pro-
teins from Saccharomyces cerevisiae [48, 49], E. coli [50]
and T. thermophilus [32, 51] the active ATP-bound form
is a ring shaped homo-hexamer with an axial pore. Ex-
ceptional is the finding of Kim and co-workers, who
found a ring-shaped heptamer to be the functional form
of ClpBEco [52]. 
Both binding of ADP and high salt concentrations lead to
deoligomerization; under these conditions monomers and
dimers are the prevailing species [32, 53]. The tendency
of the thermophile ClpBTth to form hexamers is enhanced
at higher temperatures (55°C) [51].
A comparison with N-ethylmaleimide-sensitive factor
(NSF) led to the general assumption, that nucleotide
binding to one of the two nucleotide binding domains
(NBDs) of ClpB might serve simply to promote hexa-
merization, while the other NBD is responsible for ATP
hydrolysis and enzymatic activity [54]. However, muta-
tional studies demonstrated that in the case of Hsp104
from yeast, distinct functional roles of the two NBDs can-
not be assigned unequivocally [55]. 

Temperature stability

DnaK
The thermal stability of DnaKTth was investigated by CD
in the absence of ADP and showed a transition at 96°C
[39]. The unfolding of DnaKTth in the presence of 1 mM
ADP was analysed by differential scanning calorimetry
and gave a thermal transition midpoint at 100.7°C [45].
The unfolding of DnaKTth is completely irreversible after
heating to 130°C. In comparison, DnaKEco has transitions
at 41°C without and 59°C in the presence of nucleotide
[56, 57], and three transitions were observed when
GdnHCl was used as denaturant [58]. A second transition
at 75°C in the presence of nucleotide was reported re-
cently using CD [59].
An interesting question concerns the structural basis for
the increased temperature stability of DnaKTth. Since the
sequence homology of DnaKEco and DnaKTth is 73% and
the identity is 55%, the structures are expected to be sim-
ilar. Yet the melting temperature of  DnaKTth is some 50°C
higher than that of DnaKEco. This supports the idea that
thermostability can be achieved by only subtle structural
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Not too unexpected, the amino acid sequences of the cor-
responding chaperones from E. coli and T. thermophilus
share a rather high level of identity with DnaK (55%),
GrpE (27%), DnaJ (34%) and ClpB (56%) [31, 37, 38].
Interestingly DnaJ from T. thermophilus (DnaJTth) lacks
the Zn2+ binding motif that most mesophilic DnaJ pro-
teins have [37]. DafATth on the other hand apparently has
no counterpart in E. coli, nor has any other sequence been
found with appreciable homology to DafATth in the Swis-
sProtein database.
This high level of sequence homology is also translated to
secondary structure. According to secondary structure
prediction programs and measurements of circular
dichroism spectra (CD), secondary structures of at least
DnaK and GrpE from E. coli and T. thermophilus are
comparable [38, 39]. Information about the three-dimen-
sional structures of the thermophile chaperones is not
available, and comparisons with known structures of
DnaK, GrpE and DnaJ [40–42] determined for the E. coli
system cannot be made.

DnaK/DnaJ/GrpE quarternary structure
The oligomeric organization of the DnaK system from E.
coli was summarized in an excellent and critical review
[43]. Based on this overview and studies with analytical
ultracentrifugation, the oligomeric states of the DnaK
system from E. coli may be outlined as follows.
DnaKEco appears to be present as monomer and dimer but
also higher-ordered oligomer, depending on the particu-
lar experimental conditions and methods used. In the
presence of GrpEEco or DnaJEco, DnaKEco oligomers are
‘solubilized’ and mainly form DnaK1GrpE2, DnaK1DnaJ1

or DnaK1DnaJ2 complexes. The oligomeric state of 
DnaJEco alone is not well-defined; it is reported to form 2-
to 8-mers. In contrast, according to most studies, GrpE
forms a well-defined dimer in solution. It was reported
that Hsc70 forms large oligomers in the presence of ATP
and catalytic amounts of DnaJ [44]. 
In the case of the DnaKTth system, comprehensive analyt-
ical studies about oligomeric states are mostly lacking. 
GrpETth again has the most well-defined oligomeric state
and is dimeric [45]. DnaK and DafA form oligomers of
various sizes; according to dynamic light scatter experi-
ments they are highly polydisperse [unpublished results].
One notable exception, however, is the well-defined com-
plex of three molecules of DnaKTth with three molecules
of DnaJTth to give a (DnaKTth · DnaJTth)3 complex that can
be directly isolated from T. thermophilus HB8 cells [46].
It was recognized later that this complex also contained
three molecules of a 78-amino acid protein named
DafATth (DnaK-DnaJ association factor) [37]. Analytical
studies with the isolated components showed later on that
formation of the ternary heterotrimeric (DnaKTth ·
DafATth · DnaJTth)3 complex is highly synergistic. Binary
complexes between DnaKTth and DnaJTth or DafATth with



changes [60]. In this context it is important to remember,
that DnaKTth also forms a tight complex with DnaJTth and
DafTth [37, 46], supporting the notion that multimer for-
mation is a strategy to increase thermostability [60]. 

DnaJ
DnaJTth also has an appreciable temperature stability with
a Tm of 99.8–100.9°C measured by differential scanning
calorimetry [45]. After heating to 130°C about 50% of
the protein refolds. However, Yoshida and co-workers
reported DnaJTth to be unstable beyond 65°C [37]. In
comparison, DnaJEco shows a single transition at 58°C
[59] as determined with CD: similar to DnaKTth, addi-
tional stabilization may be gained through (DnaKTth ·
DafATth · DnaJTth)3 complex formation.

GrpETth 

According to differential scanning calorimetry measure-
ments (DSC), the dimeric GrpETth protein shows two
distinct thermal transitions [45]. The first transition at
90°C is independent of the protein concentration, while
the second increases from 99.5 to 105°C with increasing
amounts of GrpETth.
This behaviour differs from the folding properties that
were reported for the majority of dimeric proteins. In most
cases folding was described by a simple two-state-unfold-
ing process, where unfolding of the protein was coupled to
monomerization and only a single transition was observed
with DSC [61–63]. Alternatively, two separate unfolding
transitions were observed [64, 65] where the first transition
(monomerization) was concentration dependent followed
by the complete unfolding of monomers. 
Further analysis revealed that the first transition can be
assigned to the C-terminal domain of GrpETth, which is
mostly composed of b-sheets and loop structures [45,
66]. The structure of the DnaKEco · GrpETth complex
shows an interaction of the C-terminal domain with the
ATPase domain of DnaK [40]. Accordingly, melting of
this domain at the corresponding transition temperature
of 90°C for GrpETth ceases nucleotide exchange [45]. The
second transition affects the long N-terminal a-helix of
GrpE that mediates dimerization. 
GrpEEco also exhibits two separate transitions at 48 and
75°C. Also here, at the temperature of the first thermal
transition, the nucleotide exchange activity of GrpEEco is
reduced and deviates significantly from the hypothetical
Arrhenius behaviour [59]. It is noteworthy that despite
the high degree of homology, with GrpEEco both temper-
ature-induced transitions are coupled to a change of CD
signal [59], whereas only the second transition of GrpETth

results in a change of the CD signal [45].
In summary, the GrpE protein is the only member of the
DnaK system that exhibits a transition in the relevant
temperature range of heat shock response both in T. ther-

mophilus and E. coli [38, 59]. This gave rise to the attrac-
tive hypothesis that GrpE is the major temperature-con-
trolled regulator of the DnaK ATPase cycle and, accord-
ingly, its chaperone activity.

Functional properties

Peptides and substrate proteins
Hsp70 proteins function by binding and releasing ex-
tended polypeptides that are exposed by proteins in their
nonnative state, in an ATP-dependent manner. Thus,
Hsp70 recognizes structural features common to most
nascent chains: exposed hydrophobic amino acid side
chains flanked by positive charges with an accessible
polypeptide backbone [67–71]. Two peptides that adhere
to this motif and bind to DnaKEco , namely a 24mer de-
rived from s 32 of E. coli [15, 39] and a 10mer derived
from p53 [67], also bind to DnaKTth [47].
Substrate proteins for the DnaKTth system investigated so
far included reduced carboxymethylated a-lactalbumin
(RCMLA) [46], lactate dehydrogenase, glucose-6-phos-
phate dehydrogenase (G6PDH) and a-glucosidase [31].
Also, the widely used model substrate firefly luciferase is
suitable [38]. Thus, at this point there is no reason to as-
sume that the specificity of DnaKTth and DnaKEco differ
substantially. 

DnaK ATPase activity and nucleotide binding
ATPase activity of Hsp70 proteins is crucial for their bio-
logical function and thus an important indicator of enzy-
matic activity [72, 73]. Specifically, for an enzyme from a
thermophile organism it is important to clarify that its mo-
bility at ambient temperatures (e.g. 25°C), where many
functional measurements are performed, is not severely
impaired [4, 74, 75]. DnaKTth hydrolyses ATP in single
turnover assays with 0.3 ¥ 10–3 s–1 at 25°C and with
1.0 ¥ 10–3 s–1 at 75°C, which is about threefold higher. An
Arrhenius plot for ATPase activity between 25 and 95°C is
approximately linear, indicating no change of the rate lim-
iting step [39]. From its slope an activation energy (Ea) of
25.7 kJ mol–1 was calculated, which is low in comparison
to the rather pronounced temperature dependence of the
ATPase activity of DnaKEco [76] with an Ea of 150 kJ mol–1.
The DnaKTth · DnaJTth · DafTth complex hydrolyses ATP
with 5.0 ¥ 10–3 s–1 at 80°C [37], which indicates that even
at 80°C the T. thermophilus complex is still substantially
active. The absolute values of hydrolysis rates of DnaKTth

at 75°C and DnaKEco at 25°C are thus comparable, sup-
porting the concept of corresponding states [77].
Surprising, however, is the fact that the activity of 
DnaKTth at 25°C is only threefold lower than at 75°C,
which indicates a ‘broad working range’ for this enzyme.
This might be a consequence of the wide temperature
range T. thermophilus inhabits. Like other Hsp70/DnaK
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chaperones, DnaKTth requires potassium and magnesium
ions for ATPase and chaperone activity [78].
DnaKTth binds ADP with a dissociation constant (KdADP)
of 47 nM at 25°C and 280 nM at 75°C. [39]. The corre-
sponding rate constant for dissociation (koffADP) are
0.08 ¥ 10–3 s–1 (25°C) and 1.7 ¥ 10–3 s–1 (75°C), respec-
tively. In comparison, DnaKEco has a KdADP of 130 nM
and koffADP of 35 ¥ 10–3 s–1 [16]. It is thus evident that at
25°C nucleotide binding and release are the rate-limiting
steps in the thermophile DnaK system [39]. This is in sharp
contrast to the DnaKEco system, where ATP hydrolysis is
rate limiting in the absence of cofactors [15, 16, 79].

ClpB ATPase/nucleotide binding
The Hsp104/ClpB proteins express both basal and pro-
tein-stimulated ATPase activity [30, 80]. ATP binding and
hydrolysis is crucial for efficient functioning of the Clp
proteins, as point mutations in the Walker motifs, which
interfere with ATP binding or hydrolysis, eliminate the
chaperone activity of Clp proteins [29, 32, 51, 53, 81]. 
The properties of the two NBDs regarding nucleotide
binding and ATP hydrolysis are very different. In Hsp104
from yeast, NBD1 is a low-affinity site for ATP with a rel-
atively high turnover (kcat1 = 76 min–1, Km1 = 170 µM); the
second site has much higher affinity and a 300-fold slow-
er turnover at 30°C (kcat2 = 0.27 min–1, Km2 = 4.7 µM) [55,
82]. Both sites show positive cooperativity. ClpBTth also
exhibited positive cooperativity in ATP hydrolysis [kcat =
2.6 min–1 at 25°C, Km = 345 µM, Hill coeffficient (nh) =
3.1]. ClpBTth-mutants with defects in their WalkerA mo-
tifs of NBD1 and, -2, respectively, have lost this coopera-
tivity [32]. It remains to be clarified, whether the cooper-
ativity is based on homogeneous interactions through one

NBD type exclusively or between NBD1 and NBD2 in
the ring. 
Some data for nucleotide affinity for NBD2 are also
available. Notably, ADP is bound tighter by a factor of 10
compared to ATP, with dissociation constants of 2 µM for
ADP and 30 µM for ATP for ClpBTth [32, 51], and 9 µM
and 69 µM for Hsp104 [55]. The mechanisms that link
ATP binding and hydrolysis to disaggregation of protein
substrates remain undefined at this point.

Regulation of ATP cycle and chaperone activity
A comparison of the regulatory features of the DnaKTth

and DnaKEco system should specifically indicate potential
differences that are connected to adaption of the ther-
mophile organism. The DnaK system from E. coli is reg-
ulated by the two cohort proteins DnaJEco and GrpEEco.
DnaJEco stimulates ATP hydrolysis thus populating the
DnaKEco · ADP state; and GrpEEco acts as an antagonist of
DnaJ and accelerates nucleotide exchange, thereby prop-
agating the ATP state. For a more detailed description of
the DnaKEco chaperone cycle, see also [83, 84].

GrpE
The maximal stimulation of nucleotide exchange (koff) by
GrpETth is 80,000-fold, in comparison to a 5,000-fold
stimulation by GrpEEco [21]. Since the presence of 
GrpETth leads to an only moderate (10-fold) reduction of
nucleotide affinity in the ternary complex, binding (kon)
and release (koff) of nucleotides are accelerated to a simi-
lar extent [38]. As a consequence, GrpETth overcomes
both rate-limiting steps of the DnaKTth cycle – binding of
ATP and release of ADP – and therefore causes a switch
to the ATP state of DnaKTth. Kinetic experiments and the

Figure 2. Model for the regulated chaperone cycle of DnaK from Thermus thermophilus (DnaKTth). Adapted from [47]. DnaKTth (blue) and
DnaJTth (cyan) form a heterohexameric complex that is assembled by the DnaK-DnaJ assembly factor DafATth (yellow). This complex has
a slow intrinsic ATPase turnover that can only be moderately stimulated by the nucleotide exchange factor GrpETth (orange) since ATPase
activity of DnaKTth remains limiting. The binding of substrate protein (red) and DafATth is competitive, therefore, DafATth has to be released
before protein can bind. The complex of DnaKTth, DnaJTth and substrate protein cycles between ATP and ADP states, comparable to DnaK
from E. coli. Hydrolysis, however, remains unstimulated, which is in sharp contrast to DnaKEco, where hydrolysis of ATP is stimulated
103–104-fold in the presence of DnaJ and substrates.



structure of the DnaKEco-ATPase domain with GrpEEco in-
dicate that GrpE functions as nucleotide exchange factor
by opening the nucleotide binding pocket [21, 40]. The
kinetic data described for GrpETth imply that GrpETth ap-
plies the same mechanism – general principles of nu-
cleotide exchange seem to be conserved [38].

DnaJ
In contrast, the role of DnaJTth differs markedly in the 
ATPase cycle of DnaKEco, compared with DnaKTth. The
ATP hydrolysis rate of DnaKTth is not stimulated by 
DnaJTth [47]. DnaJTth also does not affect any other step of
the cycle, neither ATP binding nor hydrolysis are notice-
ably changed. Thus, DnaJTth does not appear to exert a
regulatory role in the DnaKTth nucleotide cycle [38],
which leaves regulation solely to GrpETth. 

Assistence of luciferase refolding
A direct comparison of chaperone activity of the E. coli
and T. thermophilus DnaK systems was performed with
GdmCl denatured firefly luciferase [38], whose folding
properties are well characterized [85, 86].
The maximal yield of active luciferase in the presence of
the DnaKTth and DnaKEco systems was found to be com-
parable, although the maximum is reached approximately
three times faster with DnaKEco. Notably, the initial slopes
of luciferase refolding with DnaKTth · GrpETth and the
heterologous DnaKEco · GrpETth system are reported to be
similar, as are the nucleotide exchange rates with 7 s–1 and
5.1 s–1 [38]. Thus, refolding kinetics appear to be at least
partially determined by the nucleotide exchange rate of
the respective system. 
The dominant role of GrpE for regulation of overall lu-
ciferase folding kinetics is especially evident, if one con-
siders that DnaKEco possesses an ATPase activity of at
least 1 s–1 in the presence of DnaJEco, while the ATPase ac-
tivity of DnaKTth remains at 0.003 s–1 in the presence of
DnaJTth. Yet the heterologous DnaKEco · GrpETth system
displays the same luciferase folding kinetics as the
DnaKTth · GrpETth system [38]. 

DafA
As a key feature of the thermophilic system, the formation
of the DnaKTth · DnaJTth · DafATth complex interferes with
substrate binding to DnaKTth (fig. 2). Dissociation of
DafATth from the ternary complex is therefore a prerequi-
site for chaperone function [47]. Since displacement of
DafATth is only efficient with protein substrates but not
peptides, a high specificity is mediated by DafATth. In 
the E. coli DnaK system, this coupling is achieved by DnaJ
stimulating the DnaKEco ATPase efficiently in the presence
of protein but not of peptide substrates [19]. Consequently,
stimulation of the intrinsic ATPase may not be necessary
for DnaKTth, as DafATth secures tight coupling. 
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