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Abstract. Members of a family of small cold-shock pro-
teins (CSPs) are induced during bacterial cell response to
a temperature decrease. Here we review available data
about the structure, molecular properties, mechanism of
induction and possible functions of CSPs. CSPs prefer-
entially bind single-stranded RNA and DNA and appear to
play an important role in cell physiology under both nor-
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mal and cold-shock conditions. Although the function of
CSPs in cold-shock adaptation has not yet been elucidated
in detail, a number of experimental evidences suggests
that CSPs bind messenger RNA (mRNA) and regulate
ribosomal translation, rate of mRNA degradation and ter-
mination of transcription. 

Introduction

Bacteria respond to a decrease in temperature in a specific
manner. A temperature downshift results in inhibition of
cell growth and proliferation, and changes in protein ex-
pression patterns [1]. The synthesis of most cellular pro-
teins is inhibited after a decrease in temperature [1]. How-
ever, a number of proteins are found to be induced under
cold-shock conditions (for review see [2–5]). Expression
of the cold-shock proteins reaches a maximum level dur-
ing the phase of the cold-shock adaptation, the so-called
acclimation. After this, synthesis of cold-shock proteins
declines and a new steady-state level of protein expression
is established which is lower than before the cold shock. 
Among cold-shock proteins, small homologous proteins
[65–70 amino acid residues long) were found to be dom-
inant under cold-shock conditions in different species of
bacteria [6]. They are the most common cold-inducible
proteins identified to date. The first protein described as
a major protein induced upon decrease in temperature was

CspA of Escherichia coli [7]. CspA production reached
concentrations of 100 mM within 1–1.5 h after the tem-
perature downshift [7, 8]. Eight more proteins named in
alphabetical order from CspB to CspI that are homologous
to CspA are identified in E. coli [6]. CspB, CspG and CspI
were found to be inducible by a temperature downshift
similarly to CspA [9–11]. CspC and CspE are expressed
at both high and low temperature [12], while CspD is in-
duced during stationary phase and upon nutrition starva-
tion [13]. In Bacillus subtilis three proteins homologous to
E. coli CspA (CspB, CspC and CspD) are induced upon
temperature downshift [14, 15]. CSP-like proteins were
found in more than 50 other bacterial species [2, 16]. The
first eukaryotic true homologue of CSPs, protein Cla h 8,
was recently identified in the mould Cladosporium
herbarum [17]. It appears that proteins of the CspA fam-
ily not only play a major role during cold-shock adaptation
but also are important under normal growth conditions.
Despite the fact that CSPs were extensively studied dur-
ing the last decade, their exact function both at normal and
cold-shock conditions is not elucidated yet. Below we will
focus on the known molecular properties, mechanisms of* Corresponding author.
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induction of the CspA protein family members from E.
coli and B. subtilis, and their possible connections to cold-
shock adaptation.

Structure and molecular properties of CSPs

While information about cellular functions of CSPs is lim-
ited, the structure and molecular properties of CSPs are
relatively well studied. 
Three-dimensional (3-D) structures of CspA from E. coli
[18, 19], CspB from B. subtilis [20, 21], B. caldolyticus
[22] and Thermotoga maritima [23] were solved. All of
the structures contain five antiparallel b strands that form
a b barrel (fig 1). CspAEC exists as a monomer in both so-
lution and the crystal [18, 19]. CspBBC exists as dimer in
the crystal [20] and in solution in the absence of phos-
phate ions [24]; in the presence of 30–50 mM of phos-
phate, CspBBC exists predominately as monomer [24].
CspDEC forms dimers in solution [25]. 
The cold-shock proteins form a cold-shock domain fold
that belongs to the family of five-strand b-barrel proteins
that bind oligonucleotides and/or oligosaccharides (OB
fold) [26]. In particular, a domain fold similar to a cold-
shock domain fold was found in ribosomal protein S1 and
several different cold-inducible proteins, NusA, PNPase
and IF1 [27, 28] (fig. 1). Based on the Structural Classi-
fication of Proteins (SCOP) database [29] cold-shock do-
mains are also found in archaeal initiation factor-1a,
aIF1a from Methanococcus jannaschii, translation initia-
tion factor-1a, eIF1a (Homo sapiens), the N-terminal
RNA-binding domain of Rho termination factor (E. coli),

the C-terminal domain of eukaryotic initiation translation
factor 5a (M. jannaschii and Pyrobaculum aerophilum),
the N-terminal domain of ribosomal protein L2 (Bacillus
stearothermophilus and Haloarcula marismortui), ribo-
somal protein S12 (Thermus thermophilus) and ribosomal
protein S17 (T. thermophilus and B. stearothermophilus). 
Interestingly, significant sequence conservation of the
cold-shock domain was demonstrated not only in bacteria
but also among eukaryotes. A sequence alignment of sev-
eral cold-shock domain-containing proteins is presented
on figure 2. Significant sequence homology is found [30]
between CSPs and the nucleic acid binding domains of the
eukaryotic gene-regulatory Y-box factors (fig. 2). Y-box
proteins were identified as proteins recognizing the
ATTGG motif known as the ‘Y-box’, a cis-acting DNA
regulatory element [31]. Y-box proteins are involved in
regulation of transcription and translation (for reviews see
references [31, 32]. CSPs and Y-box proteins share the
canonical nucleic acid-binding sequence motifs RNP1
(K/R-G-F/Y-G/A-F-V/I-X-F/Y) and RNP2 (L/I-F/Y-V/I-
G/K-N/G-L), see figure 2 [20, 33, 34]. The isolated cold-
shock domain of the Y-box protein YB-1 has a structure
very similar to that of the CSPs (fig. 1) – five-stranded an-
tiparallel b barrel [35]. Cold-shock domains were also
found in several other eukaryotic proteins that do not be-
long to the Y-box protein family (fig. 2). The human RNA-
binding protein Unr is required for internal ribosomal en-
try site (IRES)-dependent translation [36], and the
calcium-regulated protein CRHSP-24 [37] carrying the
cold-shock domain (see fig. 2) does not show any signif-
icant similarity with YB-1 except in the part of the se-
quence corresponding to the cold-shock domain. The first
true homologue of CSPs among eukaryotes – protein 
Clah 8, which consists only of a cold-shock domain – was
recently found in Cladosporium herbarum [17]. 
It is clear that CSPs belong to a large family of structurally
related nucleic acid-binding proteins, suggesting similar
functions for CSPs. It appears that CSPs bind single-
stranded RNA and DNA (ssRNA/ssDNA), but not double-
stranded DNA (dsDNA) [38–40]. Although binding of
CspAEC to a double-stranded 110 bp fragment of the pro-
moter region of the H-NS protein operon was shown in a
crude cell extract [41], purified CspAEC bound the same
DNA fragment with significantly lower affinity [42].
Thus, dsDNA binding by CspAEC is probably mediated by
the presence of other proteins. There is only one report
that contradicts the data about CSP binding properties: the
eukaryotic CSP homologue, Cla h 8, binds both ssDNA
and dsDNA [43]. 
The affinity of CSPs binding to ssRNA/ssDNA is in the
micromolar range. The only exception is Cla h 8, which
binds both ssDNA and dsDNA with nanomolar affinity
(KD~ 5–10 nM) [17]. The minimal concentration of
CspAEC required to retard ssRNA in gel-shift assay is only
27 mM [38]. Although an in vitro selection approach 

Figure 1. Comparison of the cold-shock domain structures of CspA
from E. coli (1MJC) [19], CspB from B. subtilis (1CSQ) (20], the
S1 RNA binding domain of PNPase (1SRO) [27] and the cold-shock
domain of human Y-box protein 1 (1H95) [35], revealing similarity
in fold. RNP1 and RNP2 nucleic acid binding motifs are colored or-
ange and red, respectively. RNP1 and RNP2 are not colored in the
S1 RNA binding domain of PNPase, because sequence of this pro-
tein does not show any significant similarity with CspA from E. coli
or CspB from B. subtilis.
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(SELEX) was insufficient to find the preferable sequence
for CspAEC RNA binding [38], it was shown that CspAEC

binds with higher affinity to poly-pyrimidines ssDNA
oligonucleotides than to polypurine ssDNA templates
[39]. In the cases of CspBEC, CspCEC and CspEEC, SELEX
revealed the specific consensus sequences UUUUU,
AGGGAGGGA and AAAUUU, respectively [44]. How-
ever, the KD values of specific binding differed marginally
from the KD of randomized sequence binding. KD values
were in the range of 1–10 mM, which is similar to the
CspAEC affinity to ssRNA [44]. It was shown that CspBBS

binds the Y-box recognition sequence ATTGG, as well as
the complementary sequence CCAAT [45]. CspBBS has
higher affinity to the ATTGG sequence than to CCAAT.
However, binding to CCAAT is preferential over other se-
quences [45]. More detailed studies showed that CspB
binding is not limited to binding these sequences [40, 46].
CspBBS preferentially binds polypyrimidine but not poly-
purine ssDNA templates. Moreover, binding of T-based
oligos occurs with an affinity on the order of 0.1 mM or
higher and is salt independent, while binding of poly-C is
one order of magnitude lower and is strongly salt depen-
dent [40]. The binding properties of CspB to continuous
and noncontinuous stretches of T bases are similar [47].
The capacity of CspAEC to bind ssRNA [38] and CspAEC

and CspBBS to bind ssDNA is moderately cooperative
[39]. CspDEC exists exclusively as a dimer in solution and
binds noncooperatively ssDNA and RNA but not dsDNA
[25]. 

Despite these differences in the binding properties of
CSPs, all cold-shock proteins preferentially bind pyrimi-
dine-rich regions of ssDNA and ssRNA but not dsDNA.
Similar binding properties were observed for other cold-
shock-domain-containing proteins, such as ribosomal pro-
tein S1 [48], and the isolated cold-shock domain of YB-1
[35], which preferentially binds pyrimidine-rich ssDNA
and RNA. The binding of dsDNA by Y-box proteins, par-
ticularly Y-box sequence binding, is probably mediated by
other domains of YB-1 [35, 49].
Several basic and aromatic residues (K7, K13, H29, R56,
W8, F15, F17, F27, F30 in CspBBS) conserved in cold-shock
domain proteins are arranged on one side of the protein
and proposed to form a nucleic acid-binding surface 
[20, 50]. This hypothesis was supported by chemical shift
perturbation analysis of complexes between CspAEC and
ssDNA [18]. Single substitutions of F15, F17, F27 with ala-
nine and H29 with glutamine abolished ssDNA retardation
in gel-shift assay using CspBBS [50]. The mutation of F18,

F20 and F31 in CspAEC to serine affects ssDNA binding
[51]. Three molecules of CspAEC and CspBBS bind the 23-
base-long poly T oligonucleotide [39, 40]. Thus, the size
of the site at least on the poly T template for CspAEC and
CspBBS is six to seven bases per molecule of protein. 
Surprisingly, aromatic residues involved in nucleic acid
binding also contribute to protein stability and participate
in the rate-limiting step of the protein folding [51–53].
CSPs from mesophilic bacteria fold extremely rapidly
(time constant of folding is approximately 1 ms) in vitro

Figure 2.  A sequence alignment of the cold-shock domains from different proteins. The numbers correspond to the position of the cold-
shock domain in the amino acid sequence of the entire proteins. Residues conserved in more than 80% of these sequences are colored red,
and more than 60% in blue. Canonical nucleic acid binding sequence motifs RNP1 and RNP2 are bold and underlined. Swiss-Prot access
numbers for these sequences are CspAEC-P15277; CspBEC-P36995; CspCEC-P36996; CspDEC-P24245; CspEEC-P36997; CspFEC-P39819;
CspGEC-Q47130; CspHEC-P56253; CspIEC-P77605; CspBBC-P32081; CspCBC-P39158; CspDBC-P51777; CspA Salmonella typhimurium-
P15277; CspA Streptococcus pyogenes-Q54974, CspA Mycobacterium tuberculosis-O06360; CspA Micrococcus luteus-O30875; CspA
Pseudomonas aeruginosa-P95459; CspA Listeria monocytogenes-Q48770; CspB Yersinia pestis-O85593; CspD Haemophilus influenzae-
P46449; YB-1 human-P16991; DBPA human-P16989; LIN-28 C. elegans-P92186; CRHSP-24 human-Q9Y2V2; UNR human-O75534. Pro-
tein sequence of Cla h 8 was taken from [17, 43].



and have very low thermodynamic stabilities [22, 53, 54].
However, CSPs are stable in vivo [55]. In the presence of
nucleic acid ligands CSPs become less sensitive to prote-
olytic degradation in vitro, suggesting that the high sta-
bility of CSPs in vivo is mediated by nucleic acid bind-
ing [55]. 
The preferential binding of ssRNA versus dsRNA by
CSPs led to the hypothesis that CSPs can destabilize the
secondary structure of RNA and act as an RNA chaperone
in the cell [38]. It was shown that CspAEC stimulates the
hydrolysis of RNA by ribonucleases, presumably by pre-
venting formation of RNase-resistant secondary structures
[38]. RNA chaperones were defined as ‘proteins that aid
in the process of RNA folding by preventing misfolding or
by resolving misfolded species’ [56]. The popular hypo-
thesis is that the major role of CSPs is an RNA chaperon
function [2, 4]. However, it should be pointed out that
there is no direct evidence of CSP involvement in bio-
logically relevant RNA folding. It remains to be shown
that CSPs are involved in the folding of transfer RNAs
(tRNAs), ribosomal RNAs and ribozymes. Moreover, de-
spite the fact that CSPs bind ssRNA/DNA, the direct 
relation between the ability of CSPs to destabilize the 
secondary structure of RNA and cold-shock adaptation
has not yet been demonstrated.

Cellular functions of the CSPs

There is only limited information available regarding the
role of CSPs in cell physiology. CSPs are thought to be in-
volved in the regulation of a number of cellular processes:
translation, transcription, nucleoid condensation, coupling
of translation and transcription [2, 5, 57–59]. Only four of
nine members of the Csp family, CspAEC, CspBEC,
CspGEC and CspIEC, are cold inducible in E. coli. CspEEC

and CspCEC are constitutively expressed at 37 °C. How-
ever, CspE becomes highly expressed in a triple-deletion
strain lacking three cold-inducible CSPs (DcspADcspB-
DcspG), indicating that these proteins can perform over-
lapping functions [60]. Constitutively expressed CSPs
were found to be functionally important. CspCEC and
CspEEC are thought to be regulators of the expression of
two proteins involved in the stress response network of E.
coli, RpoS and UspA [61]. CspEEC and CspCEC suppress
mutations in the chromosomal partition gene mukB [12].
Overproduction of CspEEC also leads to resistance to cam-
phor treatment [62], by preventing the unfolding of the nu-
cleoid caused by camphor [63]. These results indicate that
CspEEC and CspCEC are probably involved in nucleoid
condensation. 
The expression of CspDEC is upregulated in the stationary
phase of cell growth and upon glucose starvation [13].
CspDEC is associated with the nucleoid in the late expo-
nential phase of growth [64]. It was suggested that CspDEC

binds to single-stranded regions of the replication fork and
blocks DNA replication, thus leading to the observed
lethal phenotype [25]. No information regarding the cel-
lular functions is available for other cold-uninducible
CSPs, CspFEC and CspHEC. The quadruple-deletion strain
lacking cspA, cspB, cspE and cspG acquired cold sensi-
tivity and formed filamentous cells at 15 °C. However,
overexpresion of any member of the CspA family, except
CspDEC, suppressed the cold sensitivity of the quadruple-
deletion strain of E. coli [60], indicating that the cold-
uninducible CSPs have at least some overlapping func-
tions with the cold-inducible proteins. 
Cold-inducible CSPs are also produced under normal con-
ditions. It was shown that the intracellular concentration
of CspAEC in E. coli is about 50 mM during early expo-
nential growth at 37 °C [8]. The presence of at least one of
CspBBS, CspCBS and CspDBS is essential for viability in B.
subtilis at 37 °C [46]. CspBBS and CspCBS are major sta-
tionary-phase-induced proteins in B. subtilis, and their
deletion leads to cell lysis during the stationary phase
[65]. These findings lead to the suggestion that cold-in-
ducible CSPs play some important functional roles even
under normal growth conditions. 
CSPs may be messenger RNA (mRNA) binding proteins.
CSPs bind a broad range of ssRNA sequences with ap-
proximately micromolar affinity [39, 40, 47]. There are
106 copies of CspAEC per cell [8] and significant amounts
of other CSPs under cold-shock conditions in E. coli. The
average amount of the total mRNA in E. coli is 10–9 mg per
cell [66, 67], which corresponds to approximately 103

copies of total mRNA [67]. Therefore, one can expect that
at least under cold-shock conditions, CSPs are bound to
cellular mRNAs in several copies per molecule of
mRNA. CSPs in B. subtilis are localized around nucleoids
in growing cells, when transcription is intensive and is
coupled to translation. When transcription and translation
are not intensive and are not coupled, CSPs are distributed
throughout the cells [58, 59]. A simple explanation of
these results is that CSPs are indeed associated with
mRNA in cells. Moreover, the absence of cold-inducible
CSPs in mutant strains of E. coli and B. subtilis can be
compensated by the overexpression of other proteins with
similar structures and probably similar nucleic acid bind-
ing properties, such as IF1 [68] and the S1-domain of
polynucleotide phosphorylase (PNPase) [60]. The CSPs
binding to mRNA might regulate translation and the rate
of mRNA degradation.
The association of CSPs with isolated ribosomes was
documented in Streptomyces aureofaciens [69]. The
structural similarity of CSPs, ribosomal protein S1 [27]
and initiation factor IF1 [28] leads to the hypothesis that
CSPs are also involved in translation initiation. It was
shown that CspAEC enhances its own mRNA translation in
vitro [70]. Recently, it was demonstrated that the expres-
sion of IF1 from E. coli in B. subtilis suppresses the
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growth-defective phenotype of the cspBBS and cspCBS

double deletion. Based on this observation it was sug-
gested that IF1 and CSPs have at least some overlapping
cellular function(s) [68]. 
The major demonstrated property of all cold-shock pro-
teins is binding of poly-pyrimidine tracts of ssRNA and
ssDNA [38–40]. Thus, they can destabilize dsRNA, and
this function may contribute to many molecular processes
in the cell [38]. CSP’s abilities to destabilize the secondary
structure of RNA were implicated in transcription an-
titermination [57]. It was shown that CspAEC, CspEEC and
CspCEC have decreased transcription termination at sev-
eral terminator in vitro. The overexpresion of CspAEC and
CspEEC at 37 °C induced transcription of the metY-rpsO
operon genes nusA, infB, rbfA and pnp located down-
stream from the multiple transcriptional terminator [57].
Products of these genes – NusA, IF2, RbfA and PNP – are
known as cold-shock-inducible proteins [4]. It was sug-
gested that the transcription antiterminator function of
CspAEC, CspEEC and CspCEC at r-independent terminators
is carried out by preventing formation of the secondary
structure in the nascent mRNA [57]. The interaction be-
tween CspEEC and nascent RNA molecules was also ob-
served [71]. On the other hand, CspEEC is capable of in-
hibiting Q-mediated transcriptional antitermination from
PR¢ promoter of l phage in vitro [71]. 
It was also observed that CSPs can act as transcriptional
activators. Binding of CspAEC to the promoter regions re-
sults in an increase in transcription of two cold-inducible
proteins, GyrA (subunit of DNA gyrase) [72] and H-NS
(nucleoid-associated protein, which is involved in envi-
ronmental regulation of genes expression) [41, 42].
CspBBS expressed in E. coli also increased the transcrip-
tion of H-NS [73]. Furthermore, induction of H-NS was
found to be essential for cold-shock adaptation [74, 75].
Experimental data accumulated for CSPs implicates
them in a number of cellular processes; however, it is not
clear which of these reported functions are related to cold-
shock adaptation. 

Mechanism of the temperature downshift-dependent
induction

CSPs were originally identified as proteins induced upon
a temperature downshift. The cold-shock response is not
induced by a temperature decrease to a certain tempera-
ture but by any downshift of 10 °C or more. The greater
the magnitude of the temperature shift and the lower new
absolute temperature, the higher the induction [76]. 
The mechanisms of induction and control of CspAEC ex-
pression were studied extensively among other CSPs.
CspAEC was identified as a major protein induced in E.
coli during the acclimation phase of the cold shock [7].
However, it was recently demonstrated that a significant

level (50 mM concentration) of CspAEC is present in the
cell during the early exponential growth under nonstress
conditions. The CspAEC level declines and becomes al-
most undetectable in the late phase of exponential
growth. The expression of CspAEC was increased approx-
imately 30-fold during the late phase of exponential
growth after cold shock, but the total amount of CspAEC

(100 mM concentration) was not more than 2.5-fold above
its maximum level detected during early exponential
growth at 37 °C [8]. CspAEC expression is triggered not
only by a temperature downshift; it was found that CspAEC

can also be induced by culture dilution at 37 °C [8] and by
addition of nutrients [77]. Antibiotics blocking ribosomal
translation at the stage of aminoacyl-tRNA binding (tetra-
cycline), peptidyl transferase reaction (chloramphenicol,
erythromycin, spiramycin) and translocation (fusidic
acid) during ribosomal elongation were shown to be able
to induce the cold-shock response [78, 79]. Furthermore
CspAEC, CspBEC and CspGEC are induced at a low tem-
perature at concentrations of kanamycin and chloram-
phenicol that completely block protein synthesis [80]. Al-
though factors, such as temperature downshift and
addition of antibiotics and nutrients, which induce CSPs
expression were identified, the general mechanism trig-
gering an increase in CSPs level is not clear. 
CspAEC expression is regulated at a transcriptional level
during cold shock [81, 82]. The expression of b-galac-
tosidase under the control of the CspAEC promoter was in-
creased 3- to 5-fold upon an incremental temperature de-
crease from 37 to 15 °C. Maximum induction was
observed at 20 °C [83]. It was shown that transcription
from the CspAEC promoter is stimulated by Fis protein and
inhibited by H-NS, the transcription of which is positively
regulated by CspAEC [8]. A direct negative regulation of
CspAEC transcription by CspAEC was also suggested
[8, 84]. Thus, CspA negatively regulates its own expres-
sion at a transcriptional level through the negative feed-
back loop [8, 84]. CspE also inhibits transcription of
CspA [85]. However, transcriptional activation of CspA
under cold-shock conditions was found to be quantita-
tively modest [82]. 
The effects of a temperature downshift on posttranscrip-
tional regulation of CspA expression are more dramatic.
The half-life of CspA mRNA is very low at 37 °C and sig-
nificantly increases under cold-shock conditions [70, 86].
Similar stabilizations were observed for the mRNA of
CspBBS and CspCBS, polynucleotide phosphorylase of E.
coli, CrhC DEAD-box RNA helicase from cyanobac-
terium Anabaena sp., all known as cold-shock inducible
proteins [87–89]. 
Although an increase of half-life of mRNA under cold-
shock conditions is dramatic, the mechanism of decay reg-
ulation remains unclear. The level of mRNA is higher in
the presence of an extra copy of the csdA gene [8]. The
product of this E. coli gene is a cold-shock inducible
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DEAD-box RNA helicase CsdA [90]. Induction of
DEAD-box helicases under cold-shock conditions was
also found in cyanobacterium Anabaena sp. [91] and
archea Methanococcoides burtonii [92]. The stabilization
of cellular mRNAs by DEAD-box helicases has been ob-
served before [93]. It was proposed that CsdA helicase ac-
tivity interferes with the formation of extended stem-loop
structures, predicted for the 5¢-untranslated region (UTR)
of CspAEC, which could be the target of nucleases [8]. In-
deed, inactivation of RNaseE in vivo by temperature-sen-
sitive mutations lead to an increase of CspAEC mRNA
half-life [94]. However, RNaseE appears to cleave single
stranded RNA much more efficiently than dsRNA [95].
The other key endonuclease of mRNA decay in bacteria,
RNaseIII, cleaves dsRNA [95] and might be responsible
for rapid degradation of CSPs mRNA. Thus CsdA, in-
duced under cold-shock conditions, could unwind the sec-
ondary structure of CSPs mRNA, protecting it from cleav-
age by RNaseIII, and this could be the triggering factor
that increases levels of CspA. 
Unusually long (159 bs in the case of CspAEC) 5¢ UTRs
are found in CSPs and CsdA mRNA and are thought to be
crucial in regulating CspAEC expression [4]. However, a
detailed role of the 5¢ UTR remains controversial. On the
one hand, it was shown that the deletion of the CspAEC 5¢
UTR leads to constitutive expression of CspAEC at 37 °C
[96], indicating that 5¢ UTR negatively regulates synthe-
sis of CspAEC at 37 °C. This deletion, however, did not
have an effect on half-life of mRNA [96]. It was also
shown that overexpression of the 5¢ UTR of CspAEC re-
sults in continuation of CspAEC transient induction under
cold-shock conditions, probably due to titration of a hy-
pothetic repressor of CspAEC expression [97, 98]. How-
ever, another group was not able to reproduce this effect
[92]. On the other hand, the presence of the 5¢ UTR in-
creases the half-life of CspAEC mRNA at a low tempera-
ture [99]. The sequence at the 5¢-end of 5¢ UTR, the so
called ‘cold box’, is highly conserved in CSPs and bacte-
rial DEAD-helicases [92, 97]. Two opposing observations
have been reported: (i) deletion of the ‘cold box’ has a
small effect on CspAEC induction under cold-shock con-
ditions [100] and (ii) deletion of the cold box leads to sig-
nificant decrease in half-life of CspAEC mRNA [101].
Therefore, the involvement of CSP’s 5¢ UTR in cold-shock
induction is not yet clear.
The explanation for the positive effect on CSP induction
of 5¢ UTR under cold conditions was proposed for CspBBC

[47]. It was shown that CspBBC preferentially binds polyT
as well as polyU stretches in ssDNA [40]. PolyU-rich re-
gions were found in the 5¢ UTR of CspBC. It was suggested
that CspBBC specifically binds these U-rich regions and
destabilizes the secondary structure of the 5¢ UTR [47].
The secondary structure of the 5¢ UTR can limit accessi-
bility of the Shine-Dalgarno (SD) sequence, required for
initiation of translation, for ribosomes. This secondary

structure can also be a target for RNaseIII. Therefore,
destabilization of the 5¢ UTR CspBC mRNA secondary
structure by CspBBC might increase the efficiency of
translation and inhibit mRNA decay. In a similar way,
CspBBC might induce other CSPs under cold-shock con-
ditions.
It was suggested that CspAEC mRNA not only becomes
more stable under cold-shock conditions but also is more
efficiently translated by the ribosomes. Indeed, an S30 
extract, as well as 70S ribosomes prepared from cold-
shocked cells, translates CspAEC mRNA (but not phage
MS2 mRNA) two to three times more efficiently at 
37 °C than an extract and ribosomes obtained from cells
grown at 37 °C [70]. Since ribosomes generally appear to
protect mRNA against degradation [95], the more 
efficient translation of CSP mRNA may contribute to the
observed increase of CSP mRNA half-life under cold 
conditions.
It was proposed that translational enhancement during
cold-shock induction of CSPs requires a sequence, called
the downstream box (DB), located 12 bp downstream
from the initiation codon [99]. The DB can potentially
base-pair with nucleotides 1469–1483 of 16S RNA in 
addition to the SD – anti-SD mRNA sequence interac-
tion [99, 102, 103]. Similar sequences were also found 
in several phage and bacterial mRNAs [104]. How-
ever, the existence of a DB-anti-DB interaction and the
role of DB in translation enhancement is still under debate
[105–108]. Based on chemical foot-printing of ribosomes
of E. coli [109] and the crystal structure of the 30S 
subunit of T. thermophilus ribosome [110], the anti-DB 
sequence is positioned within a stable helix region (helix
44) of 16S RNA and is not available for base pairing 
with the template. The strain of E. coli with ribosomes
carrying an inversion of the anti-DB sequence of 16S
RNA was capable of cold acclimation, and ribosomes
translated CspAEC mRNA with the same efficiency as 
the wild-type ribosomes [109]. Another sequence in the 5¢
UTR of CpsAEC, CspBEC, CspGEC and CspIEC, 11 bases
upstream of the SD and named the ‘upstream box’, is
complementary to the region 1035–1023 of 16S RNA 
of E. coli. Deletion of bases 118–143 of 5¢ UTR de-
creases the level of CspAEC expression under cold-shock
conditions [100]. Based on these observations, it was 
suggested that the ‘upstream box’ might be a trans-
lational enhancer [100], but there is no direct evidence for
this. 
Another interesting effect related to cold-shock induction
was observed recently. Nonsense mutations in the cspA
gene cause growth inhibition and cell death of E. coli at
low temperatures [111, 112]. This phenomenon was called
the low temperature-dependent antibiotics effect (LACE)
of truncated cspA expression. LACE can be observed
even when the nonsense mutation is made in the second
codon of the CspAEC ORF. The 5¢ UTR is suggested to be
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Mechanism of cold-shock adaptation 
in the bacterial cell

Why does a decrease in temperature pose a significant
problem for the cell and induce cold-shock response? A
number of hypotheses are discussed in the literature, for
example the membrane fluidity is low; ribosomal transla-
tion is inhibited; superhelical density of the DNA is too
high for opening of the double helix; enzyme activities de-
crease to a different extent, so that protein levels must be
adjusted; protein folding is too slow, especially formation
of disufide bridges [2, 3]. Obviously, a shift in temperature
affects the rates of all of the biochemical reactions in the
cell and can influence many other cellular processes.
However, the two best-documented effects of cold shock
on cellular processes are a decrease in membrane fluidity
and inhibition of ribosomal translation. 
It was shown that B. subtilis responds to decrease in tem-
perature by introducing double bonds into preexisting
fatty acid tails of phospholipids within the cellular mem-
brane. The reaction is catalyzed by the desaturase enzyme
[115, 116]. Induction of D5-desaturase (product of des
genes) in B. subtilis under cold-shock conditions has been
reported [116–118], and the signal transduction pathway
of des cold induction has been recently identified [119].
The trans-membrane protein DesK is suggested to re-
spond to the physical state of the membrane bilayer, and
on decrease in temperature it phosphorylates the tran-
scriptional activator DesR. The phosphorylated form of
DesR binds to the promoter of the des gene and activates
transcription of the D5-desaturase [119]. This is perhaps
the only example when the mechanism of the cold-shock
induction of the entire pathway is well established and a
functional connection between induced protein and cold
adaptation is demonstrated. Interestingly, the cold-induced
expression of D9-desaturase that also restores membrane
fluidity was shown in carp upon a decrease in temperature
from 30 to 10 °C [120]. 
The second best-studied effect of decrease in temperature
on cellular physiology is inhibition of ribosomal trans-
lation. During incubation at low temperature the polyso-
mal fraction of the ribosome disappears, and monosomes
and individual small and large ribosomal subunits accu-
mulate [121–124]. It appears that at low temperature ini-
tiation of translation is completely blocked [122, 125] and
ribosomal translocation during elongation is inhibited
[126, 127], but elongation of translation still occurs [125].
What is the molecular basis of the translation inhibition
under cold-shock conditions, and what is the role of CSPs
in overcoming the translation block during cold-shock
adaptation? Two possible explanations can be proposed.
One, inhibition is passive and is a direct consequence of
the temperature decrease. Two, inhibition of translation is
a cell-regulated process carried out in response to tem-
perature stress. 
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such a strong enhancer of translation that all ribosomes
become trapped by the truncated CspAEC mRNA and are
no longer able to synthesize cellular proteins. Indeed, loss
of SD or the initiation codon in truncated CspAEC rescued
cells from LACE [112]. However, termination of the
translation at an introduced stop-codon should release ri-
bosomes, and it is not clear why they remain trapped by
CspAEC mRNA. Thus, the mechanism of LACE is still un-
clear. 
Recently, new mechanisms of temperature-dependent reg-
ulation of gene expression by small RNAs was uncovered
[113, 114]. It was shown that at low temperature 87-nu-
cleotide-long DsrA RNA accumulates and regulates
translation of two global transcriptional regulators, H-NS
and RpoS [113]. DsrA inhibits translation of H-NS and
decreases H-NS mRNA half-life and stimulates transla-
tion of RpoS [113, 114]. It is possible that small RNAs are
involved in regulation of other cold-inducible proteins
such as CSPs.
Figure 3 presents a possible scheme for the regulation of
CspAEC expression. CSPs (at least the best-studied
CspAEC in E. coli) are expressed during the exponential
phase of growth and then suppressed in the stationary
phase at the transcriptional level by the H-NS protein. At
37 °C CspAEC negatively regulates its own expression by
stimulating synthesis of H-NS. The main mechanism of
CSPs induction under cold-shock conditions is stabiliza-
tion of their own mRNA. The half-life of CSP mRNA is
low at 37 °C but greatly increases at low temperature. A
key factor here could be the CsdA helicase that was found
to decrease the rate of CspAEC mRNA degradation [8].
CSPs themselves may stimulate their own translation and
stability of mRNA by melting the 5¢ UTR secondary
structure. Induction of CSPs at the level of transcription is
modest. Details of the CSPs induction mechanism remain
to be uncovered. 

Figure 3.  Schematic representation of CspA expression regulation
in E. coli. See details in text.



Several lines of evidence support the direct inhibition of
translation by temperature. It is well known that the trans-
lational apparatus is very sensitive to the strength of RNA-
RNA interactions (modulated, for example, by the
changes in concentration of Mg2+ ions). The effect of
changes in concentration of Mg2+ ions on different stages
of translation is well documented (for review see [128]).
One can expect that the decrease in temperature should
enhance RNA-RNA interactions as it does upon the in-
crease of magnesium ions concentration. Thus, the effects
of a temperature downshift on translation should be sim-
ilar to all well-known effects of an increase in magnesium
ion concentration. Following these arguments, a temper-
ature downshift should increase the level of miscoding
and inhibit translocation. All these have been demon-
strated experimentally [126, 127, 129, 130]. Dissociation
of ribosomal subunits after translation termination, which
is important for the initiation of the next round of protein
synthesis, might be also blocked by the low temperature.
Nevertheless, it is not clear how the induction of CSPs can
help cells to overcome these effects of a temperature
downshift. 
Another direct consequence of a temperature downshift
can be stabilization of the secondary structure of mRNA,
particularly the 5¢ UTR, which can make the SD sequence
unavailable for ribosomes and prevent synthesis of most
polypeptides in the cell [2, 5, 47]. Members of the CspAEC

family exhibit properties of mRNA chaperones [38]. It
was proposed that the induction of CSPs helps to unfold
elements of the secondary structure of mRNA and restore
translation initiation efficiency [2]. There is evidence (see
above) that CspAEC can indeed facilitate translation, al-
though, this has only been demonstrated in vitro for trans-
lation of CspA itself [70]. Another fact supporting the hy-
pothesis that on decrease in temperature the secondary
structure formation of mRNA becomes a problem for the
cell is that dsRNA helicase CsdA was found to be cold in-
ducible and bound to the ribosome under cold-shock con-
ditions [90]. However, the other possible role of CsdA is
CSP induction through a decreased rate of degradation of
CSP mRNA (see above). 
If a temperature downshift inhibits translation by stabi-
lizing of mRNA secondary structure, then a gradual de-
crease in temperature should inhibit the expression of dif-
ferent proteins to various degrees due to differences in
both length and propensities of 5¢UTR to form secondary
structures. Some of the proteins would be expressed, while
others would not. Yet, synthesis of most of the cellular pro-
teins is inhibited to a similar extent. The cold-shock re-
sponse seems to be an ‘all or nothing’ rather than gradual
[76]. Thus it appears that stabilization of mRNA sec-
ondary structure under cold-shock conditions is an un-
likely explanation for inhibition of ribosomal translation. 
In contrast to the hypotheses discussed above, an alterna-
tive could be that under cold-shock conditions, ribo-

somes are inhibited by cellular factors in response to 
the temperature downshift, which can help to find a 
functional relationship between CSP induction and in-
hibition of ribosomal translation. It has been shown that 
ribosomes isolated from cells incubated at low tem-
perature for several hours synthesize polypeptides at 
0 °C with lower efficiency than ribosomes isolated from
cells incubated at 37 °C [121]. Translation efficiency 
of  ribosomes from ‘cold’ cells can quickly be restored 
at 37 °C [121]. This suggests that indeed ribosomes are 
inhibited under cold-shock conditions by some cellular
factors. 
Why might ribosomal translation be inhibited under cold-
shock conditions by cellular factors? A temperature down-
shift leads to an increase in the level of miscoding [129,
130]. Suppression of translation termination at a UAG
codon at low temperatures was also demonstrated [131].
Accumulation of translation errors might be the factor
triggering the cold-shock response and CSP induction.
Antibiotics that affect ribosomal translation were found to
induce cold-shock proteins [78], supporting the hypothe-
sis that CSPs appear to be induced in response to low fi-
delity of ribosomal translation in general. A decrease in
translation fidelity upon amino acid starvation leads to
synthesis of ppGpp, inhibiting translation [132]. It has
been suggested that synthesis of ppGpp could trigger CSP
induction [78], although experimental data do not support
this hypothesis [76]. 
One might therefore expect to find two groups of factors:
one that blocks translation and another that adapts the
translational apparatus to cold-shock conditions. Indeed,
several proteins were found to be associated with the ri-
bosome only at low temperature. CsdA RNA-helicase is
associated with ribosomes under cold-shock conditions
[90]. Cold-inducible protein RbfA binds the small ribo-
somal subunit and suppresses the cold-sensitive mutation
of 16S rRNA [124, 133]. Recently, a new protein named
Y was found to be associated with ribosomes under cold-
shock conditions [134]. Protein Y inhibits translation
elongation by preventing binding of aminoacyl-tRNA to
the A-site of the ribosome [134]. 
CSPs are possible candidates for regulation of translation
initiation at low temperature. Despite significant differ-
ences in the mechanism of translation initiation in
prokaryotes and eukaryotes, proteins carrying cold-shock
domains and having nucleic acid binding properties sim-
ilar to CSPs (protein S1 of E. coli ribosome and Y-box pro-
tein p50) regulate translation initiation in a concentration-
dependent manner, interacting with mRNA. Both S1 and
p50 bind mRNA and stimulate translation initiation at low
concentrations (S1 being associated with the ribosome in
a one-to-one ratio) but inhibit it at high concentrations
[135–137]. The Y-box protein YB-1 also inhibits transla-
tion at the stage of initiation [49]. It appears that p50
destabilizes elements of the secondary structure in mRNA
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at low concentrations, but at higher concentration
p50 makes mRNA inaccessible for the ribosomes and
translational factors [138]. The regulation of translation
initiation during cold shock could occur by a similar con-
centration-dependent mechanism when the high level of
CSPs inhibits translation. Since it was shown that CspA
does not influence MS2 mRNA translation but slightly
stimulates translation of its own mRNA at 37 °C [70], ef-
fects of CSPs on translation of different mRNAs at lower
temperature in a broad range of CSP concentrations need
to be reexamined. Another possible function of CSPs that
might be proposed is to store mRNAs in an RNA-protein
complex while the cell adapts its translational apparatus to
the cold-shock conditions. 

Conclusions and future prospects

Even without favoring a particular hypothesis about CSP
functions and mechanisms of cold-shock adaptation, it is
still possible to make several conclusions. The most com-
mon documented property of CSPs is to bind a broad
range of sequences (preferentially poly-pyrimidine re-
gions) of ssRNA/DNA with micromolar affinity but not
dsRNA/DNA. Therefore, CSPs might destabilize RNA
secondary structure and play an RNA chaperone role.
Several lines of evidence suggest that CSPs bind mRNA
and regulate ribosomal translation, mRNA decay and ter-
mination of transcription. These functions appear to be
important not only during cold shock but under normal
growth conditions as well.
Several questions remain open and need to be clarified.
Some information about the regulation of CSP expression
is available, but it is not clear what thermo-sensitive fac-
tor is triggering the cold-shock response. It appears that
initiation of translation is blocked under cold-shock 
conditions, but it is not known whether this is a direct con-
sequence of the temperature decrease or a cell-regulated
response to the cold shock. There are a number of indica-
tions that CSPs bind mRNA and are involved in regulation
of translation, but effects of CSPs on translation of dif-
ferent mRNAs at different temperatures using in vitro
translation systems have not been studied in detail. An-
swers to these questions will significantly contribute to
our understanding of CSP biology.
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