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Abstract. Cyclin A is particularly interesting among the
cyclin family because it can activate two different cyclin-
dependent kinases (CDKs) and functions in both S phase
and mitosis. An embryonic form of cyclin A that is only
essential for spermatogenesis is also present in some or-
ganisms. In S phase, phosphorylation of components of
the DNA replication machinery such as CDC6 by cyclin
A-CDK is believed to be important for initiation of DNA
replication and to restrict the initiation to only once per
cell cycle. In mitosis, the precise role of cyclin A is still
obscure, but it may contribute to the control of cyclin B
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stability. Cyclin A starts to accumulate during S phase
and is abruptly destroyed before metaphase. The synthe-
sis of cyclin A is mainly controlled at the transcription
level, involving E2F and other transcription factors. Re-
moval of cyclin A is carried out by ubiquitin-mediated
proteolysis, but whether the same anaphase-promoting
complex/cyclosome targeting subunits are used as for cy-
clin B is debatable. Consistent with its role as a key cell
cycle regulator, expression of cyclin A is found to be ele-
vated in a variety of tumors. 
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Cyclin A and cell cycle control

Cyclins are defined as proteins that are related in sequence
to the originally isolated A- and B-type mitotic cyclins
[1–4]. The level of the mitotic cyclins oscillates in syn-
chrony with the cell cycle, accumulates progressively
throughout interphase and disappears abruptly at the end of
mitosis. The region that shares the highest homology in the
cyclin family is an ~100-residue region known as the cy-
clin box. The cyclin box assumes an a-helical fold com-
posed of five helices, which is followed by a region that
shares little sequence similarity with the cyclin box but
nevertheless folds into the same three-dimensional struc-
ture to form a second cyclin box fold [5, 6]. Similar cyclin
fold structures are also found in domains of several nuclear
regulatory proteins such as the transcription factor (TF)IIB
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repeats and the pRB pocket region [7]. The N-terminal re-
gion of cyclin A contains several putative regulatory ele-
ments, including the destruction box and CDK phosphory-
lation site (fig. 1, see later).
Most cyclins are known to have a protein kinase partner
called cyclin-dependent kinases (CDKs). The levels of
most CDKs are relatively constant during the cell cycle,
but their activities are highly regulated due to the fluctu-
ation of the levels and activities of their cyclin partners
and other regulators. In mammalian cells, cyclin B-CDC2
is the principal mitotic cyclin-CDK complex that regu-
lates G2-M transition. Cyclin D-CDK4/6 and cyclin E-
CDK2 are important for G1 progression and G1-S transi-
tion, respectively. In cultured cells, cyclin A is synthe-
sized and destroyed after cyclin E but slightly earlier than
cyclin B during G2 [8–10]. Cyclin A is especially inter-
esting among the cyclins because it is associated with
both CDC2 (also called CDK1) and CDK2, and has func-



tions in both S phase and mitosis [11]. It is not very clear
whether the same CDK subunit, when binding to differ-
ent cyclins, has similar or distinct roles in vivo. It is likely
that in addition to being an activating subunit, different
cyclins also act as different targeting subunits for recog-
nition of substrates. One example is the ZRXL motif (ba-
sic/Cys-Arg-basic-Leu) found in many proteins such as
E2F-1, p107, p130, CDC25A and the p21CIP1/WAF1 family
of CDK inhibitors that binds to a conserved hydrophobic
docking site on the surface of cyclin A [12].
Another interesting aspect about cyclin A is that there are
both an embryonic and a somatic form of the protein. Or-
ganisms exemplified by Drosophila contain a single es-
sential cyclin A gene [13, 14]. Other organisms such as
Xenopus [15, 16], mice [17] and human [18] contain two
A-type cyclins – an embryonic-specific cyclin A1 and a
somatic cyclin A2. Cyclin A1 is only expressed in meio-
sis and very early embryos, whereas cyclin A2 is present
in proliferating somatic cells. The only essential function
of cyclin A1 in mice appears to be in spermatogenesis
[19]. In contrast, cyclin A2 is essential, and disruption of
its gene causes early embryonic lethality [20]. Based on
sequence information alone, lower eukaryotes such as
yeast do not contain A-type cyclin. The budding yeast
Clb5 is probably the most similar in function to cyclin A. 

Activation of CDC2 and CDK2 by cyclin A

The concentrations of cyclin A2 at its peak level in G2/M
are about 30-fold less than its partner CDC2 and about 8-
fold less than CDK2 [21]. Activation of CDC2 and CDK2
requires binding to a cyclin subunit and phosphorylation
on a threonine residue on a loop structure (T-loop) located
near the mouth of the active site (Thr161 and Thr160 in
CDC2 and CDK2, respectively) by CDK-activating ki-
nase (CAK). In metazoans, the major CAK activity is
composed of a cyclin-CDK pair, cyclin H-CDK7, with an
assembly factor MAT1. Two residues on the activating
loop region of CDK7 (Ser164 and Thr170 in human
CDK7) are phosphorylated in the cell. Phosphorylation
of Ser164 (a CDC2 consensus phosphorylation site) is
dispensable for cyclin H-CDK7 activity, but phosphory-
lation of Thr170 (the equivalent site to Thr160 in CDK2)
is required for cyclin H-CDK7 activity [9, 22]. Interest-
ingly, both Ser164 and Thr170 in CDK7 can be phospho-
rylated by CAK targets, such as cyclin A-CDK2, in an 
autocatalytic loop [23, 24].
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After binding to cyclin, CDC2 can be inactivated by
phosphorylation on Thr14 and Tyr15 by WEE1 and
MYT1. One possible difference between cyclin B-CDC2
and cyclin A-CDC2 is that while cyclin B-CDC2 is inac-
tivated by Thr14/Tyr15 phosphorylation before entry into
mitosis, no such phosphorylation is observed with cyclin
A-CDC2 in Xenopus egg extracts [25].

Functions of cyclin A in mitosis and S phase

Cyclin B-CDC2 is the classic M phase-promoting factor
(MPF) that drives G2-M transition. Cyclin A can also bind
CDC2, and microinjection of cyclin A into Xenopus
oocytes or mammalian cells stimulates their entry into M
phase [1, 3, 26–28]. Although cyclin A-CDK clearly ex-
hibits MPF activity, the precise involvement of cyclin A
in mitosis is obscure. Furthermore, these experiments did
not reveal a distinct role for cyclin A in comparison to cy-
clin B during G2-M. In support of a role of cyclin A in G2-
M, microinjection of antibodies against cyclin A into G2

human cells leads to cell cycle arrest before mitosis [11].
Similarly, cells in Drosophila mutant lacking cyclin A 
are arrested in G2 phase [13, 14]. One caveat is that
Drosophila cyclin A only binds CDC2 but not CDK2 and
is only important for G2-M but not S phase.
One emerging hypothesis is that cyclin A may function
before cyclin B and control the half-life of cyclin B. Once
cyclin B-CDC2 is activated in mitosis, the activity of cy-
clin A-CDC2 is no longer required, and cyclin B-CDC2
triggers the cyclin destruction pathway and drives mitosis
exit. In accordance with this idea, it has been reported
that while cyclin B can trigger ubiquitin-mediated cyclin
degradation, cyclin A prevents the degradation of cyclins
[26, 29, 30]. A possible mechanism is that phosphoryla-
tion of CDH1 by cyclin A-associated kinase prevents the
formation of APCCDH1 and in turn delays cyclin B ubiqui-
tination and degradation [29] (see below).
Cyclin A is implicated in the control of DNA replication
because ectopic expression of cyclin A in mammalian
cells accelerates the entry of G1 cells into S phase [31,
32]. Likewise, cyclin A can promote DNA replication in
cell-free extracts from Xenopus eggs [33] or human cells
[34], and is sufficient to initiate SV40 DNA replication in
G1 cell extracts [35]. Microinjection of antisense cyclin A
or anti-cyclin A antibodies blocks progression through S
phase [11, 36, 37], and immunodepletion of cyclin A
from S cell extracts partially inhibits SV40 origin-driven

Figure 1. Schematic diagram of human cyclin A2. The positions of the conventional D-box, Ser154 phosphorylation site and the cyclin
box (with the two cyclin box folds) are shown. Numbers represent the amino acid positions. 



DNA replication [38]. Consistent with its role in the con-
trol of DNA replication, cyclin A is synthesized at the on-
set of S phase and localizes to the sites of DNA replica-
tion [39, 40]. The current model of DNA replication im-
plicates roles for cyclin A-CDK both in the initiation of
DNA replication and in the restriction of initiation to only
once per cell cycle. 
Many known substrates of cyclin A are components of the
DNA replication machinery. RPA, a cellular single-
stranded DNA binding complex that is essential for the
initiation and elongation of simian virus 40 (SV40) DNA
replication, is phosphorylated by cyclin A-CDK [41, 42].
The functional significance of phosphorylation of the 34-
kDa subunit of RPA remains to be established, since both
phosphorylated and unphosphorylated forms of RPA are
equally active in SV40 DNA replication [43, 44]. Several
proteins, including origin recognition complex (ORC),
CDC6, and the MCM protein complex, need to be as-
sembled on the chromatin before the initiation of DNA
replication. Cyclin A-CDK2, but not cyclin B- or cyclin
E-CDK complexes, binds CDC6 through the N-terminal
ZRXL motif and phosphorylates CDC6 [45, 46]. After
phosphorylation by cyclin A-CDK2, CDC6 is relocalized
from the nucleus to the cytoplasm and is destroyed. One
possibility is that phosphorylation by cyclin A-CDK2 re-
sults in the destruction of free CDC6 that are not assem-
bled into replication complexes, and prevents the re-repli-
cation of DNA after G1. Cyclin A-CDK2 can phosphory-
late MCM4 in the MCM4-MCM6-MCM7 DNA helicase
complex, resulting in the inactivation of its DNA helicase
activity [47]. These results raise the possibility that the in-
activation of CDC6 and MCM4-associated helicase ac-
tivity by cyclin A-CDK is part of the system for prevent-
ing DNA re-replication. In agreement with this, the prim-
ing activity of DNA polymerase a-primase is inhibited 
by cyclin A-CDK2 phosphorylation [48]. Elongation by
DNA polymerase d, on the other hand, is shown to require
the activity of cyclin A [49].

Synthesis of cyclin A

The messenger RNA (mRNA) of cyclin A2 starts to ac-
cumulate during S phase and diminishes at mitosis,
slightly ahead of cyclin B mRNA [8]. The role of E2F in
the regulation of cyclin A2 transcription is particularly
well characterized. E2F is inhibited by binding to hy-
pophosphorylated pRb family proteins during G1, but
their phosphorylation by cyclin D/E-CDK complexes re-
leases E2F, which is then able to activate the transcription
of genes involved in S phase progression (including that
of cyclin A2). Cyclin A2 promoter is repressed during the
G0/G1 and is activated at S phase entry [50]. This repres-
sion of cyclin A2 transcription during G0/G1 is attributed
to the occupation of a repressor element termed cell-cy-

cle-responsive element (CCRE) or cell-cycle-dependent
element (CDE) located in the cyclin A2 promoter [51,
52]. Mutation of the CCRE/CDE resulted in a complete
loss of cell cycle regulation of cyclin A2 transcription.
The CCRE/CDE element in fact contains an E2F binding
site, and binding of p107 (but not pRb) to E2F represses
the promoter [53, 54]. Adenovirus E1A can activate the
cyclin A2 promoter through interaction with p107 [55].
Cyclins synthesized in G1 can stimulate the transcription
of cyclin A2 in S phase. Accordingly, cyclin E-CDK2 can
directly bind to E2F/p107 complexes formed on the cy-
clin A2 promoter and activate the transcription of cyclin
A2 [56]. Similarly, cyclin D can activate cyclin A2 tran-
scription [54] and restore the transcription of cyclin A2
due to the loss of cell adhesion to substratum [57]. A con-
siderable body of evidence suggests that E2F can also in-
teract with cyclin A2 via a small domain near its amino
terminus, and the transcriptional activity of E2F is turned
off by cyclin A2-CDK2 phosphorylation [58–60], com-
pleting a negative feedback loop that limit the transcrip-
tion of cyclin A2.
In addition to CCRE/CDE, another element termed the
cell cycle genes homology region (CHR) six nucleotides
3¢ to the CCRE/CDE is also important for the repression
of cyclin A2 transcription in G0/G1 [51]. Only putative
CHR-binding activities, which are unrelated to E2F, have
been identified so far [61, 62].
Apart from E2F, other transcription factors are also
known to regulate cyclin A2 transcription. TAFII250, a
subunit of TFIID, can stimulate cyclin A2 transcription
through the TSRE enhancer element [63], and MDM2
can bind to TAFII250 and potentiate cyclin A2 transcrip-
tion [64]. Cyclin A2 transcription can be negatively regu-
lated by p53 [65], but probably not through direct inter-
action of p53 to its cognate consensus sequence [66]. Fi-
nally, cyclin A2 transcription can be stimulated by cyclic
AMP (cAMP) [67, 68] or repressed by transforming
growth factor-b (TGF-b) through an ATF/CREB site in
the promoter [69, 70].
Apart from transcriptional regulation, the stability of the
cyclin A mRNA also appears to be cell cycle regulated.
Cyclin A2 mRNA has a longer half-life from G1-S tran-
sition to G2-M, and a shorter half-life in early G1 [71]. 
The stabilization of cyclin A mRNA is at least in part 
attributed to the binding of HuR to the 3¢-untranslated 
region [72].

Degradation of cyclin A

Live cell imaging using cyclin A2-green fluorescent pro-
tein fusion proteins shows that human cyclin A2 begins to
be degraded in early prometaphase and is completed at
metaphase [73, 74]. Degradation of the mitotic cyclins re-
quires a short sequence near their N-terminus called the
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destruction box (D-box), which acts as a signal for ubiq-
uitin-dependent proteolysis [75, 76]. The major ubiquitin
ligase in mitosis is the anaphase-promoting complex/cy-
closome (APC/C) [77, 78]. The APC/C core complex is
under complex control via phosphorylation and is acti-
vated by binding to targeting subunits including CDC20
and CDH1. CDC20 accumulates during late S phase and
mitosis as a result of transcriptional activation [79]. De-
struction of CDC20 at the end of mitosis is in part medi-
ated by its own D-box and APC/C. Formation of
APC/CCDC20 complexes alone is probably insufficient to
trigger degradation of their substrates, and may require
the phosphorylation of APC/C by cyclin B-CDC2 and
PLK [80, 81]. After APC/CCDC20 is inactivated, APC/C ac-
tivity is maintained from the end of mitosis to late G1 by
binding to CDH1 [79]. Interaction between CDH1 and
APC/C is inhibited from S phase until the end of mitosis
by CDK phosphorylation [82], most likely through cyclin
A-CDK2 [29]. 
It is clear that the major mitotic cyclin, cyclin B1, is tar-
geted for ubiquitin-mediated proteolysis by APC/CCDC20.
However, the protein(s) that targets cyclin A for proteol-
ysis is still a mystery. Evidence that the same destruction
mechanism is used to destroy cyclin A and cyclin B1 cer-
tainly abounds. Cyclin A does contain a similar D-box to
cyclin B1 near the N-terminus of the protein, and the in-
tegrity of the D-box is required for the proper destruction
of cyclin A in M-phase extracts [83–86]. A dominant-
negative mutant of Ubc10, a ubiquitin carrier, arrests
cells in mitosis with high levels of cyclin A and cyclin B1
[87, 88]. In Drosophila, the CDC20 homologue Fizzy is
required for the degradation of both cyclins A and B [89,
90]. Adding anti-Fizzy antibodies to Xenopus egg ex-
tracts inhibits degradation of both cyclin A1 and cyclin
B1 [91]. Similarly, injection of antibodies against the
APC/C component CDC27 or CDC20 inhibits the degra-
dation of cyclin A2 in mammalian cells [74]. Further-
more, APC/CCDC20 or APC/CCDH1 can promote ubiquitina-
tion of cyclin A2 in vitro [74, 78]. In this connection, it
was reported that human CDC20 can interact with cyclin
A2 and can be phosphorylated by cyclin A2-associated
kinase [92]. This interaction is mediated through the
WD40 repeats of CDC20 and the region of cyclin A2 be-
tween the D-box and the cyclin box.
Despite the evidence that cyclin A is degraded by the
same mechanisms as cyclin B1, there are clear differ-
ences between their destruction behavior that suggest dis-
tinct mechanisms may be involved. Most important, cy-
clin A disappears before cyclin B1 in the cell cycle.
Moreover, activation of the spindle assembly checkpoint,
which delays metaphase-anaphase transition until all
chromosomes are attached to the mitotic spindles, in-
hibits cyclin B1 but not cyclin A degradation [73, 74, 88,
93, 94]. The current consensus is that the spindle assem-
bly checkpoint exerts its effects through the inhibition of

APC/C by MAD2. This implie that cyclin A degradation
is not mediated through the same APC/C as cyclin B1, or
cyclin A and cyclin B1 have different susceptibility to
APC/C.
Apart from the differences in timing of proteolysis, the D-
box of cyclin A also behaves differently to that of cyclin
B1. Unlike that of cyclin B1, the D-box of cyclin A1 can-
not act as an independent destruction module when
grafted onto heterologous proteins. It was shown that sub-
stituting the D-box of Xenopus cyclin B1 with that of cy-
clin A1 renders cyclin B1 nondegradable, whereas the D-
box of cyclin B1 supports the proteolysis of cyclin A1
[95, 96]. In human cells, the D-box of cyclin A2 is not
sufficient for targeting cyclin A2 for destruction, and an
additional short sequence following the D-box is also re-
quired for its proteolysis [73, 74]. In accord with this
idea, a similar extended D-box is present in another
APC/C substrate, NEK2A, which is a NIMA-related pro-
tein implicated in regulating centrosome structure [97].
Interestingly, Drosophila cyclin A, which has a rather dif-
ferent N-terminal region from other metazoan cyclin A,
requires the two D-boxes and a KEN box in that region
for proper destruction [98]. Taken together, these suggest
that cyclin A requires sequence elements in addition to
the D-box for efficient destruction.
On the dependence of the CDK partner for cyclin degra-
dation, it was found that degradation of Xenopus cyclin
A1 but not cyclin B1 requires binding to the CDK partner
[83]. However, mutants of human cyclin A2 that cannot
bind CDK are still destroyed in vivo, albeit after a delay
[73]. Phosphorylation of human cyclin E at Thr380 by its
partner CDK2 is important for their ubiquitin-dependent
degradation [99, 100]. Similarly, cyclin A2 can be phos-
phorylated by its partners CDC2 or CDK2 on Ser154
[101]. However, unlike cyclin E, phosphorylation of
Ser154 does not affect the degradation of cyclin A2. 

Cyclin A and tumorigenesis

Conceptually, deregulation of cell cycle regulators such
as cyclin A2 is likely to contribute to tumorigenesis. In-
creased expression of cyclin A has been detected in many
types of cancers (table 1). The majority of these studies
rely on immunohistochemical detection of cyclin A2 in
cancer cells in comparison to the surrounding noncancer
cells. However, the important question of whether eleva-
tion of cyclin A2 is a contributing factor to tumorigenesis
or a mere consequence of increased cell proliferation is
not easily addressed. Not surprisingly, cyclin A2 is typi-
cally coexpressed with proliferation markers such as
PCNA (proliferative cell nuclear antigen) and Ki67. De-
spite these limitations, expression of cyclin A2 in many
types of cancers appears to be of prognostic values such
as prediction of survival or early relapse.
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A good illustration of the deregulation of cyclin A2 is in
hepatocellular carcinoma (HCC). Increased expression of
cyclin A2 in HCC ranges from about 40% in one study
[102] to about 80% in another [103]. Increased expres-
sion of cyclin A2 is due to a combination of gene ampli-
fication, posttranscription, and posttranslational mecha-
nisms [102]. Increase in cyclin A2 at the mRNA level has
been demonstrated by expressed sequence tag sequenc-
ing and complementary DNA microarray analysis [104],
and at the protein level by immunohistochemical analysis
[105] and immunoblotting [103, 106]. The kinase activi-
ties associated with the CDK partners of cyclin A2 are ac-
tivated in HCC [106]. Although allelic loss or rearrange-
ment of cyclin A gene in HCC is rare [107, 108], a case
of HCC in which the hepatitis B virus (HBV) is found to
integrate into the cyclin A2 gene has been discovered.
This produces a stable hybrid HBV-cyclin A2 fusion pro-
tein that lacks the N-terminus of cyclin A2, including the
D-box, of which transcription is driven by the strong vi-
ral promoter [109, 110].
What are the consequences of having too much cyclin A?
Clues can be obtained from experiments that overexpress
cyclin A in different systems. Transgenic mice overex-
pressing the wild type of nondegradable cyclin A2 in the
mammary glands exhibit hyperplasia and nuclear abnor-
malities suggestive of preneoplastic alterations [111]. In

mammalian cells, increasing the levels of cyclin A2 delays
metaphase and anaphase onset [73, 74]. Interestingly, fail-
ure to destroy cyclin A2 does not arrest cells in metaphase,
but at later stages of mitosis. Similarly, expression of non-
degradable cyclin A in Drosophila arrests cells transiently
at metaphase, whereas expression of stable cyclin B arrests
cells at later stages of mitosis [90, 112]. In this connection,
Drosophila cells at the gastrula stage delay in metaphase
after DNA damage, and this delay correlates with the sta-
bilization of cyclin A. Furthermore, mutant cells lacking
cyclin A are unable to delay in mitosis and enter anaphase
with an increased number of lagging chromosomes [113].
This implicates cyclin A2 in the DNA damage checkpoint,
and suggests that a decrease rather than an increase in cy-
clin A2 may play a role in tumorigenesis. Increased ex-
pression of cyclin A2 may simply reflect a high rate of cell
proliferation once the tumor has developed.
Apart from potentially deregulating the cell cycle and
checkpoints directly, it is possible that cyclin A-CDK also
contributes to tumorigenesis by phosphorylating other on-
coproteins and tumor suppressors. For example, phospho-
rylation of p53 on Ser315 by cyclin A2-CDK stimulates se-
quence-specific DNA binding by p53 [114], and phospho-
rylation of mouse MDM2 by cyclin A2-CDK2 weakens its
interaction with p53 [115]. Hence increased expression of
cyclin A2 appears to enhance the activity of p53.
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Table 1. Overexpression of cyclin A in cancer.  

Tumor References Methods Correlations

Astrocytoma 122, 123 IH tumor stage, proliferation

Breast cancer 124, 125 IH/flow cytometry aneuploid, proliferation, poor prognosis

Cervical cancer 126 IH proliferation

Colorectal cancer 127 IH poor prognosis
Gastric cancer 128 IH

Leukemia and lymphoma 129–131 IB/mRNA proliferation, poor prognosis

Liver cancer 102, 103, 107, 108 IB/Southern/PCR/mRNA proliferation, poor prognosis

Lung cancer 132–136 IH proliferation, poor prognosis, better 
chemotherapy response

Melanoma 137–140 IB/IH tumor thickness, tumor stage, poor prognosis

Esophageal cancer 141, 142 IH tumor stage, poor prognosis

Oral cancer 143–145 IH proliferation

Osteosarcoma 146 IH poor prognosis

Ovarian cancer 124, 147, 148 IH tumor stage, poor prognosis, better 
chemotherapy response

Prostate cancer 149, 150 IH tumor stage

Renal cancer 151–153 IH tumor stage, proliferation, poor prognosis

Smooth muscle cancer 154, 155 IB/IH poor prognosis

Soft tissue sarcoma 156–158 IH tumor stage, poor prognosis, better 
chemotherapy response

Testicular cancer 159 IH proliferation

PCR, polymerase chain reaction. Several common human tumors, selected references, detection methods for cyclin A (IB, immunoblot-
ting; IH, immunohistochemical staining), and correlations with several clinical factors are summarized.



Expression of cyclin A1 in cancer is arguably more inter-
esting than cyclin A2 because somatic cells do not usually
contain any cyclin A1. Human cyclin A1 is highly ex-
pressed in certain myeloid leukemia cells [18, 116, 117].
Transgenic mice with overexpression of cyclin A1 in the
myeloid lineage exhibit abnormal myelopoiesis [118],
but cyclin A1 alone is not sufficient to induce myeloid
leukemia. Cyclin A1 promoter activity is highest during
late S and G2-M phase, and is dependent on the binding
of members of the Sp1 family to the four GC boxes [119].
Silencing of the cyclin A1 promoter in cancer cell lines is
associated with CpG methylation, but tissue-specific re-
pression of the cyclin A1 promoter occurs independently
of CpG methylation [120]. Binding of c-MYB to the cy-
clin A1 promoter may also contribute to the preferential
activation of cyclin A1 promoter in acute myeloid
leukemia [121].
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