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Abstract. Cell cycle progression is driven by the coordi-
nated regulation of the activities of cyclin-dependent ki-
nases (Cdks). Of the several mechanisms known to regu-
late Cdk activity in response to external signals, regu-
lation of cyclin gene expression, post-translational
modification of Cdks by phosphorylation-dephosphory-
lation cascades, and the interaction of cyclin/Cdk com-
plexes with protein inhibitors have been thoroughly stud-
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ied. During recent years, much attention has also been
given to mechanisms that regulate protein degradation by
the ubiquitin/proteasome pathway, as well as to the regu-
lation of subcellular localization of the proteins that com-
prise the intrinsic cell cycle clock. The purpose of the
present review is to summarize the most important as-
pects of the various mechanisms implicated in cell cycle
regulation.
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Introduction

The proliferation state of the cell is determined by the
availability of growth factors and mitogens in its immedi-
ate environment. Nonproliferating cells are in a quiescent
state also known as the G0 phase. The presence of extrin-
sic growth factors triggers numerous cytoplasmic signal-
ing cascades which eventually result in the sequential ac-
tivation of distinct cyclin-dependent kinase (Cdk) activi-
ties that drive the ordered transition through the phases of
the cell cycle. These regulatory hierarchies are critical to
ensure the completion of one cell cycle phase before the
start of the next. During each cell cycle, two key events
need to be coordinated: DNA replication by which the
genome is partitioned into two identical copies, and mi-
tosis by which one copy is inherited by each of the daugh-
ter cells. The mechanisms that control these important
tasks are highly conserved in evolution, although a num-

ber of important differences have been found between
higher eukaryotes and yeast, a very popular model system
for cell cycle studies. Due to space limitations, this re-
view is based primarily on studies of the mammalian cell
cycle.

The basic framework: cell cycle phases and 
Cyclin/Cdk complexes

Kinase activity of all Cdks requires the binding of a pos-
itive regulatory subunit known as a cyclin [1]. Each of the
phases of the cell cycle is characterized by the expression
of a distinct type of cyclin, and fluctuations in cyclin lev-
els represent the primary mechanism by which Cdk ac-
tivity is regulated (fig. 1). When quiescent cells are stim-
ulated by the addition of growth factors, the first cyclins
to be expressed are the D-type cyclins D1, D2, and D3
[2–4]. Cyclin D expression patterns vary from cell type
to cell type, with cyclin D1 being the most ubiquitously* Corresponding author.
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expressed and widely studied [5–8]. The activation of cy-
clin D1 gene transcription is dependent on the activation
of the Ras-Raf-MAPK pathway, and the presence of at
least one type of cyclin D is needed to complete the G1
phase [9–11]. D-type cyclins assemble with Cdk4 or
Cdk6 to form complexes whose major substrates are the
retinoblastoma protein (Rb) and the related proteins p107
and p130 (Rb pocket proteins) [12–16]. Whether addi-
tional in vivo substrates exist, and whether there are dif-
ferences in substrate specificity between D1, D2, and D3
complexes is currently not clear [17, 18]. Both Cdk4 and
Cdk6 are constitutively expressed and present in excess to
D-type cyclins even at times of maximal cyclin induction.
D-type cyclins are thus believed to be limiting for the for-
mation of active Cdk4 and Cdk6 complexes [19–21]. The
presence of growth factors maintains D-type cyclin levels
relatively constant throughout the cell cycle, although a
new burst of cyclin D1 synthesis occurs every time a cell
enters G1 after mitosis [22]. D-type cyclins are not ex-
pressed in quiescent cells.
Cyclin E is the next cyclin to be expressed in mid to late
G1 phase [23, 24]. Cyclin E complexes with Cdk2 and the
resulting kinase activity is required for S phase entry and
the initiation of DNA replication [25–28]. Cyclin
E/Cdk2 has been shown to phosphorylate S phase-spe-
cific substrates such as NPAT, which is involved in the ac-
tivation of histone gene transcription [29–31]. Cyclin
E/Cdk2 phosphorylates Rb family proteins on different
sites than cyclin D/Cdk4-6, and this dual phosphorylation
appears to be required for full inactivation of the Rb pro-
teins [28, 32–34]. Cyclin E/Cdk2 also phosphorylates
and targets for degradation the Cdk inhibitor p27 and cy-
clin E itself (see below) [35–39].
Cyclin E overexpression has been shown to accelerate S
phase entry although dependence on mitogenic growth
factors was not abrogated [40, 41]. A knock-in of cyclin
E into the cyclin D1 locus restored most of the defects ob-

served in mice lacking cyclin D1 [42]. Although the
knock-in eliminated cyclin D1 function and placed cyclin
E expression under control of the cyclin D1 promoter,
one cannot conclude that cyclin E can substitute com-
pletely for D-type cyclin function, since expression of the
other members of the cyclin D family had not been elim-
inated. 
Cyclin A is expressed soon after cyclin E at the G1/S
boundary and also forms complexes with Cdk2 and, to a
lesser extent, with Cdc21 [43–45]. The activity of cyclin
A/Cdk2 is required for S phase transition and control of
DNA replication [46–48]. One known substrate is Cdc6,
whose phosphorylation elicits its export from the nu-
cleus. Since Cdc6 is required for the initiation of DNA
replication, phosphorylation by cyclin A/Cdk2 has been
implicated in preventing the re-replication of DNA [49].
HIRA, the human homolog of the yeast repressors of 
histone gene transcription Hir1p and Hir2p, is another 
cyclin A/Cdk2 substrate [50]. The phosphorylation of
HIRA abolishes its repressor activity and thus increases
histone transcription [50, 51]. Cyclin A/Cdk2 has also
been found to phosphorylate Skp2 and Cdc20, two com-
ponents of proteolytic pathways involved in cell cycle
progression (see below) [52, 53].
Cyclin B1 associates with Cdc2 and is expressed in late S
and G2 phases; however, cyclin B1/Cdc2 complexes re-
main inactive until late G2 when their activation is re-
quired for entry into mitosis [54–56]. Targets of cyclin
B1/Cdc2 include both structural proteins involved in the
execution of mitotic events, and regulatory proteins that
are necessary for the control and timing of these
processes. Nuclear lamins, nucleolar proteins (nucleolin
and NO38), microtubule-associated protein-4 (MAP-4),
proteins of the nuclear pore complex, centrosomal pro-

Figure 1. Expression patterns of cyclins and Cdk activities during the cell cycle. Note that Cdk2 can be activated by cyclin E or cyclin A,
and Cdc2 can be activated by cyclin A or cyclin B.

1 Cdc2 has more recently also been referred to as Cdk1; in this re-
view, the original designation Cdc2 will be used.



ter phosphorylation of the Cdk on a conserved threonine
residue proximal to the ATP-binding cleft (Thr 172 in
Cdk4/6, Thr 160 in Cdk2, and Thr 161 in Cdc2) [78–83].
Cyclin-Cdk binding seems to precede the activating
phosphorylation [1, 81, 82], although phosphorylation of
monomeric Cdk2 has been observed in vitro [84]. The ac-
tivating threonine residue is located in a loop of amino
acids, called the T-loop, that blocks access of ATP to the
catalytic domain. Analysis of the crystal structure of cy-
clin A/Cdk2 complexes indicates that the cyclin/Cdk in-
teraction causes a conformational change in the Cdk,
making the T-loop more accessible for the activating
phosphorylation [85, 86]. The phosphorylation causes a
further conformational change in the T-loop, making the
catalytic cleft fully accessible to ATP. In addition to
greatly stimulating kinase activity, the activating threo-
nine phosphorylation has also been suggested to enhance
the stability of some cyclin/Cdk complexes [87, 88].
The kinase responsible for catalyzing the activating thre-
onine phosphorylation has been designated CAK, for
Cdk-activating kinase [78]. CAK is itself a complex be-
tween a Cdk subunit, Cdk7, and a cyclin-like subunit, cy-
clin H [84]. The phosphorylation of Cdks by CAK is an-
tagonized by the action of a specific phosphatase known
as KAP [89]. KAP is believed to act on monomeric Cdks
that are the result of cyclin degradation (see below) [90].
Although little is known about the in vivo function of
KAP or about its regulation during the cell cycle, recent
data suggest a role in the regulation of certain tumori-
genic processes [91, 92]. The crystal structure of KAP in
association with phosphorylated Cdk2 has recently been
solved [93].
Mammalian Cdk7 has been implicated in two distinct
functions. First, as discussed above, it is the catalytic sub-
unit of CAK and plays a role in the activation of cy-
clin/Cdk complexes [84]. Second, Cdk7 has been found
to be a subunit of the transcription factor TFIIH [94, 95].
TFIIH is believed to be essential for the transition from a
promoter-bound transcription initiation complex to an
elongation-competent form of RNA polymerase II, and
this function depends on the phosphorylation of the car-
boxyl-terminal domain (CTD) of RNA polymerase II by
Cdk7 [96]. Interestingly, TFIIH-bound Cdk7 has different
substrate specificity than CAK: CAK preferentially
phosphorylates Cdks whereas TFIIH-Cdk7 shows higher
activity toward the CTD [97, 98]. Modulation of TFIIH-
Cdk7 activity has been implicated in the inhibition of
RNA polymerase II transcription observed in mitosis [65,
99]. This is achieved by the phosphorylation of TFIIH-
bound Cdk7 by cyclin B1/Cdc2, resulting in its inhibition
and subsequent underphosphorylation of the CTD. Cdk7
thus appears to be on the crossroads between the regula-
tion of the cell cycle and that of basal transcription, and
may play a role in the coordinated regulation of both
processes.

128 A. J. Obaya and J. M. Sedivy Mechanisms of cell cycle regulation

teins, and Eg5 (a kinasin-related motor) have all been de-
scribed as cyclin B/Cdc2 substrates [57–64]. Cyclin
B1/Cdc2 participate in the global inhibition of transcrip-
tion and translation that occurs in mitosis by phosphory-
lating the TFIIH subunit of RNA polymerase II and the ri-
bosomal S6 protein kinase [65, 66]. Cyclin B1/Cdc2
block DNA replication by phosphorylating minichromo-
some maintenance protein-4 (MCM4) and preventing its
intereaction with DNA [67]. Cyclin B1/Cdc2 also acti-
vates the mechanism involved in the eventual proteolytic
degradation of cyclin B1 by phosphorylating Cdc20 [68].
Cyclin B2 is localized in the Golgi apparatus and in the
endoplasmic reticulum [69], and is believed to play a role
in the segregation of organelles during cytokinesis
through the phosphorylation of targets such as the matrix
protein GM130 [70]. A mouse knock-out of cyclin B2 has
no apparent phenotype, whereas cyclin B1 is an essential
gene [71].
In addition to the basic cell cycle clock composed by cy-
clins and Cdks, other proteins have been implicated in
cell cycle regulation. Among them, Polo-like kinases
(Plks) and Aurora-related kinases play important roles in
cytokinesis by regulating events occurring at the centro-
somes, such as bipolar spindle assembly, centrosome sep-
aration, and chromosome segregation [72–75].

Regulation of cyclin/Cdk complexes 
by phosphorylation
Both cyclins and Cdks are subject to post-translational
regulation by phosphorylation (fig. 2) [76, 77]. The as-
sembly of a Cdk with its corresponding cyclin yields only
a partially active complex, full activity being achieved af-

Figure 2. Assembly of cylin/Cdk complexes and the regulation of
their activity by post-translational mechanisms.



Phosphorylation of Cdks can also negatively regulate
their kinase activity [76, 77]. The inhibitory phosphory-
lations occur near the N termini of all Cdks, specifically
on Tyr 15 of Cdk2 and Cdc2 and on Tyr 17 of Cdk4 and
Cdk6. In the case of Cdk2 and Cdc2, there is also a sec-
ond inhibitory phosphorylation involving Thr 14. Phos-
phorylation of these sites results in the inhibition of Cdk
activity even in the presence of the CAK-catalyzed acti-
vating phosphorylation. Wee1 and Myt1 have been iden-
tified as the kinases responsible for the phosphorylation
of the inhibitory sites on Cdk2 and Cdc2 [100–102].
Wee1 and Myt1 are bifunctional kinases that can phos-
phorylate both tyrosine and threonine residues, although
Wee1 shows a preference for Tyr 15 and Myt1 for Thr 14
[101, 103, 104]. Wee1 can phosphorylate both Cdk2 and
Cdc2 with equal specificity in vitro, although Cdk2 phos-
phorylation by Wee1 in vivo has not yet been demon-
strated. Myt1 uses only Cdc2 as substrate [105–109], and
the kinase responsible for phosphorylating Cdk4/6 on Tyr
17 has not been identified to date.
How are the activities of the kinases that regulate 
Cdks regulated? CAK activity appears to be constant
throughout the cell cycle [110, 111], but is induced in
some cell types during the transition from G0 into S
[112]. A decrease in TFIIH-Cdk7 kinase activity has
been described during mitosis (see above) [65, 99]. The
activities of Wee1 and Myt1 are regulated by both phos-
phorylation and subcellular localization in a cell cycle-
dependent manner [104, 113–115]. DNA damage
causes the phosphorylation of Cdc2 on Thr 14 and Tyr
15, with the resulting inhibition of cyclin B1/Cdc2 activ-
ity constituting a part of the G2 checkpoint [106–109].
Expression of Wee1 is downregulated in a p53-depen-
dent manner upon DNA damage (116). In a similar con-
text, the activity of Cdk4 was reported to be inhibited by
phosphorylation of Tyr 17 in response to DNA damage in
the G1 phase [117].
The inhibitory phosphorylations of Cdks are removed by
the action of the Cdc25 family of protein phosphatases
[76, 77, 118–120]. Interestingly, the Cdc25 proteins are
themselves substrates of cyclin/Cdks, and their phospho-
rylation stimulates the phosphatase activity [121, 122].
For example, cyclin E/Cdk2 phosphorylates Cdc25A at
the G1/S transition, and the activity of Cdc25A is neces-
sary for cyclin E/Cdk2 activation, thus creating a positive
feedback loop. The activity of Cdc25A is high from the
G1/S boundary to mitosis, and is required for the activa-
tion of cyclin A/Cdk2 [122]. Cdc25B dephosphorylates
cyclin B1/Cdc2 in the cytoplasm prior to its transport to
the nucleus [123]. Cdc25C further regulates entry into
mitosis by activating nuclear cyclin B1/Cdc2 [120, 121,
124]. Cdc25C has also been described as a substrate of
the kinase Plk [125], and the activity of Plk can be regu-
lated by Cdc25C (through cyclin B1/Cdc2), thus forming
a positive-feedback loop at mitosis [126, 127]. The

Cdc25 phosphatases also play important roles in regulat-
ing DNA damage-induced checkpoints [128–130]. The
details of mechanisms involved in cell cycle checkpoints,
such as those monitoring DNA damage, completion of
DNA replication, and segregation of chromosomes in
mitosis are beyond the scope of this review, but these top-
ics have been reviewed recently elsewhere [126, 127,
131–135]. 

Regulation of cyclin/Cdk complexes by Cdk inhibitors
An important mechanism for regulating cyclin/Cdk ac-
tivity is the interaction with inhibitory proteins [76, 77].
Seven Cdk inhibitors (CKIs) have been described and can
be divided into two families: the Ink4 family (p16, p15,
p18, and p19) and the Cip/Kip family (p21, p27, and p57)
[136, 137].
The Ink4 CKIs were initially found to bind monomeric
Cdk4 or Cdk6 [138–142]. The site recognized on Cdk4
overlaps with the region required for cyclin binding, and
Ink4 CKIs have been shown to block the formation of cy-
clin D/Cdk4 complexes [143]. More recently, ternary
Ink4/Cdk/cyclin D complexes have been detected under
high expression levels of p15Ink4b or p19Ink4d [144, 145].
The crystal structure of a ternary complex between
p18Ink4c, Cdk6, and cyclin K (a D-type cyclin encoded by
the Karposi sarcoma-associated herpesvirus) has been
solved [146]. In the model proposed, phosphorylation of
Cdk6 by CAK prevents the inhibition of kinase activity
upon binding of p18 to preformed cyclin K/Cdk6 com-
plexes. The binding of p18 to an unphosphorylated com-
plex diminishes the interaction between the cyclin and the
Cdk, favoring dissociation of the complex, and explain-
ing the low abundance of the ternary complexes [146]. A
possible function in regulating transcription has been at-
tributed to p16Ink4a by the observation that its overexpres-
sion could block the phosphorylation of the RNA pol II
CTD [147]. This effect was suggested to be mediated by
antagonizing TFIIH-bound Cdk7 [148].
The Cip/Kip family of CKIs is characterized by obligate
binding to preformed cyclin/Cdk complexes [149–152].
In vitro, these CKIs can block the activity of all
cyclin/Cdk complexes, albeit with different potencies
[137, 149, 153]. p21 is upregulated by p53 in response to
DNA damage [154, 155], and it is also upregulated dur-
ing replicative cellular senescence [156, 157]. Proliferat-
ing cell nuclear antigen (PCNA) has been found in
p21/cyclin/Cdk complexes, suggesting a function in
DNA replication and/or DNA repair [158–160]. p27 was
originally described as a heat-stable cyclin E/Cdk2 in-
hibitor responsible for the antiproliferative effects of
transforming growth factor (TGF)-b [161, 162]. p57 ap-
pears to regulate cyclin/Cdk complexes in a manner sim-
ilar to that of p27, although its expression is more tissue
restricted [152, 163].
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Cyclin E/Cdk2 complexes are present at a low basal level
in quiescent cells but are inactive due to the presence of
high levels of p27 [164, 165]. After a mitotic stimulus, D-
type cyclins are expressed, assemble with Cdk4 and
Cdk6, and initiate the phosphorylation of Rb pocket pro-
teins, a process that will later be completed by the activa-
tion of cyclin E/Cdk2 [28, 33, 34, 137, 166, 167]. A sec-
ond function attributed to cyclin D/Cdk4-6 is the seques-
tration of p27 bound to the preexisting cyclin E/Cdk2.
Indeed, cyclin D/Cdk4-6 complexes have been shown to
accumulate p27 as cells transit through G1 [167–169].
According to this model, p27 is redistributed to the newly
formed cyclin D/Cdk4-6 complexes due to a difference in
affinity. The interaction of newly formed cyclin D/Cdk4-
6 complexes with p27 may be one of the mechanisms
used by the protooncogene c-Myc to promote the removal
of p27 from Cdk2 complexes [166, 167].
Cell cycle arrest elicited by the expression of the Ink
CKIs has been reported to require the presence of at least
one Cip/Kip CKI to inhibit Cdk2 activity [170, 171]. The
requirement for inhibiting Cdk2 also explains why
p16Ink4a can impose a sustained G1 arrest, whereas the
overproduction of a constitutively active Rb cannot [172]:
since cyclin E/Cdk2 activity can drive S phase entry in
the absence of E2F activity, a constitutively active Rb can
be overridden if sufficient p27 is sequestered from cyclin
E/Cdk2. The formation of cyclin D/Cdk4-6 complexes is
regulated by growth factors, and overexpression of
p16Ink4a can block this process even in the presence of mi-
togenic stimuli. Several studies have indicated that the
full inactivation of Rb pocket proteins requires sequential
phosphorylation by both cyclin D/Cdk4-6 and cyclin
E/Cdk2 [28, 33, 34]. Thus, two distinct functions can be
attributed to cyclin D/Cdk4-6 complexes: first, the initial
phosphorylation of Rb and, second, the sequestration of
p27 to facilitate the activation of cyclin E/Cdk2.
The Cip/Kip CKIs were originally described as universal
Cdk inhibitors [149, 153]. Several more recent reports
have suggested a role for p21 or p27 as essential assem-
bly factors for the formation of active cyclin/Cdk com-
plexes [173–175]. These models propose that trimeric
CKI/cyclin/Cdk complexes may be active, and that inhi-
bition is elicited at higher stoichiometries of CKIs. How-
ever, structural studies indicate that one molecule of a
Cip/Kip CKI should be able to block the activity of cyclin
A/Cdk2 complexes [86, 176, 177]. Cip/Kip CKI binding
has also been suggested to block the activation of cy-
clin/Cdk complexes by CAK [178–181]. 
In vitro experiments have shown that p27 is able to inhibit
cyclin D/Cdk4-6 complexes only at higher stoichiome-
tries than are needed for the inhibition of cyclin A/Cdk2
[182]. Furthermore, Cdk4 (Rb kinase) but not Cdk2 (his-
tone H1 kinase) activity can be detected in native com-
plexes immunoprecipitated with antibodies to p27 [183].
Gene knock-out experiments have shown that cells lack-

130 A. J. Obaya and J. M. Sedivy Mechanisms of cell cycle regulation

ing p21 or p27 (or both) have defects in the assembly of
active cyclin D/Cdk4-6 complexes [21]. Although forma-
tion of cyclin D/Cdk4 complexes was not observed in the
aforementioned study, Rb phosphorylation on cyclin
D/Cdk4-specific sites was detectable; thus, the failure to
detect cyclin D/Cdk4 complexes may be attributed to ex-
perimental limitations. Another study using similar ap-
proaches has come to the opposite conclusion: p27 in-
hibits the activity of cyclin D/Cdk4-6 complexes [184].
Although some of these discrepancies have not been re-
solved, cyclin D/Cdk4-6 complexes apparently behave
differently with Cip/Kip CKIs than cyclin E/Cdk2 or cy-
clin A/Cdk2 complexes.

The E2F/Rb restriction point and G1/S phase 
transition

In most nontransformed cells, mitogenic signaling is re-
quired only until late G1, at which point the cell cycle ma-
chinery becomes committed to enter S phase and initiate
DNA replication. This mitogen-dependent G1 checkpoint
is also known as the restriction point and coincides in
time with the phosphorylation and consequent inactiva-
tion of the Rb family of proteins (fig. 3). In quiescent
cells, hypophosphorylated Rb and p130 are present in
complexes with the E2F family of transcription factors
[185, 186]. The phosphorylation of Rb and p130 releases
the E2F proteins and allows them to act as activators of
transcription. E2F target genes that are upregulated as a
result of Rb inactivation include genes required for the
completion of the G1/S phase transition, as well as genes
necessary for DNA replication [187].
To bind DNA, E2F proteins form obligate heterodimers
with a related family of DP proteins [188–190]. E2F/DP
heterodimers can act both as activators and repressors of
transcription. The latter activity is due to the recruitment
of Rb pocket proteins to promoters [191, 192]. Rb is
known to interact with histone deacetylases (HDACs)
and also with the hBRM and BRG1 proteins which are
the mammalian homologues of the yeast SWI2/SNF2
chromatin-remodeling complex [193, 194]. Thus, the re-
cruitment of E2F/Rb complexes to a promoter is thought
to antagonize gene expression through histone deacetyla-
tion and chromatin remodeling [195, 196].
One of the genes transactivated by E2F/DP is cyclin E
[23, 24]. Cyclin E gene expression drives a positive feed-
back loop through further phosphorylation of Rb and re-
lease of additional E2F activity [26, 34, 197]. This feed-
back loop is also enhanced by the expression of E2F1,
E2F2, and E2F3 genes which are themselves targets of
E2F transactivation, and by the phosphorylation of p27
by cyclin E/Cdk2 which initiates its degradation [35–37,
198, 199]. Cyclin A expression, which occurs subsequent
to cyclin E and is required for transition through S phase,
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is also influenced by E2F [200–202]. The mechanism
which ensures the sequential activation of cyclin E and
cyclin A gene expression depends on the sequential 
elimination of Rb-containing complexes (HDAC-Rb-
hSWI/SNF and Rb-SWI/SNF) which repress both pro-
moters [203, 204]. First, phosphorylation of Rb by cyclin
D/Cdk4-6 disrupts the association of HDAC which is suf-
ficient to allow cyclin E expression. Rb-hSWI/SNF inter-
action is, however, maintained and is sufficient to repress
the cyclin A promoter, thus blocking a precocious and 
undesirable exit from G1 [203]. 
Deregulated E2F activity can trigger the initiation of
DNA replication [205–207]. Cyclin E overexpression
has been shown to shorten G1 [40, 41], however, the re-
quirement for mitogens is not abrogated and the overall
doubling time is not changed [40]. Cyclin E may act as a
necessary intermediate between E2F activity and the ini-
tiation of DNA replication. Supporting this idea, expres-
sion of cyclin E in the presence of a dominant-negative
DP-1 or unphosphorylatable Rb mutant protein has been
shown to initiate S phase and DNA replication [208, 209].
Under normal conditions, E2F and cyclin E likely collab-
orate to elicit the onset of S phase, and their activities may
converge at the point of initiation of DNA replication
[210, 211].

Degradation: the importance of not being present

Elimination of both positively and negatively acting cell
cycle effectors must be important for orderly cell cycle
progression, an obvious necessity arising from the need
to reset the system in preparation for the next round of
cell division. Likewise, cells need to be able to sense the
absence of mitogenic stimuli and subsequently withdraw
from the cell cycle. 
The ubiquitin-mediated proteasome system is the main
pathway employed for the degradation of cell cycle com-
ponents. Two structurally and functionally similar com-
plexes, the Skp-Cullin-F-box (SCF) complex and the
anaphase-promoting complex (APC), target specific cell
cycle components for ubiquitination at discrete points in
the cell cycle. The SCF complex is employed at the end of
G1, through S and into early G2 phase, whereas the APC
becomes active at the end of G2 and mediates the transition
through mitosis [212, 213]. Both SCF and APC act as E3
ubiquitin ligases. The formation of the complexes is nucle-
ated by a single large protein that acts as the docking site,
Cdc53/Cul1 in the case of SCF, and the cullin-related pro-
tein APC2 in the case of APC [214, 215]. The core of the
SCF complex is formed by the interaction between Skp1,
the E2 enzyme Cdc34, and Cdc53/Cul1 [216, 217]. Eight
subunits have been cloned as part of the APC in verte-
brates, although no homologs of Skp1 or Cdc34 have been
found among them [214]. Target specifity of ubiquitination
is provided by a large number of factors that interact with
the complexes. In the case of SCF, these factors are com-

Figure 3. The phosphorylation of Rb and release of E2F at the restriction point in G1 phase.
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prised by a family of proteins containing an F-box se-
quence motif [218]. In the case of the APC, recent data in-
dicate the existence of WD-40 repeats in the specificity
factors [212, 213]. The specificity conferred by the F-box
or WD-40 proteins thus makes it necessary to functionally
differentiate among the various possible SCF and APC
complexes, for example, SCFSkp2, SCFb-TRCP, APCCdh1,
APCCdc20, and so on [212, 219–223].
As a general rule, Cdk genes are constitutively expressed
and Cdks are relatively stable, whereas cyclin genes show
periodic patterns of expression and cyclins are subject to
regulated degradation [224]. The majority of mitogen-ini-
tiated signaling pathways converge to regulate the ex-
pression and degradation of cyclin D1 and p27 proteins
[11, 178, 225–234]. The degradation of cyclin D1 com-
plexed with Cdk4/6 is initiated by the phosphorylation of
threonine 286 by glycogen synthase kinase 3b (GSK3b);
this signal targets the cyclin to the proteasome but ap-
pears to spare the Cdk [235, 236]. Cyclin D1 phosphory-
lation on Thr 286 is inhibited by the Ras-PI3K-Akt path-
way, thus increasing the half-life of cyclin D/Cdk4-6
complexes upon mitogenic stimulation. As discussed pre-
viously, the Ras-Raf-MEK-Erk pathway is utilized to
stimulate the synthesis and assembly of active cyclin
D/Cdk4-6 complexes. Elimination of growth factors re-
sults in a rapid decline in cyclin D mRNA and protein, re-
sulting in the depletion of Cdk4/6 complexes, and conse-
quently the inability to progress through the restriction
point in G1 phase.

Cyclin E degradation is initiated by the phosphorylation
of Thr 380 and subsequent recognition by the ubiqui-
tin/proteasome system [38, 39]. In contrast to cyclin D,
however, the phosphorylation is not coupled directly to
mitogenic signals but is instead catalyzed by the cyclin
E/Cdk2 itself. Thus, the burst of cyclin E expression that
occurs in late G1 is rapidly counteracted through Cdk2
activity-dependent cyclin E degradation [38]. Both cyclin
D1 and cyclin E are also degraded as free molecules with-
out the necessity of Cdk binding [237, 238]. The half-life
of cyclin D1 in complexes with Cdk4/6 is approximately
30 min, and decreases to as little as 10 min for free cyclin
D1. Degradation of free cyclin D1 occurs in the absence
of phosphorylation on Thr 286 [238]. The ubiquitination
of free cyclin E occurs through a distinct E3 ubiquitin lig-
ase and does not require phosphorylation of Thr 380
[237, 239].
p27 levels are high in quiescence and gradually decrease
as cells transit through G1 due to reduced gene transcrip-
tion [169] as well as increased protein turnover [240]. Mi-
togenic signaling results in the rapid degradation of p27
at the end of G1, suggesting that p27 is an important gate-
keeper for regulating S phase entry [11, 232, 241]. Degra-
dation by the ubiquitin/proteasome pathway is initiated
by cyclin E/Cdk2-catalyzed phosphorylation of Thr 187
(fig. 4) [35, 36, 165, 242, 243]. This reaction occurs in
trans by the phosphorylation of inactive p27/cyclin
E/Cdk2 complexes by active p27-free cyclin E/Cdk2
[244]. Overexpression of cyclin D/Cdk4 can initiate S

Figure 4. Subcellular localization and degradation of G1 phase cyclin/Cdk complexes.



phase by sequestering sufficient p27 but does not lead to
significant degradation of p27, implying that p27 is only
phosphorylated when bound to cyclin E/Cdk2 [37]. Phos-
phorylated p27 is not immediately degraded but needs to
be transported to the cytoplasm by a mechanism involv-
ing the Jab1 protein. Jab1 was initially discovered as a
coactivator of c-Jun and JunD, and has recently been
shown to interact with the Thr 187-phosphorylated form
of p27 [245, 246]. 
Cytoplasmic p27 is ubiquitinated by an SCF complex
containing the F-box subunit Skp2 [220, 247–249].
Overexpression of Skp2 in quiescent cells promotes
degradation of p27, activation of cyclin A/Cdk2, and S
phase entry, whereas disruption of Skp2 leads to the ac-
cumulation of p27 [250, 251]. Stimulation of cell cycle
progression depends on the degradation of p27, since
overexpression of Skp2 in the presence of a nondegrad-
able (T1897A) mutant of p27 elicited neither cyclin
A/Cdk2 activity nor S phase entry [250, 252]. Inactivation
of other components of the SCFSkp2 complex, for example
Cul-1 or Nedd8, also affects the degradation of p27 [247,
253]. Cul-1 has been implicated as a transcriptional target
of c-Myc and may account for the link between c-Myc ac-
tivation and degradation of p27 in late G1 [254].
Protein turnover also contributes to the regulation of the
E2F family of transcription factors [187, 255]. The phos-
phorylation of Rb pocket proteins during progression
through late G1 releases E2F/DP heterodimers, which
subsequently become targets of ubiquitin-dependent
degradation [256–258]. Since Rb is phosphorylated and
inactive in both S and G2, degradation provides an alter-
nate mechanism of downregulating E2F-activated S
phase genes, such as DHFR, PCNA, Orc, and Cdc6. The
degradation of E2F occurs through the same  SCFSkp2

complex that targets p27 [259, 260]. 
Cyclins A and B are likewise phosphorylated by the Cdk
to which they bind and activate [261, 262], and are sub-
sequently degraded by the APC/cyclosome complex
[263, 264]. The APC/cyclosome is activated by the phos-
phorylation of its Cdc20 subunit by Cdc2 [68, 265]. Cy-
clin A is required throughout G2 and is degraded after nu-
clear envelope breakdown. Cyclin B1 degradation occurs
during the metaphase to anaphase transition and requires
the presence of a N-terminal destruction-box motif in the
cyclin [266–269]. The Cdc25 phosphatases are also de-
graded by the ubiquitin/proteasome pathway in a cell cy-
cle-dependent manner, or in response to DNA damage
[270–272].

Localization: the importance of being in the 
right place at the right time

Functional Cdk activity is predominantly nuclear in loca-
tion. Thus, cyclin/Cdk complexes must not only be as-

sembled and activated at the right time, but also trans-
ported to their sites of action. Cyclin D1 and Cdk4 as-
semble in the cytoplasm but since both proteins lack nu-
clear localization signals (NLS), interaction with the
Cip/Kip CKIs p21 or p27, which contain an NLS near
their C termini, may provide a mechanism for nuclear im-
port [173]. However, if p21/p27 inhibit the activity of cy-
clin D/Cdk4 or block activation by CAK, such a mecha-
nism would appear counterintuitive unless active cyclin
D1/Cdk4 could subsequently be released in the nucleus.
The presence of p27-loaded cyclin D/Cdk4-6 complexes
in the nucleus would also impair the proposed sequestra-
tion of p27 from cyclin E/Cdk2. An alternate nuclear im-
port mechanism may be presented by the recently discov-
ered SEI-1 protein, which binds to cyclin D1/Cdk4 com-
plexes and protects their activity against p16Ink4a

inactivation [273]. SEI-1 contains an NLS and its expres-
sion is serum inducible.
Cyclin D1 localizes to the nucleus during mid G1 phase
and is retransported to the cytoplasm as cells enter S phase
[274]. The importance of localization is underlined by the
observation that a cyclin D1 mutant (Thr 156) that blocks
the transport of cyclin D1/Cdk4 complexes into the nu-
cleus can cause G1 cell cycle arrest [275]. By analogy to
other cyclin structures, Thr 156 is located in the linker re-
gion that joins the two main cyclin folds. This mutation
was proposed to affect the interaction with molecules in-
volved in the nuclear transport of cyclin D/Cdk4-6 com-
plexes. However, complexes formed with the mutant cy-
clin D can interact with p21, and overexpression of p21
can partially overcome the transport defect.
Cytoplasmic cyclin D1/Cdk4-6 complexes are inactive,
and the majority of CAK activity has been detected in the
nucleus. Thus, one of the last steps in the generation of
functionally active complexes is phosphorylation by
CAK in the nuclear compartment [81, 82, 110, 276].
Cdc25 phosphatases have also been reported to be mainly
nuclear [277]. The order of CAK phosphorylation and
Cdc25A dephosphorylation of cyclin D/Cdk4-6 com-
plexes is not known. The phosphorylation of Thr 286 that
targets cyclin D1 for degradation also serves as the signal
for the export of cyclin D1/Cdk4 complexes from the nu-
cleus to the cytoplasm. The localization of GSK3b, the
kinase responsible for the phosphorylation of cyclin D1
on Thr 286, is also cell cycle regulated but in the opposite
fashion: GSK3b is cytoplasmic during G1 and relocalizes
to the nucleus during the G1/S transition [235].
Another case in which regulation by subcellular local-
ization has been shown to be of primary importance is
the inhibition of cell cycle progression by the CKI p15
Ink4b, which is upregulated in response to treatment of
some cells with the cytokine TGF-b (145). p15 blocks
the formation of new cyclin D/Cdk4-6 complexes in the
cytoplasm, and crystallographic studies imply that it may
also dissociate preformed complexes [146]. Thus, no
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complexes are transported to the nucleus and nuclear cy-
clin E/Cdk2 complexes remain p27-bound and inactive.
If p15 expression is reduced, cyclin D and Cdk4-6 as-
semble, enter the nucleus, and sequester p27 from resi-
dent cyclin E/Cdk2/p27 complexes [145]. The immedi-
ate consequence of cyclin E/Cdk2 activation is the initi-
ation of p27 degradation [36, 37]. However, since p27
bound to cyclin D/Cdk4-6 is stable, only the p27 in cy-
clin E/Cdk2 complexes is targeted for degradation [244,
278]. p27 bound to cyclin D/Cdk4-6 is released when cy-
clin D is degraded, and can subsequently rebind new
complexes.
The export of p27 to the cytoplasm for degradation may
also be regulated. p27 has been shown to interact with the
nuclear pore-associated protein mNPAP60 in a yeast two-
hybrid screen [279]. The Arg 90 to Gly mutant of p27
fails to interact with mNPAP60 and accumulates in the
nucleus in a phosphorylated form. Since the Jab1 protein
has been shown to participate in the export of phospho-
rylated p27 [246], one can envision a possible interaction
between Jab1 and mNPAP60 in order to regulate this
process.
Cyclin E/Cdk2 complexes have been observed to localize
at the G1/S phase boundary to Cajal bodies, subcellular
organelles that associate with histone gene clusters. This
localization depends on the presence of cyclin E, and 
suggests a spatial relationship between cyclin E/Cdk2-
dependent  phosphorylation of p220(NPAT) and replica-
tion-dependent histone gene transcription [31, 280].
Of the six E2F family members, only E2F1, E2F2, and
E2F3 contain an NLS [281, 282]. Since NLSs are absent
from E2F4 and E2F5, association with other proteins,
such as DP2 and the Rb family, is required for nuclear
transport [281, 283, 284]. Cyclin A/Cdk2 in association
with E2F/DP and p107 has been found in late S phase
[285, 286]. Although these complexes displayed both
DNA-binding and kinase activities in vitro [287], their
cytoplasmic localization [281, 284] raises questions
about their roles in cell cycle regulation.
The activity of cyclin B1/Cdc2 complexes is also influ-
enced by cellular localization [288, 289]. As cyclin B1
expression is upregulated in late S, cyclin B1/Cdc2 com-
plexes assemble and accumulate in the cytoplasm. Cdc2
is phosphorylated on both the CAK (Thr 161) and
Wee1/Myt1 (Thr 14, Tyr 15) sites, and the complexes are
thus inactive [123]. Thr 161 phosphorylation is believed
to be accomplished by nuclearly localized CAK through
the shuttling of cyclin B1/Cdc2 complexes in and out of
the nucleus. Although cyclin B1 does not possess a clear
NLS, a recent report suggests that the interaction of 
cyclin B1/Cdc2 complexes with another type of cyclin,
cyclin F, supplies the necessary NLS function [290].
Since cyclin B1/Cdc2 complexes shuttle in and out of the
nucleus, the predominantly cytoplasmic localization
prior to their activation depends on a cytoplasmic reten-

tion signal (CRS) at the N terminus of cyclin B1 [291].
Cyclin B1 nuclear export is mediated by an interaction of
the export mediator CRMI with the CRS domain, which
also includes a nuclear export signal [289]. Direct inter-
action between Cdc2 and cytoplasmically localized Myt1
also helps to tip the balance toward cytoplasmic localiza-
tion [108, 109]. The activation of cyclin B1/Cdc2 com-
plexes by Cdc25B dephosphorylation is believed to be
the signal for nuclear import. Subsequent phosphoryla-
tion of the cyclin B1 CRS by a yet undetermined mecha-
nism alters the balance of import/export activities in 
favor of nuclear localization [289, 292–294].

Concluding remarks

The central paradigm of cell cycle regulation, namely, the
periodic synthesis of cyclins and consequent activation of
Cdk activities, first began to emerge almost 20 years ago.
In the brief period since these seminal discoveries, this
conceptually simple mechanism has taken on an almost
daunting level of complexity. What are the main areas for
future investigation?
Mutation and consequent deregulation of numerous cell
cycle components have been implicated in tumorigenic
processes. For example, cyclins D1 and E have been
shown to be capable of acting as oncogenes, and the CKIs
and Rb pocket proteins as tumor suppressors. Cyclin A
has been shown to have a role in apoptotic processes. Cy-
clin D/Cdk4-6 complexes have emerged as the main con-
nection between the intrinsic cell cycle clock and extrin-
sic signaling pathways, but much remains to be discov-
ered in this area. For example, the mechanisms that
connect the Ras pathway with the expression of D-type
cyclins have only recently begun to be unraveled.
Processes that regulate the turnover and subcellular lo-
calization of cell cycle components are especially in need
of further investigation.
Significant resources are being committed to the discov-
ery of pharmacological Cdk inhibitors, which are be-
lieved to hold significant promise for the therapeutic con-
trol of cellular proliferation. In spite of some early suc-
cesses in the discovery of compounds with specificity for
the family of Cdks, compounds with high specificity for
individual Cdks (e.g., Cdk2 versus Cdk4) have been elu-
sive. Additional structural data on cyclin/Cdk complexes,
and especially on higher-order complexes with CKIs or
other interacting proteins, would undoubtedly accelerate
progress in this area. As pointed out in this review, cyclin
D/Cdk4-6 complexes appear to behave significantly dif-
ferently from other cyclin/Cdk complexes, but the struc-
tural basis for these differences is not known. An alternate
method of therapeutically targeting Cdk activity may be
to take advantage of our emerging knowledge of prote-
olytic degradation, since these mechanisms appear to
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possess a high degree of specificity as well as selectivity.
Although inhibitors of proteolysis have been described,
of special interest would be methods to accelerate the
turnover of specifically targeted components. 
Another area that remains underexplored is that of spe-
cific Cdk substrates. Ultimately, one needs to be able to
explain progression from one cell cycle phase to another
in terms of the proteins that are phosphorylated at each
stage, the functions of these proteins, and the manner in
which this function is altered by Cdk phosphorylation.
Although Rb pocket proteins have been indentified as
critical for progression through the G1 phase restriction
point, and much has been learned recently about cyclin
B/Cdc2, much remains to be learned about cyclin E/Cdk2
and progression through late G1 as well as about cyclin
A/Cdk2 and the relationship with DNA synthesis. The
technical problems of assigning physiological kinase sub-
strates are not unique to Cdks, and as more powerful tools
are developed to verify in vivo specificities of all protein
kinases, progress in this field is likely to accelerate.
The layers upon layers of cell cycle controls, checkpoints
and feedback loops, as well as the high degree of their
evolutionary conservation in all metazoan organisms,
speak to the fundamental importance of cell cycle mech-
anisms. This review has summarized the main points of
our current knowledge about the intrinsic cell cycle clock
in mammals, and the manner in which these mechanisms
are integrated with a variety of signaling pathways. The
future comprehensive understanding of the integrated
global regulatory system will likely significantly acceler-
ate the discovery of interventive therapies capable of tar-
geting specific proliferative disorders.
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