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Abstract. Mitochondrial metabolism is crucial for the
coupling of glucose recognition to the exocytosis of the
insulin granules. This is illustrated by in vitro and in vivo
observations discussed in the present review. Mitochon-
dria generate ATP, which is the main coupling messenger
in insulin secretion. However, the subsequent Ca2+ signal
in the cytosol is necessary but not sufficient for full de-
velopment of sustained insulin secretion. Hence, mito-
chondria generate ATP and other coupling factors serving
as fuel sensors for the control of the exocytotic process.
Numerous studies have sought to identify the factors that
mediate the amplifying pathway over the Ca2+ signal in
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glucose-stimulated insulin secretion. Predominantly, these
factors are nucleotides (GTP, ATP, cAMP, NADPH), al-
though metabolites have also been proposed, such as long-
chain acyl-CoA derivatives and glutamate. Hence, the
classical neurotransmitter glutamate receives a novel role,
that of an intracellular messenger or co-factor in insulin
secretion. This scenario further highlights the importance
of glutamate dehydrogenase, a mitochondrial enzyme well
recognized to play a key role in the control of insulin se-
cretion. Therefore, additional putative messengers of mi-
tochondrial origin are likely to participate in insulin se-
cretion.

Introduction

Blood glucose control depends on the normal regulation
of insulin secretion from the pancreatic b-cells and on in-
sulin action on its target tissues. Most forms of type 2 di-
abetes display disregulation of insulin secretion combined
with insulin resistance. The aetiology of type 2, or non-in-
sulin-dependent diabetes mellitus is still poorly under-
stood and has been characterised in only a limited number
of cases. Mitochondrial diabetes, a rare subform of the
disease, caused by mutations in mitochondrial DNA, is the
consequence of pancreatic b-cell dysfunction. The impact
of such mutations on b-cell function reflects the impor-
tance of the mitochondria in the control of insulin secre-
tion. b-Cell mitochondria serve as fuel sensors, generating
factors coupling nutrient metabolism to the exocytosis of
insulin-containing vesicles. The latter process requires an

increase in cytosolic Ca2+, which depends on ATP syn-
thesised by the mitochondria. This organelle generates
other factors, of which glutamate has been proposed as a
potential intracellular messenger.

Glucose recognition by the bb-cell

Glucose homeostasis is tightly controlled by insulin se-
cretion from the pancreatic b-cells and by insulin action
on muscle and other target tissues. The b-cell is poised to
adapt rapidly the rate of insulin secretion to fluctuations in
blood glucose concentration (fig. 1). Glucose equilibrates
across the plasma membrane through a low-affinity glu-
cose transporter [1]. It is then phosphorylated to glucose-
6-phosphate by high-Km hexokinase IV, or glucokinase,
which determines the rate of glycolysis and the generation
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of pyruvate [1]. Mutations in the glucokinase gene that re-
sult in decreased glucose sensitivity affect blood glucose
regulation and are associated with maturity onset diabetes
of the young, type 2 (MODY-2) [2]. Conversely, glucoki-
nase mutations resulting in a gain of function of the en-
zyme cause one form of a syndrome of persistent hyper-
insulinaemic hypoglycaemia of infancy (PHHI) [3].
Together, these mutations in the glucokinase gene illus-
trate the role of this enzyme as a gatekeeper determining
the flux of intermediates undergoing glycolysis. High
rates of glycolysis are maintained through the activity of
mitochondrial shuttles, mainly the glycerophosphate and
malate/aspartate shuttles [4, 5], which allow the reoxida-
tion of cytosolic NADH. The malate/aspartate NADH
shuttle depends on the mitochondrial aspartate/glut-
amate carrier. Of interest is that the latter has recently 
been shown to be stimulated by Ca2+ [6]. Blockade of 
these shuttles inhibits glucose-stimulated insulin secretion 
[5, 7]. Other shuttles generating cytosolic NADPH have
also been described [8, 9].
A particular feature of the b-cell is not only the tight link
between glycolysis and mitochondrial oxidative metabo-
lism, but also the extremely high proportion of glucose-
derived carbons oxidized in the mitochondria [10]. Indeed,
as demonstrated in isolated purified b-cells, as many as
90% of glucose-derived carbons are oxidized by the mi-
tochondria [10]. This is favoured by the very low expres-
sion of monocarboxylate transporters in the plasma mem-
brane coupled with low activity of lactate dehydrogenase
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[11–14]. Moreover, low lactate dehydrogenase and mono-
carboxylate transporter activities confer selectivity to glu-
cose of insulin release and, for example, may prevent lac-
tate stimulation during exercise [12]. Pyruvate, once
transferred into the mitochondria, is a substrate for both
pyruvate dehydrogenase and pyruvate carboxylase. These
enzymes ensure the formation of acetyl-CoA and ox-
aloacetate, respectively. Pyruvate carboxylase provides
anaplerotic input to the tricarboxylic acid (TCA) cycle 
and its activity is remarkably high in b-cells [9, 10, 15].
Through activation of the TCA cycle, reducing equiva-
lents are transferred to the electron transport chain result-
ing in hyperpolarisation of the mitochondrial membrane
(DYm) and generation of ATP. Proton export from the mi-
tochondrial matrix, manifested by DYm hyperpolarisation,
has been shown to be rate limiting in the coupling of glu-
cose metabolism to insulin secretion [16].
In addition to pyruvate dehydrogenase, two TCA cycle en-
zymes, isocitrate dehydrogenase and a-ketoglutarate de-
hydrogenase, are activated by Ca2+ [reviewed in ref 17]
(see fig. 2), which may reinforce the production of meta-
bolic coupling factors during glucose-stimulated insulin
secretion [18]. The ATP formed in the mitochondria by
oxidative phosphorylation is transferred to the cytosol.
The subsequent increase in the ATP/ADP ratio in the cy-
tosolic compartment causes depolarisation of the plasma
membrane by the closure of ATP-sensitive K+ channels
(KATP) [19]. In type 2 diabetic patients, sulphonylureas are
used to stimulate insulin secretion because they close KATP

channels [20]. Closure of the KATP channels is the key step
by which glucose raises cytosolic Ca2+ ([Ca2+]c), as it al-
lows the opening of voltage-sensitive Ca2+ channels 
[19, 21], similar to those expressed in other excitable cells
(fig. 1). In glucose-stimulated b-cells, both the rise in
[Ca2+]c and insulin secretion are biphasic, with a transient

Figure 1.  Model for coupling glucose metabolism to insulin secre-
tion in the b-cell. Glucose equilibrates across the plasma membrane
and is phosphorylated by glucokinase (GK), which initiates its con-
version to pyruvate (Pyr) by glycolysis. Pyr preferentially enters the
mitochondria and fuels the TCA cycle, resulting in the transfer of re-
ducing equivalents (red.equ.) to the respiratory chain, leading to hy-
perpolarisation of the mitochondrial membrane (DYm) and genera-
tion of ATP. ATP is then transferred to the cytosol, raising the
ATP/ADP ratio. Subsequently, closure of KATP channels depolarises
the cell membrane (DYc). This opens voltage-gated Ca2+ channels,
increasing the cytosolic Ca2+ concentration ([Ca2+]c), which triggers
insulin exocytosis.

Figure 2.  The tricarboxylic acid (TCA) cycle with Ca2+-sensitive 
dehydrogenases (DH). In the mitochondria, pyruvate is a substrate
for both pyruvate dehydrogenase (PDH) and pyruvate carboxylase
(PC). Among the TCA cycle enzymes, succinate-DH (SDH) is also
part of the respiratory chain (complex II). In certain conditions (see
text), glutamate is produced from a-ketoglutarate by glutamate de-
hydrogenase (GDH).



first phase and a second, sustained phase [22, 23]. The in-
crease in [Ca2+]c is the main trigger for insulin exocytosis
of the secretory granules [21, 24].

Control of insulin secretion

The Ca2+ signal in the cytosol is necessary but not suffi-
cient for the full development of biphasic insulin secre-
tion. By using sulphonylureas, glucose was proposed to
evoke KATP-independent stimulation of insulin secretion
[25]. This KATP-independent pathway was further charac-
terised in 1992, when glucose was demonstrated to elicit
secretion under conditions of clamped, elevated [Ca2+]c

[26, 27]. More recently, knock-out mouse models lacking
either of the two functional subunits of the KATP-channel
showed a marked reduction, albeit not abolished, in glu-
cose-stimulated insulin secretion [28, 29]. As a conse-
quence of the absence of functional KATP channels, [Ca2+]c

is already elevated at low glucose concentration. There-
fore, noteworthy is that these b-cells show a partial secre-
tory response to glucose without changes in [Ca2+]c. The
KATP-independent pathway is also illustrated by some
forms of the PHHI syndrome. This hyperinsulinism is
most frequently caused by mutations in one of the two
subunits (the sulphonylurea receptor and the KIR 6.2) of
the KATP channel, resulting in uncontrolled Ca2+-mediated
hypersecretion of insulin [30]. However, PHHI patients
often retain some glucose-stimulated insulin secretion
above the constitutively increased basal rate [31]. This
supports in vitro observations mentioned earlier, which
had suggested the existence of a KATP channel-independent
effect of glucose [reviewed in ref. 32]. Glucose is thus ca-
pable of eliciting a partial secretory response under con-
ditions of clamped, elevated cytosolic Ca2+ concentrations
without affecting the plasma membrane potential.
Insulin release is also controlled and modulated by 
neurotransmitters and hormones. Nutrient-induced secre-
tion is potentiated by the neurotransmitters acetylcholine
and pituitary adenylate cyclase-activating polypeptide
(PACAP), as well as by the gastrointestinal hormones
glucagon-like peptide-1 (GLP-1) and gastric inhibitory
polypeptide (GIP) [33–35]. Conversely, GLP-1 receptor

null mice are glucose intolerant [36], while islets isolated
from these mice exhibit a well-preserved insulin secretory
response to glucose [37]. Knock out of the GIP receptor
in the mouse also leads to glucose intolerance [38]. In ad-
dition, insulin secretion is subjected to paracrine regula-
tion by glucagon release from the islet a-cells [39, 40], al-
though this has been questioned recently from pancreas
perfusion experiments [41]. Moreover, insulin exocytosis
is under the direct negative control of norepinephrine, so-
matostatin and circulating epinephrine [reviewed in refs
33, 42–44]. Descriptions of the actions of hormones and
neurotransmitters are found in the mentioned reviews.

Mitochondria in cell function

Mitochondrial metabolism is crucial for the coupling of
glucose recognition to insulin exocytosis [45]. ATP gen-
erated in the mitochondria is the main coupling messen-
ger in insulin secretion, but other metabolic factors are
necessary for the full development of the secretory re-
sponse. Generation of these mitochondria-derived factors
depends on optimal function of this fascinating organelle.
Mitochondria derive from the symbiotic association of ox-
idative bacteria and glycolytic proto-eukaryotic cells [46].
The endosymbiotic model is illustrated by a unique mito-
chondrial genome in the form of circular DNA (mtDNA)
with primitive characters [46]. mtDNA is maternally in-
herited, because of segregation during early zygote de-
velopment, and exists in multiple copies in every cell, ex-
cept erythrocytes. In contrast to nuclear DNA, mtDNA is
comprised of only coding sequences and its repair mech-
anisms are poor. Moreover, it is juxtaposed to the respira-
tory chain, which generates mutagenic oxygen derivatives
[47]. Consequently, mtDNA is particularly sensitive to ox-
idative stress and is highly susceptible to mutations.
Human mtDNA comprises only 37 genes (16,569 bp), no-
tably those encoding 13 polypeptides, all of which are part
of the multi-subunit enzyme complexes responsible for
respiration [48]. The vast majority of the enzyme subunits
and other mitochondrial proteins are encoded by the nu-
clear genome (table 1). These proteins are synthesised in
the cytosol and imported into the mitochondrion [49]. In
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Table 1.  Components of the electron transport chain, their enzymatic activity, inhibitors, subunits, and genomic source (encoded by mito-
chondrial or nuclear genome).

Complex Enzyme activity Inhibitors Subunits Mitochondrial Nuclear
subunits subunits

I NADH:CoQ oxidoreductase rotenone 43 7 36
II Succinate:CoQ oxidoreductase malonate 4 0 4
III CoQ:Cytochrome bc1 oxidoreductase antimycin 11 1 10
IV Cytochrome c oxidase cyanide, azide, CO 13 3 10
V ATP synthase : proton translocator oligomycin 16 2 14
ANT adenine nucleotide translocator atractyloside 1 0 1



addition, nuclear DNA controls the transcriptional activ-
ity of mtDNA through regulatory proteins such as the mi-
tochondrial transcription factor A (TFAM) [50]. Disrup-
tion of the Tfam gene in mice is lethal since homozygous
knock-out embryos die at embryonic day (E)10.5 [50]. At
E9.5, these knock-out embryos exhibit massive apoptosis
[51]. Such in vivo evidence that respiratory chain defi-
ciency predisposes cells to apoptosis contrasts with pre-
vious conclusions based on in vitro studies of cultured
cells. Indeed, mitochondria have been shown to play a ma-
jor role in the cascade of apoptosis, or programmed cell
death. One of the key events is the release of cytochrome
c to the cytosol [52].
Mitochondria constitute the main source of energy, es-
sentially ATP. These organelles are present in most eu-
karyotic cells, varying in number from hundreds to thou-
sands [48]. In living HeLa cells, mitochondria have been
visualised as a continuous network by high-resolution
analysis in three dimensions using targeted green fluores-
cent proteins [53]. This intriguing observation suggested
that, in a living cell, mitochondria could be in fact one sin-
gle mitochondrial network, although this pattern is tech-
nically difficult to assess.
Three classes of fuel can activate mitochondria: amino
acids, fatty acids and carbohydrates, the latter being of
most relevance in b-cells under physiological conditions.
In the pancreatic b-cell, ATP and other mitochondrial fac-
tors accomplish the coupling of glucose metabolism to in-
sulin secretion. Glycolysis forms pyruvate, the principal
mitochondrial substrate, which supplies substrates for ox-
idation in the TCA cycle. The reducing equivalents of the
substrates are transferred to the pyridine nucleotide
NADH and the flavin nucleotide FADH2 (fig. 2), which
provide electrons to the respiratory chain upon their re-
oxidation. Electrons can enter the respiratory chain both
at complexes I (NADH) and II (FADH2). The latter com-
plex, succinate dehydrogenase, is also an integral part of
the TCA cycle. The electron flow drives the extrusion of
protons out of the mitochondrial matrix, which establishes
the electrochemical gradient across the inner mitochon-
drial membrane. The mitochondrial membrane potential
generated in this way is negative inside and created by
complexes I, III and IV. Complex V catalyses the conden-
sation of ADP with inorganic phosphate to yield ATP. The
generation of this high-energy bond is powered by the dif-
fusion of protons back into the matrix. Finally, ATP is
transferred to the cytosol in exchange for ADP by the ade-
nine nucleotide translocator (ANT). Disruption of the
heart/muscle Ant gene in mice results in physiopatholog-
ical symptoms of mitochondrial myopathy and cardio-
myopathy [54].
In the mitochondrial matrix, Ca2+ increases the activity of
several dehydrogenases. In this manner, increased [Ca2+]c

occurring during cell activation is relayed to the mito-
chondria via a Ca2+ uniporter to cover the energetic 

requirements of the cell [17, 55]. Such Ca2+ entry is
favoured by activation of the respiratory chain, for exam-
ple by glucose in the b-cell. Therefore, hyperpolarisation
of DYm permits the rise in mitochondrial Ca2+ ([Ca2+]m)
(fig. 3) to reach concentrations sufficient for the activation
of NADH-generating dehydrogenases [55, 56]. This
feedforward effect of Ca2+ depends on permissive levels of
[Ca2+]c and on the availability of substrates for the TCA
cycle, ensuring anaplerotic input [57, 58]. Pyruvate dehy-
drogenase has been shown to be activated by Ca2+ in per-
meabilised HIT-T15 cells, a b-cell line [57], and by glu-
cose in intact rat pancreatic islets [59]. Extracellular Ca2+

is recruited for this mitochondrial activation. Indeed, spe-
cific blockade of L-type Ca2+ channels results in the abo-
lition of [Ca2+]c and [Ca2+]m rises evoked by glucose [23]
or by a cell-permeant derivative of the TCA cycle inter-
mediate methyl-succinate [60]. Similarly, blockade of
Ca2+ influx attenuated the increase of NAD(P)H evoked
by glucose in single b-cells [61, 62]. In the b-cell line
MIN-6, glucose has been shown to promote ATP elevation
both by enhanced substrate supply and by activation of
Ca2+-sensitive mitochondrial enzymes [63]. Generation of
other additive factors derived from glucose metabolism
might also be promoted by [Ca2+]m elevation as discussed
later in this review.

Depletion of mtDNA causes mitochondrial 
dysfunction in the bb-cell

Glucose-stimulated insulin secretion is inhibited by
blockade of the respiratory chain, using mitochondrial
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Figure 3.  Mitochondrial activation and the feedforward effect of
Ca2+ on dehydrogenases. The elevation of [Ca2+]c following cell ac-
tivation is relayed to the mitochondria via a Ca2+ uniporter. Upon
permissive [Ca2+]c (about 300 nM), Ca2+ entry is favoured by hy-
perpolarisation of DYm secondary to respiratory chain activation.
The rise in [Ca2+]m further activates pyruvate dehydrogenase
(PDH), isocitrate dehydrogenase (IDH) and a-ketoglutarate dehy-
drogenase (KGDH).



poisons or by lowering the oxygen supply to the b-cell
[64]. Another way to impair respiratory chain activity is to
create so-called r° cells by suppression of those enzyme
subunits encoded by mtDNA [65]. Such chemical treat-
ment of b-cell lines resulted in the depletion of mtDNA
with preserved insulin biosynthesis and cell viability, al-
beit with a reduced proliferation rate [66–69]. In rat in-
sulinoma INS-1 cells, mtDNA depletion also resulted in
altered mitochondrial morphology and inhibition of glu-
cose-stimulated ATP production [67]. The latter explains
why glucose does not depolarise the plasma membrane
potential in INS-1 r° cells compared to the depolarisation
seen in control INS-1 cells. The deficient ATP generation
and membrane depolarisation is secondary to the impaired
activation of the mitochondrial electron transport chain.
This is reflected by the absence of hyperpolarisation of
DYm normally seen in control cells. Similar results were
obtained with the membrane-permeant mitochondrial
substrate methyl-succinate [67], which mimics the effect
of glucose on insulin secretion [70–72]. This suggests that
mitochondrial metabolism rather than glycolysis is defec-
tive in r° cells. As expected from these results, glucose
does not increase [Ca2+]c and insulin secretion in different
r° b-cell line preparations [66–69]. These r° cells still
synthesise, store and secrete insulin, as demonstrated by
insulin secretion in response to the [Ca2+]c-raising agents
KCl and glibenclamide, which do not require mitochon-
drial metabolism [67–69]. Replenishment of MIN-6 r°
cells with normal mitochondria from mouse fibroblasts
completely restored glucose-stimulated insulin secretion
[68]. These results emphasise the crucial role of mito-
chondria in the generation of metabolic coupling factors
in glucose-induced insulin release [45].
As discussed above, expression of mtDNA is controlled
by a nucleus-encoded transcription factor, TFAM, and dis-
ruption of this gene in the mouse is lethal [50]. The b-cell-
specific deletion of the Tfam gene caused a diabetic phe-
notype [73]. The islets of these mice exhibited attenuated
hyperpolarisation of DYm upon glucose stimulation and a
diminished secretory response to glucose. These trans-
genic animals represent the first model of human mito-
chondrial diabetes and further highlight the pivotal role of
mitochondria in stimulus-secretion coupling.

Mitochondrial disfunctions and their impact 
on bb-cell metabolism

A specific maternally inherited form of diabetes mellitus
has been linked to mutations in the mtDNA [74, 75]. Of-
ten associated with neurosensorial deafness, it is also
called maternally inherited diabetes and deafness
(MIDD). The most frequent mutation encountered is the
A3243G mutation in the tRNA (Leu, UUR) gene [75, 76],
and together they account for approximately 1% of all di-

abetic cases [77]. Diabetic patients with a mtDNA muta-
tion have been treated with coenzyme Q10, a component
of the respiratory chain, but despite improved insulin se-
cretion there was no effect on diabetic complications [78].
Gene therapy by mitochondrial transfer cannot be envis-
aged in the near future due to technical limitations, al-
though introduction of mtDNA in mice has been reported.
The authors successfully introduced mtDNA with large-
scale deletion in mouse embryos and obtained germline
transmission of this mutated mtDNA through three gen-
erations [79]. The phenotype of these ‘trans-mitogenic’
mice was essentially limited to kidney failure, lethal be-
fore 200 days of age, indicating important species differ-
ences in mtDNA segregation.
The diabetic state is generally characterised by accelerated
tissue ageing perhaps related to mitochondrial dysfunc-
tion. Accumulation of point mutations in mtDNA has been
reported to occur in an age-dependent manner in humans
[80]. The mitochondria are the principal source of reactive
oxygen species (ROS) resulting from imperfect electron
transport. Normally, only 0.1% of total oxygen consump-
tion leaks to ROS generation, but the percentage becomes
more pronounced in ageing tissue [47]. This deleterious
process is amplified by diminishing natural enzymatic de-
fences (e.g. catalase and superoxide dismutase). The low
expression of these protective enzymes [81] renders the b-
cell particularly susceptible to ROS actions [82]. In addi-
tion to their acute effects, ROS may also lead to enhanced
mutations in mtDNA, worsened by the limited repair ca-
pacity. Taken together, these observations suggest that
ROS may participate in the impairment of glucose-in-
duced insulin secretion seen in both ageing and type 2 di-
abetes [83].
Different forms of MODY represent monogenic forms of
diabetes with autosomal dominant transmission. They are
characterised by b-cell disfunction due to mutations in nu-
clear genes [84]. MODY1 and MODY3 have been linked
to mutations in the transcription factors hepatocyte nu-
clear factor HNF-4a and HNF-1a respectively [84].
MODY3 is the most common form of this inherited dis-
ease and explains about 2% of diabetic cases. Suppression
of the HNF-1a gene in mice results in diabetes and im-
pairment of glucose-induced insulin secretion in vitro
[85]. b-cell-targeted expression of a dominant-negative
mutant of HNF-1a induced a MODY3-like phenotype in
transgenic mice with b-cell damage and mitochondrial
swelling [86]. In cellular model systems, the molecular
basis of the defect has been attributed to deranged mito-
chondrial metabolism [87, 88]. In particular, the defective
respiratory chain activation correlated with down-regula-
tion of the TCA cycle enzyme a-ketoglutarate dehydro-
genase accompanied by an up-regulation of uncoupling
protein 2 (UCP2) [88].
UCP2 is an inner mitochondrial membrane protein that
tends to diminish the proton gradient generated by the res-
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piratory chain. Its overexpression in b-cells attenuates
ATP generation and insulin secretion in response to glu-
cose [89]. Conversely, deletion of the UCP2 gene in mice
enhances islet ATP generation and insulin secretion dur-
ing glucose stimulation [90]. Chronic exposure of b-cells
to fatty acids induces UCP2 expression, which correlates
with reduced glucose-evoked insulin secretion [91]. This
may be part of an adaptive mechanism protecting the b-
cell against oxidants. Indeed, in in vitro experiments using
clonal b-cells, oxidative stress induced UCP2 expression
[92] and increased proton conductance in isolated mito-
chondria [93]. The UCPs could therefore play a role in de-
creasing the levels of ROS inside the mitochondria.

Signals and messengers for insulin exocytosis

Intracellular ATP is required for insulin exocytosis
[94–96]. A higher ATP/ADP ratio is needed for the clo-
sure of KATP channels compared to the requirement of the
exocytotic process itself [95]. ATP is a major permissive
factor for insulin secretory vesicle movement and for
priming of exocytosis [24, 96]. This is distinct and com-
plementary to the aforementioned action on the KATP chan-
nel. However, at non-stimulatory Ca2+ concentrations,
ATP does not cause insulin secretion in permeabilised
cells [94]. In the presence of stimulatory Ca2+, ATP en-
hances the process [94, 96, 97]. Conversely, glucose-in-
duced ATP elevation does not promote insulin release in
the absence of extracellular Ca2+ [98]. There was, however,
a correlation between the generation of ATP and the KATP-
independent insulin secretion evoked by glucose or by the
combination of glutamine plus leucine. Therefore, ATP
produced from nutrient metabolism could be involved in
the KATP-independent secretion. Glucose also generates
GTP, which could trigger insulin exocytosis via GTPases
[99, 100]. GTP is formed in the mitochondria by the TCA
cycle but it is trapped in the organelle. In the cytosol, GTP
is mainly formed through the action of nucleoside
diphosphate kinase. In contrast to ATP, GTP is capable of
initiating insulin exocytosis in a Ca2+-independent fashion,
which qualifies it as a messenger molecule [94, 100, 101].
Not known is whether GTP acts via a monomeric or 
heterotrimeric G-protein directly controlling exocytosis
[24, 102].
We have known for more that three decades that cAMP
potentiates glucose-stimulated insulin secretion. GLP-1,
GIP, PACAP and glucagon increase cAMP levels in b-
cells [33, 34, 103]. Glucagon has been shown to render b-
cells glucose responsive through the generation of cAMP
[39]. This paracrine effect of glucagon was also recently
demonstrated in human islets [40]. cAMP exerts at least
three actions which may render the b-cell glucose com-
petent and enhance insulin secretion: (i) the Ca2+ current
through L-type Ca2+ channels is increased [104]; (ii) b-

cells refractory to glucose depolarisation become respon-
sive, showing KATP channel closure [105]; (iii) the secre-
tory machinery is sensitized to Ca2+ [94, 104, 106, 107].
All these actions are mediated by cAMP-dependent pro-
tein kinase A. A direct protein kinase A-independent en-
hancement of insulin exocytosis involving the cAMP-
GEFII protein has been described [108]. Recently, protein
kinase A was shown to phosphorylate phogrin (phos-
phatase homologue in granules of insulinoma) [109] and
could therefore be a link between cAMP and the exocy-
totic machinery through the action of protein kinase A.
Phogrin is a transmembrane protein of secretory granules,
which is phosphorylated upon secretagogue stimulation
[110]. Although glucose has been found to increase cAMP
levels in some studies, such an effect is not observed in
purified b-cells [39]. Therefore, the role of cAMP in glu-
cose-stimulated insulin release is that of a potentiator
rather than a mediator.
Among other putative nucleotide messengers (fig. 4),
NADH and NADPH are generated by glucose metabo-
lism [for a review see ref. 58]. Single b-cell measurements
of NAD(P)H fluorescence have demonstrated that the 
rise in pyridine nucleotides precedes the rise in [Ca2+]c

[111] and that the elevation in the cytosol is reached 
more rapidly than in the mitochondria [112]. Cytosolic
NADPH is generated by glucose metabolism via the 
pentosephosphate shunt [113] and by mitochondrial 
shuttles [9]. An action of NADPH on insulin secretory
granules has been proposed from experiments on toadfish
islets [114].
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Figure 4.  Metabolism-secretion coupling in the b-cell and additive
signals of exocytosis. Glucose is phosphorylated by glucokinase
(GK) and converted to pyruvate (Pyr) by glycolysis. Pyr enters the
mitochondria and fuels the TCA cycle resulting in the transfer of re-
ducing equivalents (red.equ.) to the respiratory chain, leading to hy-
perpolarisation of DYm and ATP generation. Closure of KATP chan-
nels depolarises the cell membrane leading to [Ca2+]c elevation and
subsequent insulin exocytosis. Several putative messengers, or ad-
ditive signals, proposed to participate in the metabolism-secretion
coupling are indicated (see text).



In glucose-stimulated b-cells, the TCA cycle intermediate
citrate is exported from the mitochondria. In the cytosol,
citrate carbons are transferred to coenzyme A (CoA) to
form acetyl-CoA. Subsequently, acetyl-CoA carboxylase
catalyses the synthesis of malonyl-CoA, which is a lipid
precursor. Malonyl-CoA prevents fatty acid transport into
the mitochondria by inhibition of carnitine palmitoyl
transferase I (CPT-I) [115]. Consequently, fatty acid oxi-
dation is reduced, favouring the synthesis of long-chain
acyl-CoAs in the cytosol. This metabolic switch is at the
origin of the proposal that malonyl-CoA acts as a meta-
bolic coupling factor in insulin secretion [116]. The long-
chain acyl-CoA hypothesis was substantiated by the ob-
servation that palmitoyl-CoA enhances Ca2+-evoked
insulin exocytosis [117]. However, disruption of malonyl-
CoA accumulation during glucose stimulation did not at-
tenuate the secretory response [118], even under condi-
tions in which only the KATP-independent pathway is
operative [119]. In view of the inhibition of metabolism-
secretion coupling in lipid-depleted b-cells [120, 121], a
permissive role of long-chain acyl-CoAs in insulin release
cannot be excluded. Moreover, overexpression of CPT-I in
INS-1E cells results in reduced glucose-stimulated insulin
secretion [122]. Relevant here is that impaired fatty acid
beta-oxidation has recently been associated with a hyper-
insulinism syndrome [123]. The patient presented a defect
of the mitochondria enzyme short-chain L-3-hydroxyacyl-
CoA dehydrogenase (SCHAD) due to homozygous mu-
tation. This clinical case again suggests links between
fatty acid metabolism and the control of insulin secretion.
In conclusion, the role of long-chain acyl-CoA derivatives
in metabolism-secretion coupling requires further inves-
tigation.

Mitochondrially driven insulin exocytosis

Numerous studies have sought to identify the factor(s)
mediating the KATP-independent effect of glucose on in-
sulin secretion. In the previous paragraphs, we have listed
several factors thought to be involved in the potentiation
and/or modulation of glucose-stimulated insulin release
(fig. 4). Predominantly, these molecules are nucleotides
but also metabolites such as the aforementioned long-
chain acyl-CoA, which are still debated as putative cou-
pling factors. To study the link between mitochondrial 
activation and insulin exocytosis, we have established 
a Staphylococcus a-toxin-permeabilised b-cell model 
permitting the clamping of [Ca2+]c and nucleotides such 
as ATP. This preparation can be directly stimulated with
various mitochondrial substrates including succinate, a
TCA cycle intermediate. As discussed above, three mito-
chondrial dehydrogenases are known to be activated by
Ca2+ in various tissues [124, 125], including insulin-
secreting cells [57, 72, 126]. Therefore, the increase in

[Ca2+]m conveniently reflects mitochondrial activation [17,
127] (see fig. 3). To monitor mitochondrial activation, 
we measured mitochondrial free [Ca2+] using INS-1 cells
stably expressing the Ca2+-sensitive photoprotein aequorin
[23] with simultaneous assessment of insulin secretion.
When the [Ca2+]c was clamped at 500 nM, succinate
caused a marked biphasic increase in [Ca2+]m, an effect
secondary to hyperpolarisation of DYm [71]. This mito-
chondrial activation resulted in biphasic insulin release.
As Ca2+ enhances succinate oxidation under these con-
ditions [72], we can conclude that mitochondrial activa-
tion directly stimulates insulin exocytosis. The obvious
question is whether the increase in [Ca2+]m is required 
for the action of succinate on insulin secretion. To test 
this, ruthenium red, an inhibitor of Ca2+ uptake through 
the mitochondrial uniporter, was applied. Ruthenium 
red attenuated the [Ca2+]m rise and abolished insulin re-
lease induced by succinate. A [Ca2+]m rise is thus neces-
sary for the mitochondrially driven insulin exocytosis, 
but Ca2+ is not sufficient. Indeed, the sole [Ca2+]m ele-
vation without provision of carbons to the TCA cycle
(anaplerosis) failed to elicit insulin secretion under these
conditions [71]. This strongly suggested the existence 
of a mitochondrial factor generated through anaplerotic
input into the TCA cycle.

Glutamate as a metabolic coupling factor

Thus, the TCA cycle intermediate succinate enhances in-
sulin secretion at the permissive concentration of 500 nM
Ca2+ and at 10 mM ATP in a-toxin-permeabilised INS-1
cells [71]. The magnitude of the response is similar to a
rise in cytosolic free Ca2+ from 500 nM to 1.3 mM [128].
Other TCA cycle intermediates, such as a-ketoglutarate,
malate [128] or citrate [71] were inefficient. Stimulation
of insulin exocytosis requires not only the provision of
carbons to the TCA cycle but also an increase in [Ca2+]m,
both requirements achieved by succinate [71, 129]. Ex-
posure of isolated INS-1 cell mitochondria to succinate re-
sults in a pronounced production of glutamate [130]. Glu-
tamate can be generated through several biochemical
pathways including transamination reactions [reviewed in
ref. 131]. In mitochondria, glutamate dehydrogenase
(GDH) forms glutamate from the TCA cycle intermediate
a-ketoglutarate [132]. In permeabilised INS-1 cells, glu-
tamate stimulates insulin secretion, reproducing the effect
of succinate, both at 10 and 1 mM ATP [129]. In contrast
to succinate, the secretory response to glutamate does not 
require activation of mitochondrial metabolism [129]. 
Important in this regard is that oligomycin abolished 
insulin release in response to succinate without affecting
glutamate-induced exocytosis [18]. These results sug-
gest that glutamate, in contrast to succinate, acts down-
stream of mitochondrial metabolism. As the effect of glu-
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tamate is similar at low and high ATP concentrations, ATP
is most unlikely to mediate the glutamate-evoked exo-
cytosis.

What is the action of glutamate downstream 
of mitochondria?

An effect of glutamate on insulin exocytosis downstream
of mitochondria was first proposed in 1999 [129] and re-
cently confirmed by another group [133]. A link between
glutamate and the long-chain acyl-CoA derivatives could
also be envisaged. Indeed, malonyl-CoA synthesis is
catalysed by acetyl-CoA carboxylase, an enzyme that is
activated by glutamate and Mg2+-sensitive protein phos-
phatase type 2A [134]. Such an effect has recently been
demonstrated in islet b-cells [135], suggesting mecha-
nisms of complementary metabolic signals acting syner-
gistically [133].
Alternatively, glutamate formed in the mitochondria and
transferred to the cytosol might be taken up by the insulin-
containing granules. This idea is supported by the finding
that, in agreement with glutamate transport properties in
synaptic vesicles [see ref. 136], collapse of the granule
membrane potential and application of an inhibitor of glu-
tamate uptake blocked glutamate-induced insulin exocy-
tosis in permeabilised INS-1 cells [129]. However, gluta-
mate uptake by insulin-containing secretory granules
remains to be demonstrated. Of interest is that clonal pan-
creatic a-cells, secreting glucagon, have recently been
shown to accumulate glutamate in their vesicles and to re-
lease it upon stimulation [137]. The same group further
demonstrated that pancreatic a-cells express one of the
two so far identified isoforms of the vesicular glutamate
transporters [138].
Vesicular glutamate transporter was first cloned as a plasma
membrane inorganic phosphate transporter in 1994 with the
name BNPI (for brain Na+-dependent Pi transporter I)
[139]. However, only in 2000 did two groups simultane-
ously recognize this protein as a genuine vesicular gluta-
mate transporter [140, 141], which was hence renamed VG-
LUT1. More recently, DNPI (for differentiation Na+-
dependent Pi transporter I), which is closely related to VG-
LUT1, was raised to the rank of vesicular glutamate trans-
porter and is now referred to as VGLUT2 [142–145].
DNPI/VGLUT2 has been shown to be present in pancreatic
a-cells but not in b-cells [138]. In b-cells, another alterna-
tive vesicular glutamate transporter might transport gluta-
mate. One can speculate that glutamate has a general effect
to sensitize secretory vesicles to the action of Ca2+ in exo-
cytosis. Interestingly, glutamate is usually used as the main
anion in experiments employing permeabilised cells or the
patch-clamp technique for the monitoring of exocytosis.
Churcher and Gomperts [146] used Cl– as the main anion
in permeabilised mast cells and in fact observed that gluta-

mate was required for Ca2+-induced exocytosis. At present,
the mechanism underlying the permissive action of gluta-
mate in the secretory process is unknown.

Provision of glutamate to the cytosol

We thus postulate an intracellular messenger role for glu-
tamate in stimulus-secretion coupling (fig. 4), although
the precise site of glutamate action downstream of mito-
chondria remains to be defined. Previously, extracellular
glutamate was reported to cause a transient stimulation of
insulin secretion in the perfused rat pancreas [147] and to
elicit a small secretory response in isolated rat islets [148].
Of note is that only approximately 25% of rat b-cells ex-
press glutamate receptors [149] and that glutamate does
not elicit insulin release in intact rat islets [150] or INS-1
cells [unpublished observations]. Therefore, in our model,
glutamate would act as an intracellular rather than an ex-
tracellular messenger in insulin exocytosis.
The principal observation is that glutamate directly stimu-
lates insulin exocytosis in permeabilised cells at permissive
[Ca2+]c independently of mitochondrial activation [129].
Moreover, insulinotropic action of the cell-permeant deriv-
ative dimethyl-glutamate in intact b-cell preparations is re-
stricted to permissive conditions, e.g. at intermediate glu-
cose levels or in the presence of a sulphonylurea [129, 151].
A role for glutamate in the amplifying pathway of the nu-
trient-induced secretory response has recently been sub-
stantiated in the model of in situ pancreatic perfusions. In
this sensitive model, supplementation of dimethyl-gluta-
mate potentiated the second phase of glucose-stimulated in-
sulin secretion [152]. On the other hand, the importance of
intracellular glutamate in the amplifying pathway has been
questioned using dimethyl-glutamate. Indeed, in the pres-
ence of depolarising concentrations of K+, dimethyl-gluta-
mate was shown to exhibit only minor effects on insulin se-
cretion in isolated rat islets [153]. This could be the
consequence of dimethyl-glutamate failure to generate ATP
[129], probably because of poor conversion of glutamate to
the TCA cycle intermediate a-ketoglutarate [154]. How-
ever, the same group, using a very similar approach, sub-
sequently reported that cytosolic glutamate accumulation
partially reconstituted signaling beyond mitochondrial
metabolism in the b-cell upon glucose stimulation [133].
Taken together, these results demonstrate that intracellular
glutamate itself is not sufficient to elicit insulin secretion
but participates in the sustained secretory response evoked
by glucose.
Glucose increased the cellular glutamate content in 
INS-1 cells and human islets [129, 155]. In rat islets, glu-
tamate was the only one of 12 amino acids that increased
during glucose stimulation, whereas levels of aspartate, a
possible NH2 donor, decreased [156]. In other reports, glu-
cose did not change glutamate levels in islets isolated
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from rats [157] or mice [158]. The lack of increase in glu-
tamate concentrations reported by MacDonald and Fahien
[157] led these authors to conclude that glutamate is not
a messenger in insulin secretion, although they did not ad-
dress the crucial question of a messenger function [157].
Indeed, measurements of total glutamate contents do not
reflect fluctuations of the putative co-factor of insulin ex-
ocytosis in the cytosolic compartment [18]. Limitation re-
sides in the lack of methods allowing determination of
glutamate levels in the relevant cellular compartment, i.e.
the cytosol. Substantiation of the role of glutamate re-
quires modulation of its cytosolic levels.
Results obtained with a transgenic mouse model have in-
directly highlighted the putative role of intracellular glu-
tamate in insulin secretion. In these mice, targeted over-
expression of the glutamate decarboxylating enzyme
GAD65 in b-cells resulted in glucose intolerance without
any sign of insulitis or loss of b-cells. Their islets showed
impaired glucose-stimulated insulin secretion, while the
response to the Ca2+-raising agent KCl was preserved
[159]. Although the authors did not measure glutamate
levels in the pancreatic islets of these transgenic mice,
they discussed reduced cellular glutamate levels as one
possible explanation for the diminished response to glu-
cose. Hence, the decrease in cellular glutamate levels can
theoretically be achieved by overexpression of glutamate
decarboxylase. Upon appropriate expression, this cytoso-
lic enzyme decarboxylates glutamate produced by the mi-
tochondria after its release into the cytosol. Consequently,
cytosolic glutamate could be specifically reduced, even
during glucose stimulation without affecting major meta-
bolic pathways. The gamma-aminobutyric acid (GABA)
thus formed is not believed to affect insulin secretion
[160]. In this context, the smaller isoform of glutamate de-
carboxylase, GAD65, predominantly expressed in rat pan-
creatic islets [161], has been overexpressed in clonal INS-
1E b-cells and rat pancreatic islets, using recombinant
adenovirus [155]. The study demonstrates that overex-
pression of GAD65 in b-cells results in reduced glutamate
levels and impaired glucose-stimulated insulin secretion,
showing a positive correlation between cellular glutamate
levels and glucose-induced insulin secretion [155].

Importance of GDH

GDH is a homohexamer located in the mitochondrial ma-
trix, which predominantly forms glutamate from the TCA
cycle intermediate a-ketoglutarate (fig. 5A). GDH is en-
coded by a well-conserved 45-kb gene named GLUD1,
which is organised into 13 exons [162]. In the brain, this
enzyme ensures the cycling of glutamate-glutamine be-
tween astrocytes and neurons. Glutamate, the most abun-
dant neurotransmitter, after its discharge by neurons is
taken up by astrocytes, protecting against glutamate toxi-
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Figure 5. Proposed model for the role of glutamate dehydrogenase
(GDH) in metabolism-secretion coupling in the b-cell. (A) Glucose
undergoes glycolysis and forms pyruvate (Pyr) which fuels the TCA
cycle resulting in respiratory chain activation and generation of ATP.
Depolarisation of DYc leads to [Ca2+]c elevation and insulin exocy-
tosis. In the mitochondria, GDH forms glutamate (Glu) from the
TCA cycle intermediate a-ketoglutarate (aKG). Glutamate acts
downstream of the mitochondria and potentiates the effect of Ca2+ on
insulin secretion. (B) Glutamine is deaminated to glutamate but
poorly converted to a-KG resulting in deficient ATP generation
without stimulation of insulin exocytosis. (C) GDH, once activated
by leucine (Leu) or its non-metabolisable analogue BCH increases
glutamine oxidation and insulin secretion, restoring the effect of 
glucose.



city [163]. Subsequently, astrocytes can use glutamate as
a fuel through a-ketoglutarate formation and TCA cycle
activation, but the larger part is converted to glutamine
[131]. The released glutamine is then used by neurons to
generate glutamate, thereby ensuring the cycling. Still in
the brain, glutamate is also the precursor of GABA, an-
other major neurotransmitter. Moreover, glutamate plays
a crucial role in ammonia metabolism and detoxification,
mainly in two organs: the liver, via hepatic ureagenesis,
and the kidney, via renal ammoniagenesis and subsequent
urinary excretion [131].
In pancreatic b-cells, the importance of GDH as a key en-
zyme in the control of insulin secretion was recognized
more than two decades ago [164]. Later, inhibition of
GDH enzymatic activity was shown to result in decreased
insulin release [165]. More recently, activating mutations
of GDH have been associated with a hyperinsulinism syn-
drome [166, 167], again revealing the importance of this
enzyme. Several studies have addressed the question of
the role of GDH in the pancreatic b-cell, but even the pre-
ferred direction of the catalytic activity is still debated.
The enzyme is allosterically regulated by leucine, pyri-
dine, adenine and guanine nucleotides [168, 169] and
catalyses the reaction [132]:

a-ketoglutarate + NH3 + NAD(P)H 
´ glutamate + NAD(P)+

Mutations in GDH associated with a gain of function and
hyperinsulinism have been linked in several cases with re-
duced GTP-mediated inhibition of the enzyme [166, 167,
170]. Missense mutations were found in exons 11 and 12,
corresponding to the allosteric domain, resulting, for ex-
ample, in Lys450Glu modification [170]. More recently,
mutagenesis and photoaffinity labeling indeed identified
the Lys450 residue as a GTP-binding site on GDH [171].
Previously, the same group used photoaffinity labeling to
discover an NADH-binding site of the enzyme in residues
Cys270 through Lys289 [172]. GDH was also shown to be
regulated by reversible ADP-ribosylation in mitochondria
[173]. Inactivation of the enzyme is caused by ADP-ribose
association, which is suppressed by NAD(P)H.
Preferential directional flux from a-ketoglutarate to glu-
tamate has been suggested in mouse islets in which the in-
corporation of glucose carbons into glutamate was aug-
mented by glucose stimulation, even without changing
cellular glutamate content [174]. In most tissues this is the
prevailing direction for the enzyme reaction [131, 132].
One notable exception is the astrocyte, which recycles
glutamate, released as a neurotransmitter by the neigh-
boring neurons, as discussed above. This pathway favours
glutamate oxidative deamination and energy supply
through the TCA cycle as well as generation of lactate
used by neurons as an important energy source [175].
Conversely, in other tissues where glutamate is preferen-

tially formed from a-ketoglutarate, the most likely donors
of ammonia for glutamate synthesis by GDH are gluta-
mine and aspartate [131]. In the cerebral cortex, glutamate
production from glucose has been shown to reflect TCA
cycle activity and carbon flux in resting humans and ex-
ercising rats [176, 177]. Thus, studies using nuclear mag-
netic resonance (NMR) spectroscopy have demonstrated
the enrichment of glutamate carbons upon glucose stim-
ulation [177, 178]. Corresponding experiments have re-
cently been conducted in insulin secreting cells leading to
similar conclusions, i.e. glutamate is a major leak out of
the TCA cycle during glucose metabolism [179]. Follow-
ing a 60-min glucose stimulation period, Brennan et al.
[179] measured a marked enrichment of glutamate with
labeled carbons derived from glucose as well as an en-
larged glutamate pool size. Another recent NMR study
also reported enrichment of glutamate with glucose car-
bons [180]. However, the total glutamate concentration
was not elevated following the unusual prolonged 4-h 
glucose stimulation used in this report. This might indi-
cate that along with its de novo synthesis, glutamate was
used or released from the cells. Both studies using NMR
spectroscopy in b-cell lines demonstrate an important par-
ticipation of pyruvate carboxylase [179, 180], which is in
agreement with previous analyses using biochemical ap-
proaches [10, 15]. The remarkably high anaplerotic activ-
ity in b-cells in the course of glucose stimulation suggests
the loss of TCA cycle intermediates, which must be com-
pensated in the form of oxaloacetate. This evidence adds
weight to the model of mitochondria-derived factors, such
as citrate [9] or glutamate [129], participating in the stim-
ulation of insulin secretion upon glucose stimulation.

Glutamine, a conditional secretagogue?
Conversely to the effect of glucose, mitochondrial metab-
olism of glutamine/glutamate and ATP production is only
weak in islets [151, 154] (see fig. 5B). As glutamine does
not generate ATP, it is capable of neither depolarizing the
plasma membrane nor of raising cytosolic Ca2+ in native
b-cells. In mouse islets, glutamine moderately enhances
insulin release in KATP pathway-independent conditions,
i.e. when cytosolic Ca2+ is maintained at permissive lev-
els by diazoxide and high K+ [98]. However, this stimula-
tory effect might be blunted due to the inhibitory action of
NH4

+, generated by glutamine in cells, which has been
shown to inhibit insulin release in both mouse and rat
islets secondary to intracellular alkalinisation [98, 181].
Exposure of islets to extracellular glutamine causes a
marked increase in their glutamate levels without any in-
crease in insulin secretion [154, 182]. This is explained by
the sluggish conversion of glutamate to a-ketoglutarate
[154]. Activation of GDH by L-leucine or its non-
metabolisable analogue 2-aminobicyclo-[2,2,1]heptane-2-
carboxylic acid (BCH) increases glutamine oxidation and
insulin secretion, essentially by enhancing the oxidative

1812 P. Maechler Mitochondrial signals in the b-cell



deamination of glutamate [150, 183–186] (fig. 5C).
These reactions and pathways are dependent on metabolic
fluxes imposed by the relative substrate supply. Accord-
ingly, of note is that glutamine oxidation, stimulated by
the presence of an allosteric activator of GDH, is inhibited
by glucose [186]. Glutamate can be converted to a-ke-
toglutarate either by GDH-dependent oxidative deamina-
tion or, alternatively, by transamination reactions. In mi-
tochondria isolated from pancreatic islets, glutamate
transamination has been shown to generate a-ketoglu-
tarate in the presence of the aliphatic ketomonocarboxylic
acid a-ketoisocaproate [187, 188], which is also known to
stimulate insulin secretion [189].
Unlike glutamine, glucose, the main nutrient secretagogue,
increases not only ATP and cytosolic Ca2+, but also gluta-
mate to promote optimal signaling for insulin exocytosis.
Therefore, there are two diametrically opposed pathways
of GDH activation. (i) Upon glucose stimulation, GDH
preferentially works in the direction of glutamate genera-
tion (fig. 5B). NMR studies have demonstrated this pref-
erential direction in several tissues including insulin-se-
creting cells [179]. (ii) Upon glutamine exposure, the thus
formed glutamate is elevated but poorly converted to TCA
cycle intermediates unless BCH (or leucine) allosterically
activates GDH, thereby promoting mitochondrial activa-
tion and ATP generation (fig. 5C). Expression of mutant
GDH, which is associated with unregulated increased
GDH activity and the hyperinsulinism syndrome [166,
167], has been recently examined in a b-cell line [190]. In
control cells, glutamine alone did not stimulate insulin se-
cretion. However, in cells expressing the activating muta-
tion, glutamine became an efficient secretagogue, whereas
the glucose dose response was left-shifted [190]. Taken to-
gether, these data further establish that in b-cells, under
physiological conditions, GDH is strongly non-permissive
for the secretagogue function of glutamine and might be
rate limiting for that of glucose. The lack of secretory re-
sponse to glutamine could be the consequence of defective
ATP generation. Glutamine is the most abundant amino
acid in muscle and plasma [191]. Accordingly, muscle rep-
resents an important reservoir from which the glutamine
pool can be mobilized during acute exercise [192], a phys-
iological state in which insulin secretion must be avoided.
This is in accordance with the low monocarboxylate trans-
porter and lactate dehydrogenase activities in the b-cell,
which avoid lactate-induced insulin release [12]. There-
fore, GDH may play a similar role as a gatekeeper to pre-
vent amino acids from being efficient secretagogues.

Conclusions

The crucial role of the mitochondria in b-cell function is
now well recognised. However, metabolism-secretion cou-
pling is extraordinarily complex and is still far from un-

derstood. One can speculate that not only ATP and gluta-
mate but also other mitochondrially derived factors par-
ticipate in the overall control of exocytosis. Studies in a
permeabilised b-cell model have shown a direct link be-
tween mitochondrial activation and insulin exocytosis.
Further studies demonstrated a positive correlation be-
tween cellular glutamate concentrations and the secretory
response to glucose. At present, the mechanism of gluta-
mate action on exocytosis is unknown. In this scenario,
the classical neurotransmitter glutamate is allocated a
novel role, that of an intracellular messenger or co-factor
in insulin secretion. The elucidation of the mode of gluta-
mate action in the b-cell should help to define its putative
implication in other secretory processes. Greater defini-
tion of the role of mitochondrial molecular mechanisms 
in cell activation will certainly help to target therapeutic
interventions in diabetes and other metabolic diseases.
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