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Abstract. Antioxidant defence plays a crucial role in
rapidly growing and multiplying organisms, including
parasites and tumor cells. Apart from reactive oxygen
species (ROS) produced in endogenous reactions, para-
sites are usually exposed to high ROS concentrations im-
posed by the host immune system. The glutathione and
thioredoxin systems represent the two major antioxidant
defence lines in most eukaryotes and prokaryotes. Try-
panosomatids, however, are characterized by their unique
trypanothione system. These systems are NADPH-de-
pendent and based on the catalytic activity of the flavoen-
zymes glutathione reductase, trypanothione reductase
and thioredoxin reductase (TrxR), respectively. TrxR re-

duces the 12-kDa protein thioredoxin (Trx), which in turn
provides electrons to ribonucleotide reductase, thiore-
doxin peroxidases (TPxs), certain transcription factors
and other target molecules. Comparing the thioredoxin
systems of different parasites and their respective host
cells enhances our understanding of parasite biology and
evolution, of parasite-host interactions and mechanisms
of drug resistance. It furthermore opens avenues for the
development of novel antiparasitic compounds. Here we
review the current knowledge on the Trx systems of eu-
karyotic parasites, finally focusing on the malarial para-
site Plasmodium falciparum.
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Introduction

Oxidative stress

Toxic derivatives of oxygen and nitrogen, like hydrogen
peroxide, nitric oxide, superoxide radicals, peroxynitrite
and hydroxyl radicals, are continuously generated in liv-
ing organisms. These so called reactive oxygen species
(ROS) or reactive nitrogen species (RNS) are produced as
a by-product in cell respiration, as defence agents against
infections, during detoxification of xenobiotics and by ul-
traviolet (UV)-radiation. ROS and NOS directly or indi-
rectly damage biological macromolecules. Oxidation of
proteins can impair enzyme function and induce false
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cross-linking, lipid peroxidation disturbs membrane in-
tegrity, and oxidative DNA damage can impair protein
synthesis and cell division. Against this oxidative stress
as a whole but also against individual ROS, a number of
antioxidant defence systems have evolved which include
antioxidant enzymes and low molecular weight antioxi-
dants [1].

Many parasites multiply rapidly in an environment of
high oxygen tension. The blood stages of the malarial par-
asite Plasmodium falciparum, e.g. produce up to 16
merozoites within 48 h [2]. This is impressively reflected
by the fact that glucose uptake and utilization of a para-
sitized erythrocyte is increased by a factor of 100 when
compared with noninfected cells. Furthermore, malarial
parasites degrade and metabolize 60—80% of their host
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cells’ hemoglobin [3], a process that takes place in an
acidic digestive vacuole. During proteolysis superoxide
radicals and heme (as hemin) are released and must be
detoxified — O; by dismutation and heme by polymeriza-
tion and by reaction with reduced glutathione, respec-
tively [4].

The glutathione system

The glutathione and thioredoxin (Trx) systems represent
the two cornerstones of cellular antioxidant defence of
both parasite and host cell compartment [5]. The cys-
teine-containing tripeptide glutathione is kept in the re-
duced state by glutathione reductase (GR), a flavoenzyme
which catalyses the reaction GSSG + NADPH + H* —
2 GSH + NADP*. P, falciparum GR has been cloned [6],
and the recombinant protein as well as the enzyme puri-
fied from malarial parasites have been characterized in
detail and shown to be inhibited by the antimalarial agent
methylene blue in therapeutic concentrations [6—8]. A
number of other glutathione-dependent proteins con-
tribute to essential cellular functions, including glyox-
alases, glutathione peroxidases (GPxs), possibly an S-ni-
trosoglutathione reductase, glutaredoxin (Grx) and glu-
tathione-S-transferases [1, 9—13]. Glucose-6-phosphate
dehydrogenase [14] and glutamate dehydrogenase as
major sources of NADPH also indirectly contribute to
antioxidant defence [14].

The Trx system

In parallel to the glutathione system, the Trx system con-
sists of NADPH, thioredoxin reductase (TrxR), and fur-
ther proteins, enzymes and metabolites that depend on re-
duced Trx. Trxs are a group of small (~ 12 kDa) redox-ac-
tive proteins belonging to the Trx superfamily, of which
Grx, tryparedoxin and protein disulfide isomerase are
further members [9]. All members of this family show a
similar structure, the ‘Trx or Grx fold’, which consists of
a central four-stranded S sheet surrounded by « helices.
As shown for yeast, at least one out of four Trx and Grx
genes has to be present for viability [15]. Classical Trxs
have a typical active-site motif with two conserved cys-
teine residues (Cys-Gly-Pro-Cys) (fig. 1); typical Grxs
are characterized by the sequence Cys-Pro-Tyr-Cys [9,
16]. Many organisms, including Escherichia coli, yeast
and humans have more than one Trx; often a second mi-
tochondrial Trx/TrxR system exists in parallel to the cy-
tosolic system [17, 18].

Trx contributes to a range of essential cellular functions.
It is an important redox active protein that protects
against oxidative damage. It supplies reducing equiva-
lents to enzymes such as ribonucleotide reductase and
thioredoxin peroxidase (TPx), but it also reduces cysteine
residues in other proteins, including certain transcription
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factors, which results in their increased binding to DNA
[9, 16, 19]. Mammalian Trxs have also been shown to
function as cellular growth factors, to inhibit apoptosis
and to be highly expressed and secreted by certain tumor
cells. Furthermore, extracellular Trx plays a role in in-
flammatory joint diseases [16, 20—24]. The first — of only
a few — parasitic Trxs was discovered in Echinococcus
granulosus [25].

TrxR

Trx is reduced by the NADPH-dependent flavoenzyme
TrxR. TrxR belongs to a family of pyridine dinucleotide
oxidoreductases that further includes GR, trypanothione
reductase, mercuric reductase, NADH peroxidase,
lipoamide dehydrogenase, rubredoxin reductase and
adrenodoxin reductase [26, 27]. High molecular weight
(55 kDa per subunit) TrxRs occur in mammalian cells,
Drosophila melanogaster, Caenorhabditis elegans and in
malarial parasites [28—32]. They are structurally and
mechanistically closely related to GR but differ signifi-
cantly from low molecular weight (35 kDa per subunit)
bacterial TrxRs [27, 33]. A major feature distinguishing
large TrxRs from GR is an additional C-terminal redox
center (figs 2, 3) which is essentially involved in cataly-
sis and consists of a cysteine-selenocysteine sequence in
mammalian TrxRs, of a Cys-Cys sequence in Drosophila
and of a Cys-Cys pair interrupted by four amino acids in
P, falciparum [16, 27, 28, 31, 32, 34, 35]. In contrast to
GR, which specifically reduces glutathione disulfide
(GSSG), large TrxRs have a broad substrate spectrum, in-
cluding low molecular weight compounds such as 5,5’-
dithio-bis (2-nitrobenzoate) (DTNB) as well as proteins.
GSSG, however, is not accepted as substrate by TrxRs. As
recently demonstrated, D. melanogaster, the malaria vec-
tor Anopheles gambiae, and probably also other insects
lack a genuine GR. In these organisms GSSG reduction is
likely to be maintained by a chemical reaction between
GSSG and reduced Trx, underlining the importance of the
Trx system [28]. In certain metabolic situations this reac-
tion can play a role also in GR-containing species, in-
cluding P, falciparum [31].

TPxs

Peroxiredoxins (Prxs) form a recently discovered and
ubiquitously distributed family of antioxidant enzymes
that act as peroxidases by reducing hydrogen peroxide
and organic hydroperoxides to water or the correspond-
ing alcohol [36, 37]. In contrast to many other peroxi-
dases, the function of Prxs does not depend on redox co-
factors such as metals or prosthetic groups [38]. The Prx
superfamily — which includes alkyl hydroperoxidases and
tryparedoxin peroxidase [39] — was first discovered in
yeast [19, 40]. Later, these antioxidant enzymes were
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NADPH-binding site

Figure 2. Sketch of homodimeric P, falciparum TrxR (after Holger
Bauer, with kind permission). Electrons are transferred from
NADPH to flavin adenine dinucleotide (FAD) and from there to the
active-site disulfide, which is in redox communication with the C-
terminal redox center of the other subunit. This second redox cen-
ter is located on a flexible arm and donates reducing equivalents to
the various substrates.

identified in a wide range of species, including
helminths, protozoa, bacteria, fungi, vertebrates and
plants [36, 41]. Prxs can be divided into two subgroups,
the 1-Cys Prxs and the 2-Cys Prxs (figs 4a, b), depending
on the presence of one or two conserved cysteine-con-
taining motifs [19, 36, 37]. 2-Cys Prxs use electrons pro-
vided by the small protein Trx and were thus also named
TPxs (formerly called thiol-specific antioxidants) [36,
42]. As the first exception to this rule, recently a 1-Cys
Prx with TPx activity was reported in yeast [43]. Other 1-
Cys Prxs characterized so far proved to accept glu-
tathione as reducing substrate [44—46]. An adequate clas-
sification of the novel and heterogeneous class of Prxs re-
mains to be established (for review see [47]).

In this review article we summarize the present know-
ledge of the Trx systems of different eukaryotic parasites.
The article focuses on the major components of the sys-
tem, namely Trx, TrxR and TPxs. We will furthermore
concentrate on those genes and proteins which have been
published or at least annotated, and are therefore accessi-
ble in the databases. However, we should like to empha-
size that the genome projects presently carried out on
parasites offer unique opportunities to discover further
proteins involved in Trx metabolism.

Anaerobic Diplomonadea

Giardia

The anaerobic protozoan parasite Giardia duodenalis is
reported to possess a soluble dimeric FAD containing
NADPH-dependent disulfide reductase consisting of two
35-kDa subunits and a partially purified 12-kDa protein,
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a putative Trx, which enhances disulfide reductase activ-
ity sixfold [48]. The reductase was shown to cleave cys-
tine, oxidized glutathione and DTNB. Primary structure
and biochemical properties place the enzyme into the
class of small TrxRs present in bacteria and some lower
eukaryotes, such as Streptomyces clavuligerus [49] and
Penicillium chrysogenum [50]. G. duodenalis lacks mito-
chondria, superoxide dismutase, catalase, reduced glu-
tathione — cysteine is the major low-molecular mass thiol
— and glutathione-dependent peroxidase (GPx), as well as
GR activities. Therefore, the putative Trx-like system of
Giardia is thought to constitute a major part of the an-
tioxidant defence in this organism. Furthermore, within
Giardia a sequence with homology to TPx has been de-
tected (see fig. 4); however, no further literature on this
protein is available. The identification of this putative
TPx is in good agreement with the presence of a putative
Trx and a TrxR in Giardia. Therefore, this species is
likely to have a complete Trx system consisting of
NADPH, Trx, a low molecular weight TrxR indicating a
close relation to bacteria, and a TPx.

Several biochemical and molecular characteristics of Gi-
ardia led to the proposal that the Metamonada (including
Giardia) should be placed into a new superkingdom
called Archezoa [51, 52], which bridges the empires of
the Bacteria and the Eukaryota. The Trx system of Giar-
dia as known so far supports this proposal [53].

Amoebozoa

Entamoeba histolytica

In contrast to Giardia the anaerobic protozoan parasite
Entamoeba histolytica contains an iron-dependent super-
oxide dismutase, but also lacks detectable activities of
catalase, glutathione transferase, GPx and GR. In 1995, a
protein homologous to prokaryotic disulfide oxidoreduc-
tases was described [54]. This 34-kDa protein shows 38 %
amino acid sequence identity to TrxRs of bacteria. This
first report of a small, bacterial-type TrxR in a eukaryote
was followed by the detection of the first Prx (previously
named thiol-specific antioxidant protein) in a pathogenic
eukaryote, namely in E. histolytica [55]. The Trx depen-
dency of this peroxidase was biochemically verified. Fur-
thermore, a second TPx that differed in its N-terminal se-
quence from the first enzyme was described in the para-
site (P19476).

The growth of the two ancient anaerobic protozoan para-
sites Giardia and Entamoeba was shown to be completely
inhibited by the use of 30 pg/ml of allicin, a compound
contained in freshly crushed garlic [56, for review see
57]. This antiparasitic effect is likely to be based on an in-
teraction of allicin with thiol-containing proteins such as
TrxR [57]. Since there is only a limited number of an-
tioxidant systems operating in these organisms (GSH and
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Figure 4. Alignment of parasitic Trx- and tryparedoxin peroxidases as Prxs. Panels 4 and B show the sequence area around the first (sec-

ond) active-site cysteine. Two human TPxs are included. Hs1, TPx-1 of human (NM_005809); Hs2, TPx-2 of human (NM_006406); Pf1,
TPx-1 of P, falciparum (AAF67110); Pf2, putative TPx-2 of P, falciparum (AAK20024); 1cPf, 1-Cys Prx of P, falciparum (BAA78369);
Tg, TPx of Toxoplasma gondii (BG660585); As, TPx of Ascaris suum (BAA90476); Fh, TPx of E hepatica (AAB71727); Gi, TPx of
Giardia intestinalis (AAD51093); Sm2, TPx-2 of S. mansoni (AAD40685); Sm1, TPx-1 of S. mansoni (AAD17299); Sm3, TPx-3 of S.

mansoni (AAG15506); Eg, TPx of E. granulosus (AAD02002 and B1244260; see below); Ts1, TPx-1 of T spiralis (BG353012); Ts2, TPx-

2 of T. spiralis (BG520721); Eh, thiol-specific antioxidant of Entamoeba histolytica (A43862); 1¢Di, 1-Cys peroxiredoxin of Dirofilaria
immitis (AAF21097); Di2, TPx-2 of D. immitis (AAC38831 and AF001007); 1cOvITSA, 1-Cys peroxiredoxin-1 of O. volvulus

(AAC27392); Ov2, TPx-2 of O. volvulus (AF029247 and AF043415); Oo, TPx of Onchocerca ochengi (AF068946); Ls, TPx of Lito-

mosoides sigmodontis (AF105258); mBm1, mitochondrial TPx-1 of Brugia malayi (AAC23701); Bm2, TPx-2 of B. malayi (U47100);
1cBm3, 1-Cys Prx-3 of B. malayi (AAF21098); Tryparedoxin peroxidases: trpLm, L. major (AAC79432); mtrpLm, L. major (CAB58299);
trpLd, Leishmania donovani (AAK00633); trpTc, T° cruzi (AAF04974); mtrpTc, T. cruzi (CAA06923); trpTb, Trypanosoma brucei rhode-

siense (Q26695), sequence is identical to trp of 7 brucei brucei (AAK69531); mtrpTb, 7. brucei (AAG28496); trpCft, C. fasciculata

(AAC15095). A second TPx nucleotide sequence of 4. suum (BG733737) was found to lead to only one exchange (M5V); this second se-

quence arose from an EST clone and is likely to lack the 3’-terminal sequence. The E. granulosus TPx sequence is combined from two data-

base entries. Two sequences of TPx of 7. spiralis and one of 7. gondii are likely to be incomplete.
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related enzymes are missing), the loss of TrxR function
has significant antiparasitic effects. The host organism as
a higher eukaryote is, in contrast, less impaired.

Trematoda

Fasciola hepatica

E hepatica is a hermaphroditic Echinostomatia that in-
fects sheep, goats, cattle, and also humans. A clone en-
coding a putative Prx was isolated first from a comple-
mentary DNA (cDNA) library [58], heterologous expres-
sion in E. coli and functional analysis were performed
later [59]. The 2-Cys Prx with a molecular mass of
21.7 kDa per subunit was expressed as glutathione
S-transferase fusion protein and showed antioxidant
properties in a metal-catalysed oxidation (MCO) assay
[59]. Furthermore, immunological studies showed that
the protein is able to form dimers and represents a com-
ponent of the excretory-secretory extract. After the iden-
tification of a Trx in F hepatica [60], the Trx dependency
of this peroxidase was demonstrated.

Trx of F hepatica has been identified as a tegument com-
ponent in both the juvenile and the adult fluke [61]. Re-
combinant Trx was shown to stimulate bovine T cells
specifically but weakly, and is therefore not a promising
candidate for inducing resistance to £ hepatica [61].
FhTrx with a molecular mass of 11.4 kDa was recombi-
nantly produced as a fusion protein in E. coli and proven
to be biologically active [60]. Like the TPx of F hepatica,
FhTrx was shown to be part of the excretory-secretory ex-
tract. Until now, no catalase and only trace GPx activity
have been described in the parasite [62, 63], pointing to
an important role of the Trx system.

Schistosoma mansoni

Database information on this trematode indicates three
different 2-Cys TPx genes; one of them (SmTPx1) — the
first TPx reported in schistosomes — has been further
characterized [64]. Recombinant SmTPx1 is enzymati-
cally active and was found to have a Trx-dependent hy-
drogen peroxide activity of 4.5 U/mg of protein. TPx ac-
tivity in adult worm homogenisates was 48 mU/mg of
protein, compared with 47 mU/mg for GPx. Western blot
analysis showed that TPx was expressed in both male and
female worms. As shown by the same group, SmTPx1 is
a T and B cell egg antigen in schistosome-infected mice
[65]; both native and recombinant TPx1 stimulate a sig-
nificant CD4" T cell proliferation in different mice
strains. Western blot analysis showed that eggs have a
higher level of TPx1 protein than both adult male and
adult female worms, and that TPx1 is localized to the von
Lichtenberg’s envelope surrounding the miracidium.
TPx1 is furthermore present in egg secretory products.
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Trx and TrxR messenger RNAs (mRNAs) were already
detected in the parasite as well as TrxR protein in schis-
tosome eggs (unpublished data, cited in [65]). These ob-
servations point to the presence of the complete Trx
system in Schistosoma mansoni. The differential gene
expression in different compartments and developmen-
tal stages of the parasite will be addressed in further
studies.

Interestingly, for S. mansoni the gene of a chimeric pro-
tein consisting of a highly conserved TrxR sequence pre-
ceded by an (N-terminal) glutaredoxin domain has been
described (see fig. 3). A protein of high similarity was re-
cently reported in mouse and shown to reduce both Trx
and glutathione at the expense of NADPH [66] (fig. 3).
These chimeric enzymes, named TGRs, represent a new
type of disulfide oxidoreductases, and bridge the Trx and
the glutathione system. The TGR of both mouse and S.
mansoni is likely to contain a catalytically active seleno-
cysteine residue. Apart from TGR, a selenocysteine-con-
taining GPx has been detected in S. mansoni [67—70]. To
our knowledge, Schistosoma is the first parasite for which
the existence of selenium-dependent enzymes has been
demonstrated. For many other organisms, including
mammals (e.g. man, rat, cattle and sheep) [71], prokary-
otes (e.g. E. coli, Clostridium barkeri) [72], archaea (e.g.
Methanopyrus kandleri, Methanococcus jannaschii) [73,
74], as well as the nematode C. elegans [29, 75], the im-
portance of selenium in antioxidant defence is already es-
tablished.

For Schistosoma japonicum a Trx sequence has been en-
tered into the databases (see fig. 1) but no further data on
the Trx system of this parasite are available.

Cestoda

Echinococcus granulosus

This helminthic parasite possesses a Cu/Zn-dependent
superoxide dismutase, but no catalase or GPx activity has
been detected so far [76, 77]. A Prx gene was, however,
cloned from cDNA. The deduced amino acid sequence
with a predicted molecular mass of 21.4 kDa has two con-
served cysteine-containing motifs; therefore, the protein
is likely to represent a member of the 2-Cys peroxidase
family of Prxs [77]. Also a Trx gene was identified in a
cDNA library of Echinococcus granulosus [25]. Recom-
binant protein was used to raise antibodies that clearly de-
tected a 12-kDa band in protoscolex total protein extracts.
The EgTrx was found to be active in the insulin assay.
Southern and Northern blot analyses indicated the pres-
ence of two Trx genes or a splice variant.
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Nematoda (for review see [78, 79])

Trichinella spiralis

On the basis of a nematode expressed sequence tag (EST)
sequencing project, cDNAs coding for two proteins re-
lated to Trx were detected in muscle stage larvae
(BG353677 and BG302300). The active-site motif typi-
cal for Trxs is, however, missing in both deduced pro-
teins. In addition, two — probably incomplete — putative
TPx sequences were detected (fig. 4). Whether they rep-
resent 1- or 2-Cys Prxs needs to be clarified. Since May
2001 there are three different partially overlapping cDNA
sequences of a putative oxidoreductase in Trichinella spi-
ralis available (BG520773, BG353264, BG438462). Al-
though the highest homologies exist with TrxRs, it is at
the moment not possible to further classify the respective
enzyme.

Ascaris suum

Ascaris was shown to have a 22.6-kDa 2-Cys peroxidase
member of the Prx family [80]. A general peroxidase ac-
tivity of this protein was demonstrated by using the MCO
system, but no further biochemical data, like dependency
upon Trx, are presently available. The enzyme is ex-
pressed at all life stages of the parasite, and immunologi-
cal analyses suggest the presence of two different proteins
reacting with anti-AsPrx serum.

At this point it should be mentioned that in some reports
2-Cys Prxs are classified as TPx2 (although there might
not exist a TPx1) because of their two conserved cysteine-
containing sequence motifs. Other authors name the first
Prx identified in an organism TPx1 and the second Prx (al-
though it might be a 1-Cys Prx) TPx2. This heterogeneous
use of nomenclature — as found in the filarial nematodes
Brugia malayi, D. immitis, and O. volvulus (for review see
[79]) — requires a standardization in analogy to Table 1.

Brugia malayi

Apart from a non-selenium-dependent GPx, in this hu-
man filarial nematode three different Prxs have been de-
scribed: a 1-Cys peroxidase and two 2-Cys peroxidases,
one of them carrying a putative mitochondrial target se-
quence of 30 N-terminal amino acids [81]. This repre-
sents the first putative mitochondrial Prx described in
parasitic nematodes. The respective gene, mipxl, was
found to be constitutively transcribed in all stages of the
parasite present in the mammalian host. The gene was re-
combinantly expressed in E. coli, and antibodies were
raised against the protein obtained. A 25-kDa translation
product was found in parasitic extracts of all develop-
mental stages studied. Immunohistochemical, immuno-
fluorescent and immunoprecipitation studies showed that
the peroxidase is localized in the cells of the hypoder-

Thioredoxin systems of parasites

mis/lateral chord in adult parasites but not at the surface
or in excretory/secretory products [81]. Antioxidant ac-
tivity of recombinant mTPx1 was demonstrated by an
MCO assay. The other 2-Cys Prx, Bm-TPx2, was de-
tected in larval stages of B. malayi [82]. This enzyme may
represent — in analogy to O. volvulus and D. immitis TPx2
(see below) — an isoenzyme exported to the surface or the
excretory-secretory compartment [81]. No biochemical
data are available on the 1-Cys Prx mentioned above.

Dirofilaria immitis

Two Prxs are known for this filarial parasite, which in-
fects dogs and cats: a 1-Cys Prx and two 2-Cys Prxs
which differ in six amino acids only. Therefore, only one
of these two sequences is shown in the alignment (fig. 4),
but both accession numbers are given in the legend.

The nucleic acid sequence of the 2-Cys peroxidase was
isolated from a fourth-stage larval cDNA library and re-
combinantly expressed in E. coli [83]. The protein shows
peroxidase activity by its ability to protect DNA from ox-
idative nicking in a metal-catalysed oxidation system.
Polyclonal antibodies directed against the protein reacted
with a 22-kDa protein in D. immitis larval and adult par-
asite extracts, and also in adult but not in larval excretory-
secretory products.

The 1-Cys Prx [84] was also expressed in E. coli. A ki-
netic characterization revealed a K, of 16.3 mM for H,0,
and a V,,,, of 16 pmol min!' mg 'under the experimental
conditions chosen. Antibodies identified a 27-kDa anti-
gen in parasite extracts, and larval as well as adult excre-
tory-secretory products. The Prx was localized to the lat-
eral hypodermal chords of both male and female worms
and, in addition, to afibrillar muscle cells in male worms
and some areas of the uterine wall in female worms. This
1-Cys Prx is the first parasite Prx to be shown to exoge-
nously detoxify added H,O, in an in vitro system with
dithiothreitol (DTT) [84]. The fact that both peroxidases
of D. immitis were detected in excretory-secretory prod-
ucts is surprising because neither protein contains a sig-
nal leader sequence, possibly pointing to other transport
mechanisms [85—87]. Like B. malayi, D. immitis pos-
sesses a putative non-selenium-containing GPx, but also
a glutathione-S-transferase and a superoxide dismutase
[88—-90].

Onchocerca volvulus

Also in this nematode two Prxs have been described: a
1-Cys Prx and two 2-Cys peroxidases which differ in
only six amino acids. Therefore, only one of these two
sequences is shown in the alignment (fig. 4), but both ac-
cession numbers are given in the legend. The 2-Cys per-
oxidase was found in an O. volvulus L3 larval cDNA li-
brary [91] in a content of 2.5%, indicating an upregu-
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lated expression and an important role in vivo. The gene
of this 2-Cys-TPx was expressed in E. coli, and the pro-
tein obtained was shown to have antioxidant activity
in an MCO assay. Respective antibodies recognized a
protein from both larval and adult worm crude extracts
with a molecular weight of 22 kDa. In larvae, this protein
was predominantly localized in the hypodermis and the
cuticle, and in adult worms in the uterine epithelium and
the intestine, which may indicate a secretion of this pro-
tein.

The 1-Cys Prx gene was isolated from an O. volvulus
adult worm cDNA library. It has antioxidant activity in
the MCO assay, and its localization in the lateral hypo-
dermal chords of adult O. volvulus also suggests its se-
cretion in vivo [92]. The same enzyme has been charac-
terized by another group as an immunomodulatory pro-
tein in the serum of an onchocerciasis patient [93].

A putative Trx has been detected in a cDNA library of O.
volvulus larvae. The respective protein has not yet been
biochemically characterized and contains the atypical ac-
tive site motif WCPQC instead of WCGPC for Trxs, or
WCPYC for Grxs. However, the existence of the gene
points to a complete Trx system in O. volvulus — and
probably other filarial nematodes. In both Onchocerca
ochengi and Litomosoides sigmodontis, a putative 2-Cys
Prx sequence has been found (fig. 4).

Trypanosomatidae

Trypanosomes and Leishmania are the causative agents
of severe tropical diseases, examples being African sleep-
ing sickness (7rypanosoma brucei gambiense and Try-
panosoma brucei rhodesiense), Nagana cattle disease
(Trypanosoma congolense and Trypanosoma brucei bru-
cei), Chagas disease (Trypanosoma cruzi) and the three
manifestations of leishmaniasis (Leishmania donovani,
Leishmania major, Leishmania mexicana). All these para-
sitic protozoa have a thiol metabolism that completely
differs from that of other eukaryotes and prokaryotes.
They lack the glutathione reductase system as well as
GPx and catalase!. Trypanothione [N'!,N3-bis(gluta-
thionyl)spermidine] and monoglutathionylspermidine are
the main low molecular mass thiols [96, 97]. These gluta-
thionylspermidine conjugates are kept in the reduced
state by trypanothione reductase and NADPH. The
dithiol trypanothione has been shown to be involved in
the detoxification of hydroperoxides [39], homeostasis of
ascorbate [98] as well as the synthesis of deoxyribonu-
cleotides catalysed by ribonucleotide reductase [99]. Try-
panothione reduces a major disulfide protein of try-

! The ‘cysteine-containing GPx’ of 7. cruzi described in [94] has a
very low specific activity, which might indicate that GSH itself is
not the major reducing substrate [95].
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panosomatids, namely tryparedoxin (M, 16 kDa; intracel-
lular concentration 5% or >100 pM). The cascade of re-
ducing equivalents from NADPH via trypanothione re-
ductase, trypanothione, tryparedoxin and tryparedoxin
peroxidase was first discovered in the insect pathogen
Crithidia fasciculata [100], but it is also present in the
human pathogens Trypanosoma cruzi [101], T. brucei
[99], Leishmania major [102] and — at least partially — in
L. donovani (AAK00633). Enzymes of the trypanothione
metabolism are attractive target molecules for the rational
development of new antiparasitic drugs (for a recent
review see [97]). The uniqueness of trypanothione me-
tabolism and the failure to detect TrxR in trypanoso-
matids have led to the suggestion that these protozoa lack
a Trx system [96]. Recently, the genome sequencing pro-
ject of L. major revealed a sequence that probably codes
for a Trx [103]. Based on this observation a gene encod-
ing Trx from 7. brucei was cloned, overexpressed and
characterized as a classical Trx [104] — the first Trx of an
organism belonging to the order Kinetoplastida. Phyloge-
netically, the Trxs of 7. brucei and L. major form a new
branch distinct from all other eukaryotic lineages,
whereby the parasite proteins are more closely related to
mammalian Trxs than those of yeasts and plants. In
L. major, a second Trx-like protein (AAG10802) with as-
sumed cytoplasmatic localization has been identified but
not further characterized.

The Trxs mentioned above as well as 7. brucei, T. cruzi
and C. fasciculata 1 and II tryparedoxins with their typi-
cal active site motif — WCPPC —have been included in the
Trx alignment (fig. 1).

Both 7. brucei Trx and tryparedoxin [99, 104] catalyse the
reduction of 7° brucei ribonucleotide reductase by dithio-
erythrol (DTE) as efficiently as E. coli Trx does. Thus,
most probably trypanosomes have developed two sys-
tems that provide electrons for the synthesis of DNA pre-
cursors, as it is the case in other organisms [9].

African trypanosomes change between three main life
stages. In the blood of the mammalian host the parasites
occur as dividing long slender and nondividing short
stumpy forms. Upon a blood meal on an infected animal,
the tsetse fly takes up parasites, and the short stumpy
cells differentiate to procyclics, which multiply in the
insect vector. The Trx gene is expressed in all three de-
velopmental stages of 7. brucei. The occurrence of Trx
mRNA in the nondividing short stumpy parasites may
indicate that the protein is not only involved in deoxyri-
bonucleotide synthesis but also serves additional pur-
poses.

In trypanosomatids, a unique cascade composed of try-
panothione reductase/trypanothione/tryparedoxin/trypa-
redoxin peroxidase has been shown to detoxify hydro-
peroxides [39, 41, 100, 105, 106]. The parasite perox-
idase is a member of the Prx family of proteins (fig. 4).
Thus future work will show whether tryparedoxin perox-



1034 S. Rahlfs, R. H. Schirmer and K. Becker

idase also accepts electrons from the parasite Trx and how
the dithiol form of Trx is subsequently regenerated [104].
T brucei Trx is rather unique in having a calculated pl
value as high as 8.5. The protein contains several arginine
residues resulting in an overall positive charge. The pro-
tein is a substrate of human TrxR, but it is not reduced by
trypanothione reductase, which suggests the existence of
a TrxR or another reducing system [104]. Disruption of
the frx gene in T brucei is in progress and will reveal
whether Trx is essential for the viability and virulence of
the parasite .

Recently, the coexistence of a trypanothione reductase
and a GR was reported in the non-trypanosomatid Eu-
glenozoa Euglena gracilis [108], indicating a wider dis-
tribution of the trypanothione system. Furthermore, a
novel tryparedoxin peroxidase with a mitochondrial tar-
get sequence was identified in 7' cruzi [94], T brucei
[109] and in L. major (CAB58299) [110]. Interestingly,
these mitochondrial tryparedoxin peroxidases — together
with the Prx of Giardia intestinalis — show a deviation at
the second active site. Instead of the typical VCP motif,
they possess a V(A)IPC motif.

Coccidea

Cryptosporidium parvum

In this parasite a partial Trx ¢cDNA sequence with a
WCGPC active-site motif can be found in the databases
(AQO003781). Furthermore, a partial disulfide reductase
cDNA sequence has been entered (AA555349). Since
this enzyme contains a C-terminally located putative re-
dox center which consists of two cysteine residues inter-
rupted by four additional amino acids, as described for
Plasmodium falciparum TrxR [31], it is likely to repre-
sent a TrxR.

Toxoplasma gondii

A putative Trx sequence (fig. 1) with a fully conserved
WCGPC active-site sequence as well as an (incomplete)
TPx sequence were found using a tachyzoite cDNA li-
brary of a Toxoplasma EST-sequencing project. Although
the sequence homologies around the first VCP motif in-
dicate the protein to be a member of the 2-Cys family of
Prxs, a clear assignment is not yet possible since the 3’-
terminal part of the sequence with the second conserved
cysteine is still missing.

! The methodology has been established for trypanothione reduc-
tase, which was shown to be an essential protein for 7 brucei [107].

Thioredoxin systems of parasites

Haematozoa

Oxidative stress and antioxidant defense

in P, falciparum

Tropical malaria is caused by infection with the proto-
zoon P, falciparum. Currently, more than 2 million people
die of malaria each year, and more than 300 million
people become infected. These worrying numbers as well
as the increasing resistance of the parasites against the
currently available drugs explain the urgent demand for
novel antimalarial drugs [111-113].

Apart from the parasites’ high metabolic rate and the ox-
idative stress imposed on infected red cells by the host’s
immune system, hemoglobin degradation — a crucial
process in intraerythrocytic parasite development — is an
additional source of reactive oxygen species. During pro-
teolytic degradation of up to 80% of the host cell’s he-
moglobin, released heme is normally oxidized to hemin
and sequestered as the inert polymer hemozoin which is
related to B-hematin, a polymer chemically prepared in
vitro. By this process the oxidative toxicity of heme iron
is masked. Two classes of drugs are likely to interact with
heme to exert their antimalarial effect: peroxide anti-
malarials such as artemisinin and its derivatives are be-
lieved to be activated by heme resulting in the formation
of alkylating free radicals [114]. Quinoline antimalarials
such as quinine, chloroquine and mefloquine have been
shown to inhibit f-hematin formation in vivo and in vitro
[115—-118]. It has been suggested, that a quinoline-heme
complex is added to the growing polymer, terminating
further chain extension [119].

Apart from heme polymerization, heme degradation ei-
ther by glutathione [120, 121] or by a peroxidative
process [122] has been described. Chloroquine and other
quinolines were shown to inhibit both processes in vitro
[122,123].

Furthermore, individuals with inherited glucose-6-phos-
phate dehydrogenase deficiency are protected from se-
vere malaria. Since G6PDH represents the major source
of reducing equivalents for red cells, evolution also ap-
pears to have exploited oxidative stress as an important
antimalarial principle. Taken together, parasite and host
cell redox metabolism represent most promising targets
for antiparasitic drug development.

P, falciparum possesses at least two NADPH-dependent
disulfide-reducing systems, both of which are well char-
acterized (fig. 5). The Trx system consists of NADPH,
TrxR [30, 124—126], Trx [31, 127] and at least four TPxs.
Three of these peroxidases belong to the Prx family, in-
cluding one 1-Cys Prx and two 2-Cys Prxs [46,
128—-130]. The fourth peroxidase belongs according to
sequence alignments to the family of GPxs [11]; bio-
chemical characterization, however, revealed a depen-
dency on Trx [95]. A second member of this novel class
of enzymes — GPx-like Tpxs — has been identified in
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Figure 5. The Trx and the glutathione system of P, falciparum. The
Trx system is shown in red, the glutathione/Grx system in orange.
The Trx dependency of TPx2 as well as the presence of a GPx have
yet to be verified. FRED (plasmoredoxin) is a Trx-like protein
which is capable of reducing glutathione disulfide as well as ri-
bonucleotide reductase [S. M. Kanzok et al., personal communica-
tion].
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Drosophila melanogaster [F. Missirlis et al., personal
communication].

In parallel, a functional glutathione system has been de-
scribed in P, falciparum. It comprises NADPH, an FAD-
dependent homodimeric GR [6—38, 131], glutathione, Grx
[12], a glutathione-S-transferase with peroxidase activity
(P. Harwaldt et al., unpublished), glyoxalase [10] and pos-
sibly GSNO-reductase (= formaldehyde dehydrogenase).

TrxR of P. falciparum

The P, falciparum TrxR gene was first described in 1995
[132]. Since, however, the high molecular weight TrxRs
had not yet been recognized as a novel class of oxidore-
ductases [27], the sequence was originally interpreted as
a GR, although striking differences at the substrate bind-
ing site were already noticed [132, 133]. One year later,
heterologous expression and enzymatic characterization
clearly demonstrated the Trx-reducing capacity of the
protein [30]. The enzyme is a homodimeric, FAD-depen-
dent oxidoreductase of 55-kDa subunit molecular mass.
The functional amino acids at the active site of the en-
zyme including Cys88, Cys93 and His509 have been
characterized by site-directed mutagenesis [124]; and, as
for mammalian TrxRs [16, 27, 34, 134], the role of the C-
terminal redox center in catalysis has been proven [125],
and its interaction with the active site disulfide-dithiol
has been studied in detail [27, 126, 135].

Further members of the high M, TrxR family have been
described in C. elegans [29], D. melanogaster and the
malarial vector A. gambiae [28]. Interestingly, the en-
zymes of this family differ in their C-terminal sequences.
Mammalian TrxRs, the TGR of S. mansoni mentioned
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above as well as one out of two C. elegans TrxRs [29],
contain a Cys-Sec pair as an additional redox center. If
this selenocysteine is mutated to a cysteine — as demon-
strated for the mammalian enzyme — only 1 % of the orig-
inal activity is left [16]. D. melanogaster and a second
TrxR from C. elegans (CAA77459, annotated as a GR!)
have a Cys-Cys pair and — as shown for DmTrxR — ex-
hibit rather high specific activities [28]. P falciparum
TrxR is characterized by a CGGGKC motif, which has
also been detected in a sequence fragment of a putative
TrxR from Cryptosporidium parvum. The different struc-
tural and functional properties of the three types of C-ter-
minal redox motifs in large TrxRs (fig. 3) will have to be
studied in further detail. However, the fact that PfTrxR —
and probably also other parasitic TrxRs — is non-selenium
dependent, in contrast to mammalian TrxRs, represents a
good starting point for the development of antiparasitic
drugs directed against this redox active enzyme [5, 22,
27,32, 34].

The heterologous expression of PfTrxR in bacteria has
been optimized by multiple silent mutagenesis of the
gene [31]. The recombinant protein shows activity with
DTNB (K, = 465 pM), NADPH (X, = 2.8 pM) and
PfTrx-1 (Ky = 10.4 pM). Glutathione disulfide is not ac-
cepted as substrate. For high-throughput screening of in-
hibitors directed against PfTrxR, 5,5-dithiobis(2-ni-
trobenzamides) have been synthesized and established as
alternative substrates of the enzymes [136].
S-nitrosoglutathione represents an important transport
form of nitric oxide (NO) in biological systems, and NO
is likely to be involved in the pathophysiology of cerebral
malaria. GSNO has furthermore been shown to be an in-
hibitor of GR [137] and a substrate of the mammalian se-
lenocysteine-containing Trx system [138]. GSNO was
also found to be a substrate of PfTrxR and is furthermore
reduced by PfTrx(SH), in a chemical reaction. The re-
duction of GSSG by Trx will be described in the next sec-
tion [31].

Trx of P. falciparum

The complete Trx system of P, falciparum including also
Trx has recently been described [31]. The thioredoxin
gene was cloned and heterologously expressed in E. coli.
The recombinant protein has a molecular mass of 11.7
kDa, possesses the classical active site motif WCGPCK
and — in addition to both these active-site cysteines — one
more cysteine at position 43. Homology modelling re-
sulted in a characteristic thioredoxin fold. The highest de-
gree of protein sequence identity was found with thiore-
doxin of Schizosaccharomyces pombe (51%), 38% and
31% identity could be found with human Trx1 and E. coli
Trx1, respectively. Biochemical characterization of
PfTrx-1 with PfTrxR revealed a K, of 10.4 pM and a V.,
of 50.8 U/mgenzyme [31]. This resulted in a £, /K, ratio
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of 5.0 x 10° M' s7!. Interestingly, this catalytic efficacy is
about five times higher with the host enzyme, hTrxR,
which suggests that P falciparum may use host TrxR
for parasite-related functions at a certain stage of its life
cycle.

As shown by site-directed mutagenesis [127], Cys43
might contribute to dimer formation of PfTrx. Cys43 as
well as the active-site residues Cys30 and Cys33 were
shown to be accessible to modification by DTNB. Inter-
estingly, the N-terminal active site cysteine (Cys30) is
less reactive than Cys33, suggesting a reaction mecha-
nism of PfTrx that differs from other known thiore-
doxins.

Over the last months the genes of three additional Trx-
like proteins have been detected in P, falciparum and are
presently under investigation [C. Nickel, S. Rahlfs and K.
Becker, unpublished].

TPxs of P. falciparum

Based on its sequence homologies with GPxs, the first
peroxidase identified in P, falciparum was initially classi-
fied as a GPx [11] with a putative selenium dependence
[139]. As recently demonstrated, PfTrx-1 is a better sub-
strate than GSH. However, the enzyme is not a typical
member of the Prx family [95]. To distinguish between
this TPx and other peroxidases found in P, falciparum, we
suggest to name it TPx — GPx-like TPx (for our sugges-
tions on the nomenclature of P falciparum peroxidases
see table 1). The monomeric enzyme of 19.7 kDa has
been recombinantly produced in E. coli. As a GPx homo-
logue in which selenocysteine is replaced by cysteine, its
reactions with hydroperoxides and GSH are three orders
of magnitude lower than those of typical selenoperoxi-
dases. With PfTrx it is reacting much faster and displays
ping-pong kinetics with the tested substrates H,O,,
cumene and #-butyl hydroperoxide [95]. The existence of
a genuine GPx in P, falciparum remains to be verified.
The first Prx described for P, falciparum — and for proto-
zoan parasites in general —is a 1-Cys Prx that exhibits the
typical active-site motif PVCT (fig. 4) [46]. The respec-
tive gene was recombinantly expressed in E. coli, which
yielded a 25.2-kDa protein. This size is in good agree-
ment with other 1-Cys Prxs which are slightly larger in
size than 2-Cys Prx (~22 kDa). The enzyme is reduced by
low M, thiols such as DTT or GSH when studied in the
Prx assay. With immunochemical methods, a 25-kDa
band was detected for P falciparum late trophozoites
(~ 0.5% of total protein) but also for ring stages. A highly
homologous 1-Cys Prx gene (92% amino acid identity)
was cloned and expressed by another group [129]. As in-
dicated by that study, the enzyme is active with reduced
Trx and H,O, as substrates, but activity with alkyl hy-
droperoxides was not observed. As indicated by the dif-
fering results of the two groups, the specific thiol depen-
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Table 1. Suggested nomenclature for P, falciparum peroxidases.

Nomenclature PfTPxg, PfTPx-2
suggested in

this review

Pf1-Cys-Prx PfTPx-1

Nomenclature

ref.
11 PfGPx - - -
95 PfTPx — - —

46 - PfTPxI - -
130 - -

128 - -
129 - 1-Cys Px
130 - Pf-Px2

PfTPx1  PfTPx2
PfPrx2 -
PfPrxl -

dency of this 1-Cys-Prx remains to be studied in further
detail. By Western blotting the protein was identified in
all stages of P, falciparum, with strongest signals in old
trophozoites and schizonts.

The first-characterized Prx of the 2-Cys family [128] has
the two typical conserved VCP regions [36] and a molec-
ular mass of 21.8 kDa. It was recombinantly expressed in
E. coli and has antioxidant activity in the MCO assay. The
enzyme was clearly shown to be Trx dependent, with a K,
of 4 pM for PfTrx-1. It accepts H,0,, t-butylhydroperox-
ide and cumene hydroperoxide as substrate, with &, val-
ues of 67, 56 and 41 min!, respectively, in the presence
of 10 pM Trx and 200 pM peroxide substrate. As de-
scribed for many other Prxs, PfTPx1 does not follow sat-
uration kinetics. Furthermore, in oxidizing milieu the
protein is converted to another protein species that mi-
grates faster in SDS gel electrophoresis [128].

In parallel, PfTPx-1 was studied by two other groups and
named PfPrx2 [129] and PfPrx1, respectively [130]. In
this paper we will continue using TPx1. The enzyme as
well as the 1-Cys Prx are reported to possess the peroxi-
somal targeting sequences SKL and SSL, respectively, at
their C-terminus [129]. This fact might point to the exis-
tence of peroxisome-like organelles in Plasmodium — a
matter that has been intensively discussed in recent years.
The Trx dependency of TPx-1 was confirmed by Miiller’s
group using H,O, as substrate; however, in contrast to
other studies, no activity with alkyl hydroperoxides was
observed. A third group showed by Southern blot analy-
sis that the PfTPx-1 gene is a single-copy gene [130]. Un-
der nonreducing conditions, the recombinantly produced
protein as well as the authentic protein in parasite extracts
occur in dimeric form and dissociate into monomers
when dithiothreitol is added. Furthermore, PfTPx1 was
identified in P falciparum ring and late trophozoite
stages by Western blotting [130].

A second member of the 2-Cys Prx family, PfTPx-2, was
identified in P, falciparum [128]. The molecular mass of
this protein is 24.7 kDa, and recombinantly produced
protein shows only slight activity in the MCO assay and
in coupled Trx-dependent peroxidase assays. The protein
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which contains a putative mitochondrial targeting se-
quence and, in addition to the active site residues, several
cysteine residues will be studied in further detail.

Interactions between the Trx and the glutathione
system

When characterizing the Trx system of P, falciparum, we
observed that glutathione disulfide can be reduced in the
presence of NADPH, PfTrxR and PfTrx. Since PfTrxR
does not accept GSSG as a substrate, it seemed likely that
Trx acted as an electron shuttle between reduced TrxR
and GSSG. This hypothesis was proven, and the PfTrx
system was shown to support GSSG fluxes up to 200
PM/min even at the low temperature of 25°C [31]. This
activity is based on a chemical reaction between Trx and
GSSG and might be relevant for stages of P falciparum,
such as the merozoites, which contain glutathione but
practically no GR [7]. The GSSG reduction by Trx is not
restricted to P falciparum but was also demonstrated for
the Trx systems of humans, E. coli, D. melanogaster, and
A. gambiae [28]. The functional importance of this reac-
tion is supported by the fact that not all glutathione-con-
taining organisms have a genuine GR, a case in point be-
ing the fruit fly D. melanogaster [28].

As mentioned above, very recently enzymes — namely the
TGR of mouse and S. mansoni — have been detected that
reduce both Trx and glutathione [66]. Furthermore, the
presence of a TPxg which operates with GSH but has a
preference for Trx [95] and a 1-Cys Prx with GPx activ-
ity [45], point to multiple and complex interactions be-
tween the glutathione and the Trx system (fig. 5).

Both Trx and Grx can reduce ribonucleotide reductase. A
typical Grx as well as a second Grx-like protein have been
found in P, falciparum [12]. This is the first report on a
Grx in parasites. Until now, only incomplete Grx se-
quences were described for O. volvulus (A1096116), T.
brucei (CAB95453; this protein lacks the classical active
site CPYC and has a CQFC motif instead), 7. cruzi
(AI043269; sequence related to Trx or Grx, without a
CxxC motif) and L. major (CAB89595 and AAC24623;
active sites are missing). Furthermore, in 7. cruzi a 52-
kDa protein has been studied which contains the Grx ac-
tive-site motif CPYC and is reported to catalyse thiol-
disulfide exchange [140]. Like E. coli Grx2, which was
shown to possess structural similarities with mammalian
glutathione S-transferases [141], this 7. cruzi 52-kDa pro-
tein has sequence homologies with glutathione S-trans-
ferases [142].

Conclusions

In most parasites studied so far, antioxidant defence and
ribonucleotide reduction are essentially supported by the
Trx system, a notable exception being the trypanoso-
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matids. Trx and Trx-dependent metabolism are most
completely understood in P falciparum. However, for
many other parasites Trx, TrxR, and Prxs have been de-
scribed. The importance of the Trx system is underlined
by the fact that some organisms lack GR, catalase or GPx.
TPx has been shown to be expressed at levels comparable
to those of other antioxidant proteins in S. mansoni [64].
In other parasites, TPx has been found in secretory and
excretory products [58, 143], located to the surface of
parasites [91, 144], and reported as a target of host im-
mune responses [83, 145—147]. A therapeutic and pro-
phylactic potential of targeting the Trx system can be de-
duced from the fact that immunization with TPx has con-
ferred protective immune responses against L. major
[143] and E. histolytica [148], and that selective disrup-
tion of the TPx gene in Saccharomyces cerevisae resulted
in a mutant strain with enhanced sensitivity to oxidative
stress [149]. Furthermore, helminthic parasites are likely
to adapt to oxidative stress by synthesizing high levels of
antioxidant enzymes and by expressing them at the host-
parasite interface [77, 150, 151].

The most promising intervention targets are obviously
the parasitic TrxRs because they differ from the human
isofunctional enzymes. P, falciparum, for instance, has a
high M, TrxR like the human selenoenzyme, but its C-ter-
minal redox center contains a dithiol instead of the se-
lenol/thiol ensemble. Among other distinctions, the dif-
ference between sulfur and selenium chemistry can be
exploited for developing parasite-enzyme specific in-
hibitors as potential antimalarial drugs [32]. Other para-
sites like amoeba and Giardia species possess bacterial-
type TrxRs that differ completely in M,, domain structure
and catalytic mechanism from human TrxRs. These en-
zymes indeed fulfil most criteria of ideal drug targets [27,
32]. Our further understanding of the redox metabolism
of parasites and their hosts will open additional avenues
for the development of antiparasite strategies.
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