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Abstract. Paneth cells (PCs) were described over a century
ago as granulated cells located at the base of small intesti-
nal crypts, the ‘crypts of Lieberkühn.’Various histochemi-
cal staining procedures were developed that identified PCs
based on their distinctive granule staining pattern. Early
on, PCs were proposed to perform a specialized function
other than absorption of digested nutrients, the predomi-
nant task of the small intestinal epithelium. Since then,
many constituents of the PC granules have been biochem-
ically characterized. The presence of various granule-asso-
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ciated antimicrobial substances and their release upon mi-
crobial challenge suggest that PCs function as specialized
defense cells in the small intestine. Altered resistance to
microbial infection in animal models with disrupted or
augmented PC function provides further support for the
host defense role of PCs. Other PC components suggest
that PCs may also participate in the regulation of lumenal
ionic composition, crypt development, digestion, and in-
testinal inflammation.

Key words. Innate immunity; pancreas; inflammatory bowel disease; antimicrobial peptide; cytokine; matrilysin;
trypsin.

Introduction

This review summarizes reports on the biology and func-
tion of Paneth cells (PCs) gained from a variety of re-
search perspectives, and proposes a model for PCs as
multifunctional cells. Whereas the antimicrobial proper-
ties of PCs are now well established, the suggested addi-
tional roles are more speculative.

PCs are granulated cells in small intestinal crypts

PCs are found at the bottom of the small intestinal crypts
[1, 2], also called crypts of Lieberkühn (fig. 1). On aver-
age, there are 5–15 PCs in each crypt [3, authors’observa-

tions]. Various histochemical stains (fig. 2), including pe-
riodic acid Schiff’s stain, eosin, phloxine-tartrazine [4, 5],
Blancofor BA or fluorescent staining [6], and pokeweed
lectin binding [7], intensely stain the basic PC granules,
when properly fixed [8], and have been used to identify
PCs in vertebrates [6, 9–11]. By such histochemical crite-
ria, the small intestines of humans, primates, rodents,
horses, and pigs are abundantly populated with PCs (table
1). Comparative ultrastructural analysis revealed that gran-
ule morphology varies among the species [12]. More pre-
cise staining for PCs was achieved with immunohisto-
chemistry employing antibodies against PC-specific com-
ponents, mostly lysozyme [8, 14] and, more recently,
defensins [15] or type-2 secretory phospholipase A2
(sPLA2) [16]. We noted that in some circumstances such
as ulcerative colitis in humans, the typical histochemical
staining of granules is absent while staining of granule-as-* Corresponding author.
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sociated proteins is still detectable by immunohistochem-
istry [B. Shen and C. L. Bevins unpublished data]. A simi-
lar discrepancy was found previously comparing lysozyme
immunostain with histochemical staining in celiac disease
[17]. Hence, the reported absence of PCs in an animal
species or disease setting must be interpreted with caution
since it may mean only the absence of histochemically
stainable granules in PCs. In mice, rats, and humans, the
expression of PCs is inhomogeneous in the small intestine,
with lower numbers in the duodenum and higher number
towards the ileum [C. L. Bevins unpublished data; 18, 19].
Sometimes, cells with some morphologic features of PCs
are observed in the villi and are named intermediate cells
[20, 21]. The ontogeny and function of these cells is still
not clarified. Outside mammals, cells similar to PCs have
been found in frog intestine [22].

PCs are long-lived cells that undergo postnatal 
proliferation and maturation

PCs are pyramidally shaped columnar epithelial cells that
originate from the multipotent intestinal stem cells [23,

Figure 1. Schematic diagram of the small intestinal villus-crypt ar-
chitecture. Intestinal stem cells reside at the neck of the crypt. Im-
mature epithelial cells derived from the stem cells migrate either to-
ward the villi tips or toward the crypt base. Cells migrating toward
the villus differentiate into either absorptive enterocytes, goblet
cells, or enteroendocrine cells. At the villus tips, cells ultimately die
by apoptosis and are sloughed. Cells that migrate toward the crypt
base differentiate into Paneth cells. Inset Paneth cells release their
secretory vesicles into the narrow crypt lumen. See text for details.
(Illustration by D. Schumick, Department of Medical Illustration,
Cleveland Clinic Foundation, 2000.)

Figure 2. Histology of the human small intestinal crypts. (A) Low-power view of paraffin-embedded section of normal adult ileum stained
with hematoxylin and eosin [reproduced with permission from J. Biol. Chem. (1992) 267: 23216–23225]. Arrows denote Paneth cells at
the base of the crypts. Inset Higher-power view of Paneth cells. Arrow denotes Paneth cell secretory granules. (B) Paraffin-embedded sec-
tion of adult ileum stained with phloxine-tartrazine [B. Shen, unpublished data]. Arrows denote Paneth cells.
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24] located at the interface of the villus and the crypt. The
stem cells also give rise to three other lineages – entero-
cytes, goblet and enteroendocrine cells – that migrate up-
ward and populate the villi. During maturation and differ-
entiation, PCs migrate downward to the bottom of the
crypt and fill with numerous prominent apical cytoplas-
mic granules [3, 25], which can be released into the crypt
lumen [26, 27]. Epithelial cell migration may be influ-
enced by human intestinal trefoil factor that has been lo-
calized in PCs [28]. PC differentiation is accompanied by
cytokeratin 21 expression in rat [29] and may be signaled
through Rac1 [30]. In contrast to absorptive villous ente-
rocytes that turn over rapidly (2–3 days), PCs have a
longer turnover period of about 18–23 days [31–33]. In
humans, PCs first appear at 13.5 weeks of gestation in the
colon and small intestine, and after 17 weeks of gestation
they are confined to the small intestine only [34]. In mice,
PCs appear after birth when the intestinal crypts are
formed. In humans, mice, and rats, PC expression is low
in the newborn but PC numbers and products increase
substantially postnatally [3, 34–36], independently of ex-
posure to microorganisms [3] and possibly promoted by
epidermal growth factor [37]. As shown in rats and opos-
sum, PC development may also be stimulated in newborns
by corticosteroids [36, 38]. The presence of a prolactin re-
ceptor in PCs [39] suggests that PC development and mat-
uration in the postnatal period could be influenced by pro-
lactin (and other hormones) in breast milk [40, 41].

Systems to study the cell biology of PCs

Studies of the cell biology of PCs have been limited by
the need to work with primary tissue because PC-derived
cell lines are not yet available. Interestingly, true PC neo-
plasia is rarely found in clinical medicine, possibly re-
lated to the expression of the tumor suppressor gene ade-
nomatous polyposis coli (APC) [42]. However, neoplas-
tic PCs with incomplete differentiation may be
underreported, since they may lack the characteristic
granules used for histochemical identification. Tech-

niques to characterize granule content, surface-bound,
and cytoplasmic components include immunohistochem-
istry, in situ hybridization, tissue extraction, and intestinal
washes with subsequent RNA or protein analysis (table
2). To explore the biology of PCs in primary organ cul-
tures, multiple experimental systems have been devel-
oped including tissue-engineered neointestine [43], iso-
lated ileal loops and tissue cultures of hyperplastic PCs
derived from these [44–46], xenografts of fetal gut [47,
48], autograft neomucosa in ectopic sites [49], and iso-
lated crypts [50]. Recently, PC-enriched fractions have
been prepared from single-cell suspensions of isolated
crypts by flow cytometry. Although biological properties
of these cells are not yet characterized, this method may
provide opportunities for direct studies on single PCs [T.
Ayabe and A. J. Ouellette, unpublished data]. Transgenic
mice with altered PCs [51, 52] and oral infection models
in various animals have been used to study PC function in
the living animal [53–57]. In humans, ileal pouches con-
structed (as a pseudocolonic reservoir) following total
proctocolectomy and ileal neobladders (as a urinary blad-
der replacement) following cystectomy have provided op-
portunities to study PC secretion in vivo [58–61; C. L.
Bevins and D. Ghosh, unpublished data]. In summary,
most of our knowledge about the composition and func-
tion of PCs has been gained indirectly from studies of
complex tissues, and more studies on isolated PCs would
be invaluable.

PCs are filled with antimicrobials

Immunohistochemistry by light and electron microscopy
localized to PC granules several substances with well-
documented antimicrobial activity. For example, de-
fensins [15, 27, 62], lysozyme [63–65], and sPLA2 [16,
66] are antimicrobial (poly)peptides directed against cell
walls of target microbes (fig. 3). Other granule proteins
with possible but less well defined antimicrobial roles in-
clude the weakly antimicrobial secretory leukocyte in-
hibitor (SLPI) [67] and immunoglobulin IgA [68] that

Table 1. Distribution of Paneth cells in vertebrates. In most cases, PCs were identified by the presence of granules after histochemical
staining. However, since in some cases, PC-specific products are detected only by immunohistochemistry, the reported lack of PCs needs
to be interpreted with caution. 

Abundant Rare reports Reported as absent

Human [1], monkey [12, 160, 173], Cat* [11, 189], dog* [63, 189], Cow [185], sheep [8, 185], ostrich [192],
mouse [174–176], rat [177, 178], mole [185], anteater [190], sloth [193], seal [194], crocodile [195],
rabbit [12], guinea pig [12, 117], echidna [191] colubrid snake [196]
hamster [12, 129, 179], horse [53, 186], 
bat [12], opossum [38, 181, 182], 
squirrel [183-185], pig [13, 187, 188], 
frog (PC homologue) [22]

* Controversial.
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Table 2. Paneth cell components. 

Subcellular molecule comments species references
location

Granule- lysozyme, phospholipase A2, SLPI ~ 14.5 kD; antimicrobial H, M 16, 65–67, 
associated defensins 205

~ 3.5 kDa; antimicrobial; induction of epithelial H, M, R 15, 27, 76, 77
chloride secretion

IgA ~ 160 kDa as monomer; antimicrobial H, R 68
heavy metal ions (cadmium, regulation of metalloenzyme activities, antimicrobial? H, M, R 151– 153,
copper, selenium, zinc) 155, 158, 159
zinc-binding protein ~ 90 kDa H, R 156
TNF-a proinflammatory H, M 92–95
AE2 anion exchanger ~ 140 kDa integral membrane protein; three isoforms; M 118

Cl–/HCO3
– exchanger

prostaglandin E2 proinflammatory; secretagogue R 96
trypsin and trypsinogen ~ 24 and ~ 26 kDa; Arg- and Lys-specific protease; 3 iso- H 106, unpub-

forms; human defensin processing? digestive function? lished data 
laminin receptor ~ 67 kDa; possible receptor for encephalitis viruses and H 197

prion proteins; belongs to family of ribosomal proteins
Rab3D Ras-like monomeric GTP-binding protein; regulated R 198

exocytosis?
phospholipase B/lipase Ca2+-independent phospholipase; catalytic domain of an R 132

~ 150 kDa membrane enzyme
carboxylic ester hydrolase ~ 100 kDa; glycoprotein; pancreatic carboxylesterase; H 125

digestive function? 
DNAse I ~ 30 kDa; removal of extracellular DNA; possibly involved H 133

in apoptosis

Cyto- zinc see above; DNA transcription and RNA translation H, R 151, 199
plasmic EGF growth factor for epidermal and epithelial cells H, R 109

CRHSP28 ~ 28-kDa-calcium-regulated heat-stable protein; role in R 122
Ca2+-mediated exocrine secretion

cytokeratin 21 ~ 49-kDa type I cytokeratin; in differentiated intestinal R 29
epithelia; homologue to human keratin 20 

prolactin receptor ~ 67 kDa; member of the cytokine receptor superfamily; H 39
signal transduction; produced by PCs?

glutathione-S-Transferase ~ 25 kDa; GST theta1; conjugation of reduced glutathione H 165
to a wide range of exogenous and endogenous 
hydrophobic electrophiles

Basolateral MRP ~ 190-kDa multidrug-resistance associated protein; M 163
membrane export of glutathione-conjugated substrates

Lysosome osteopontin ~ 40-kDa protein; same as urinary stone protein; H 97
cell-matrix interaction

enzymes unspecific acid phophatase (~ 45 kDa); E600 resistant R 177
esterase (~ 43 kDa, hydrolysis of cholesteryl esters and 
triglycerides), b-glucuronidase (~ 72 kDa, dermatan and 
keratan sulfate degradation, glycosylhydrolase); 
b-glucosaminidase (~ 61 kDa, degradation of terminal 
N-acetyl-glucosamine, glycosyl hydrolase)

Endo- protein disulfide isomerase ~ 55-kDa protein; also named cellular thyroid-binding H, R 200, 201
plasmic protein, p55; rearrangement of disulfide bonds
reticulum

Golgi NADPase activity distinct ultrastructural location of a ubiquitous enzyme R 202

unspeci- HIP/PAP ~ 16-kDa stress protein; same as pancreatitis-associated H, M, 69, 70, 203
fied protein; C-type lectin

trypsin-inhibitors a1-antitrypsin ~ 43 kDa; Mpgc60 (postnatally H, M 105, 107, 
upregulated) ~ 7 kDa; pancreatic secretory trypsin 108, 204
inhibitor (PSTI) ~ 6 kDa

matrilysin ~ 27-kDa protein; also known as MMP7; zinc metallo- M 206
protease; mouse defensin processing?

CD15 carbohydrate antigen (3-fucosyl-N-acetyllactosamine); H 207
also named Lewis X, lex, SSEA-1, X-hapten, 3-FAL; 
expressed in phagocytes, various epithelial cells, some 
activated lymphocytes, and some tumor cells; cell 
adhesion molecule; involved in phagocytosis?
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may bind to and block microbial pathogenic factors such
as pili or toxins. PCs also contain pancreatitis-associated
protein, PAP (also known as hepatocarcinoma-intestine-
pancreas protein, HIP) [69, 70], belonging to a family of
C-type lectins that bind sugar moieties on microbial sur-
faces with consequent aggregation or enhanced binding
to phagocytes. Upon exposure to viable or heat-killed
bacteria [53, 68] or to microbial products such as
lipopolysaccharide and lipoteichoic acid [50, 71], PCs re-
lease their granules, resulting in increased concentrations
of antimicrobials in the intestinal lumen. Hence, PCs may
be important in controlling microbial density in the small
intestine where microbial nutrients in the form of diges-
tate are plentiful. Supporting this notion, much lower
densities of microbial colonization have been observed in
small than in large intestine that lacks PCs. Phagocytic
activity of PCs was proposed in early reports, based on ul-
trastructural analysis of PCs [72, 73] and expression of
the granulocytic surface antigen CD15 [74]. However,
microbes could rarely be detected in PCs. The role of PCs
in intestinal immunity was questioned when two lines of
transgenic mice with ablated PC developed normally and
had no increase in intestinal colonization when main-
tained in a barrier facility [51]. Interestingly, in one lin-

Table 2. (continued)

Subcellular molecule comments species references
location

pancreatic lipase related-protein 2 ~ 50-kDa protein; lipase with digestive function; role in M 121
cytotoxic T-lymphocyte function? in contrast to strong in
situ hybridization, immunohistochemistry is weak

CRS cryptdin -related sequences; gene product unknown; M 208
antimicrobial?

REG protein ~ 19-kDa glycoprotein (P19); similarities to C-lectin H 209
family; precursor of the ~ 14-kDa unglycosylated poly-
peptide (P14, also named pancreatic stone protein 
or pancreatic thread protein); role in cell matrix 
association; downregulation upon differentiation; 
communication with immune cells

FAS ligand (CD95 L) ~ 30-kDa membrane protein; apoptosis inducing in H 103, 104
FAS+ cells

TGF-b1 ~ 42 kDa; controls cell growth; anti-inflammatory R 91
APC ~ 300 kDa; adenomatous polyposis coli protein; 

tumor suppressor; cell-contact and cytoskeleton- M 42
associated protein with signaling functions

CD1 family of ~ 50-kDa membrane glycoproteins (CD1a–e); M 100
associates with beta-2-microglobulin; lipid and glycolipid 
antigen presentation to T cells; involved in intracellular 
infection, possibly in autoimmune disease

CD44 variant 6 ~ 80-kDa glycoprotein; involved in matrix adhesion, 
lymphocyte activation, and lymph node homing H 112

metallothionein ~ 6-kDa; heavy metal binding through the numerous R 155, 210
cysteine residues

a1 E voltage-gated Ca2+ channels Ca2+ channel H 126
VIP receptor; cAMP-activated activation of Cl-– currents after stimulation GP 117
Cl– conductance
guanylin ~ 2-kDa; endogenous activator of intestinal guanylate H 211–214

cyclase; validity has been questioned in recent reviews

H: human, M: mouse, R: rat, GP: guinea pig. In addition to original literature, ExPasy Swiss Protein and TrEMBL Databases were used
for molecule description. 

Figure 3. Immunohistochemistry demonstrating human defensin
HD5 in Paneth cell granules. (A) Immunoperoxidase staining of
formalin-fixed normal human small intestine biopsy with rabbit
polyclonal antibodies against HD5 and Harris hematoxylin coun-
terstain, low power. There is specific staining (brown color product)
of Paneth cells in the crypt base. (B) Same under higher magnifica-
tion. (C) Transmission electron micrograph of normal human ileum
crypt after immunogold labeling of HD5 shown to be concentrated
in the granules of PCs [reproduced with permission from Infection
and Immunity (1997) 65: fig. 2 p. 2392 and fig. 3 p. 2393].



eage, the lack of recognizable Paneth cells was accompa-
nied by an increased number of intermediate cells in the
crypts, which had upregulated defensin-containing gran-
ule production. It will be of great interest to test the re-
sponse of these transgenic mice to microbial pathogens.
More recently, other transgenic approaches have sup-
ported a role for PCs in host defense. In transgenic mice
lacking matrilysin [52], the enzyme that activates mouse
PC defensins, orally administered bacteria survived in
greater numbers and were more virulent. Conversely,
transgenic mice with additional human defensin expres-
sion in their PCs demonstrated dramatically increased
survival after challenge with Salmonella typhimurium [N.
Salzman, D. Ghosh and C. L. Bevins, unpublished data].
These bacteria naturally cause a systemic typhoid fever-
like disease in mice, but in humans cause only localized
gastroenteritis. In vitro, human PC defensin HD5 is active
against S. typhimurium [75] but cryptdins, the mouse PC
defensins, are much less active against this pathogen [76,
77]. Thus, current evidence supports an important role for
PCs in defense against pathogens ingested through food
and water-borne routes, in the protection of nearby stem
cells, and as regulators of microbial density in the small
intestine.

PCs release their numerous granules upon microbial,
hormonal, cholinergic, and cytokine stimulation

The degranulation of PCs in response to heat-killed or vi-
able bacteria was noted more than 15 years ago [53, 68].
Recently, quantification of cryptdin secretion in isolated
crypts showed that mouse PCs degranulated in response
to a variety of microbial substances, including lipopoly-
saccharide, lipoteichoic acid, and mycobacterial antigens
[50].
In addition, PC degranulation seems to be integrated with
oral ingestion and regulated by gastrointestinal hor-
mones. PCs secrete upon stimulation with cholecys-
tokinin-pancreozymin [78] and long-term exposure to
cholecystokinin and gastrin induced PC hypertrophy and
increased lysozyme levels in the intestine [79]. In mice,
insulin and glucagon have been shown to inhibit PC se-
cretion and increase their granule content [80]. In mice,
PCs accumulate their granules during fasting [81]. How-
ever, PCs conceivably also respond to the presence of
macromolecules per se, possibly through an osmorecep-
tor. A third type of PC secretion, possibly linked to
parasympathetic autonomic nervous system activity, fol-
lows G protein-mediated cholinergic stimulation [82].
PCs secrete in response to cholinergic agonists, including
bethanechol [71, 82], pilocarpine [83, 84], and carbamyl-
choline [85, 88]. Accordingly, cholinergic inhibition by
atropine blocked PC secretion (and molecule uptake) in
mice and rats [83, 86], and vagotomy in rats caused pro-

found ultrastructural rearrangement in PC organization
and an increase in secretory granules and relative number
of their immature forms [87].
As isolated PCs have not yet been analyzed and no PC
cell line is available, it is not clear whether PCs respond
to all these stimuli directly or react to secondary signals
produced by the other epithelial cells lining the intestinal
tract. Exocytosis upon systemic administration of tumor
necrosis factor (TNF)-a [89] or interferon (IFN)-a [90]
in mice or rats supports the idea that PCs also respond to
indirect signals of infection. We venture to speculate that
PC secretion is tightly linked to increased numbers of
bacteria in the small intestine and PC secretion may be
already stimulated upon oral ingestion. The latter re-
sponse we envisage as an anticipatory defense mecha-
nism that may help combat potential pathogenic bacteria
likely to accompany food and water.

PCs may communicate inflammation to other 
host defense cells

PCs are reported to produce various cytokines and media-
tors of inflammation. By in situ hybridization, mRNAs
have been detected for transforming growth factor (TGF)-
b in normal rats [91] and for TNF-a in humans and mice
[92–95]. By immunohistochemistry, prostaglandin E2, a
pleiotropic mediator of inflammation, was found in PCs
[96], as was osteopontin [97], a glycosylated phosphopro-
tein with recently proposed functions in cell-mediated im-
munity [98, 99]. PCs may also play a role in antigen pre-
sentation, as they express CD1 [100]. However, single re-
ports based on in situ hybridization must be viewed with
caution, as PCs have been found to nonspecifically bind
nucleic acid probes [101].
Removal of diseased cells and downregulation of im-
mune responses through apoptosis is another arm of host
defense [102]. PCs express FAS ligand (or CD95) at their
basolateral membrane [103, 104] and could induce apop-
tosis in FAS+ immune cells of the surrounding tissue. In
conclusion, PCs not only play a role in innate host de-
fense as effector cells producing antimicrobial factors
and releasing them into the intestinal lumen but may also
communicate and coordinate host defense signals with
other cell types.

Secretion-associated posttranslational processing 
by PCs

Mature PCs not only contain preformed substances that are
released on demand, but also molecules that mediate or are
subject to posttranslational processing. Human defensin
HD5 is stored in PCs as a precursor molecule [21, 61], to-
gether with trypsinogen (C. L. Bevins and D. Ghosh, un-
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published data). Upon degranulation, trypsinogen is
cleaved to trypsin and proHD5 is N-terminally cleaved by
trypsin. Of note, the various N-terminally truncated forms
of HD5 vary in their antimicrobial activity (E. Martin
Porter and D. Ghosh, unpublished data). Once released,
trypsin may also activate and/or degrade other compounds.
The activity of PC trypsin may be tightly regulated as sug-
gested by the observation that PCs also contain inhibitors
of trypsin and other serine proteases: pancreatic secretory
trypsin inhibitor [105, 106], a1-antitrypsin [107], and
Mpgc60 [108]. Regulated posttranslational processing at
the time of degranulation may allow additional modulation
of granule-associated bioactivity.

The role of PCs in crypt development and 
homeostasis

Crypt formation in small intestine requires stem cell pro-
liferation, cell differentiation, migration, and polarization.
PCs may support these processes since they produce hu-
man intestinal trefoil factor [28] that promotes cell migra-
tion, epidermal growth factor (EGF) [109] that stimulates
the growth of epithelial cells, and osteopontin [97], a regu-
lator of cell matrix interaction, cell polarization, and cell
migration [110]. Osteopontin has also been involved in cell
migration as an integral component of CD44-ERM [111]
and CD44 variant 6 that has also been demonstrated in PCs
[112]. In addition, PCs store zinc that has been implicated
in coordinate regulation of mitosis and apoptosis [113,
114]. However, PCs do not seem indispensable for crypt
formation, since in mice with ablated PCs small intestinal
crypts appear morphologically normal [51].
Several PC-associated substances may regulate ionic cur-
rents in epithelial cells. Certain murine PC defensins act
as anion channels [115, 116]. In guinea pig PCs, VIP re-
ceptor and cAMP-dependent chloride current were de-
tected with whole cell patch clamp analysis [117]. Anion
exchanger AE2 has been detected on the membrane of se-
cretory granules in mouse PCs [118] and prostaglandin
E2 that has been demonstrated in rat PCs [96] can act as
a secretagogue in addition to its proinflammatory activity
[119, 120]. Hence, PCs may influence the ion composi-
tion of the intestinal crypt and lumen.

Relationship of PCs to pancreatic cells

Many PC constituents were earlier described in pancre-
atic cells. Characteristic exocrine pancreatic cell pro-
ducts including pancreatic lipase-related protein [121],
CRHSP28 (a cytoplasmic protein involved in calcium-
dependent secretion) [122], pancreatitis-associated pro-
tein (PAP, same as human C-lectin hepatocarcinoma-in-
testine-pancreas protein, HIP) [69, 70], pancreatic stone

protein (same as pancreatic thread protein, also a member
of the C-type lectin family) [123], pancreatic glycopro-
tein p19 (precursor of pancreatic stone protein) [124],
carboxylic ester hydrolase [123, 125], and trypsin are
also found in PCs [106, 124]. In addition, both the islet
cells of Langerhans and PCs express the a1E long iso-
form of a voltage-gated Ca2+ channel [126]. Similar un-
usual filamentous inclusions have been reported in can-
cerous pancreatic cells and neoplastic PCs [127]. During
chronic pancreatitis, after pancreatic duct ligation in
hamsters and in diabetic mice, PCs become hyperplastic
[128–131]. Considering that pancreatic lipase-related
protein 2 [121], pancreatic carboxylesterase [125], phos-
pholipase B/lipase [132], and DNAse I [133] have been
localized in PCs, PC secretions may have digestive func-
tions in small intestinal regions distant from the pancreas,
where digestive enzymes originating from the pancreas
may have undergone autodegradation and degradation
through microbial products. However, several other di-
gestive enzymes including chymotrypsin, amylase, and
lipase are reportedly not expressed in the small intestine
[134]. Thus, the lipolytic and proteolytic PC enzymes to-
gether with the deoxyribonuclease activity may be pri-
marily targeted to microbe degradation, possibly enhanc-
ing the activity of PC-derived antimicrobials. Alterna-
tively, lytic enzymes may participate in the activation or
inactivation of signaling molecules in the intestine. Fi-
nally, the relatedness between PCs and pancreas raises the
question whether the pancreas is more important in host
defense than previously appreciated.

Intestinal metaplasia and inflammatory bowel disease
involve PCs

Although in the normal digestive tract, PCs are confined
to the small intestine, in various disease states, they fre-
quently appear aberrantly throughout the alimentary
tract. Expression of small intestinal epithelium in aber-
rant sites is referred to as intestinal metaplasia (table 3),
and termed complete if PCs are present. Intestinal meta-
plasia with PC expression can also occur within adeno-
mas (benign or malignant). Less frequently, intestinal
metaplasia has been reported in the cervix [135] and oc-
casionally in the respiratory tract [136]. Formation of 
intestinal metaplasia is often preceded by chronic inflam-
mation, e.g. in the stomach following a chronic infection
with Helicobacter pylori [137–139]. Hence, intestinal
metaplasia could reflect a specific form of host defense
response.
Inflammatory bowel disease (IBD) is sometimes charac-
terized by PC hyperplasia [140–142]. PCs may respond
to the potent inflammatory stimuli characteristic of this
disease. In rats, IFN-a [90], and in mice, systemic ad-
ministration of TNF-a caused secretion of PC granules
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[89]. Considering that many PC antimicrobials, including
sPLA2 and defensins, are cytotoxic at high concentra-
tions [143, 144], their secretion could contribute to tissue
damage. Furthermore, PCs contain TNF-a and could
contribute to the high proinflammatory cytokine concen-
trations seen in IBD. In addition, PCs express at their ba-
solateral membrane FAS-ligand that is involved in apop-
tosis of immune cells in IBD [103].
Another disease in which PCs are implicated is necrotiz-
ing enterocolitis (NEC). Newborns express lower num-
bers of PCs a condition further aggravated in premature
infants. Based on the concurrent increased risk for NEC
in premature infants, an association of PC immaturity
with NEC was proposed. In support of this concept, a de-
creased lysozyme content was found by immunostain in
NEC patients [145]. We found that in NEC patients, in-
creased PC numbers and expression of defensin HD5
mRNA were not paralleled by a similar increase in HD5
peptide [146]. As lysozyme or defensin levels were not
measured in the lumen, the lower peptide levels in PC
could reflect a defect in protein synthesis or increase in
secretion. In another study, high amounts of TNF-a tran-
scripts were observed in PCs indicating that PCs could be
major contributors to tissue inflammation [94].
In acrodermatitis enteropathica and other forms of zinc
deficiency, PCs show typical ultrastructural alterations
that disappear after zinc replacement [127, 147–150].
This supports the notion that PC homeostasis depends on
zinc but the specific mechanism is uncertain.

A possible role of PCs in heavy metal metabolism,
delivery, and detoxification

Several heavy metals, including zinc and selenium, have
been demonstrated in PCs [151–153]. They also express
various heavy metal ion-binding proteins including met-

allothionein [154, 155] or zinc-binding proteins such as
the cysteine-rich intestinal protein (CRIP) [156]. Heavy
metal ions may be required in PCs for various enzymatic
processes. For example, matrilysin in mouse PCs is a
zinc-dependent metalloprotease that has been postulated
to be instrumental in defensin processing in mice [52].
Alternatively, the accumulation of heavy metals in PCs
could also support their antimicrobial function, either as
direct toxic substance at high concentrations or in syner-
gism with other antimicrobial components of PCs [157].
On the other hand, PCs could also be a selective site for
heavy metal ion uptake, transport, and export as reflected
in the accumulation of cadmium, copper, or mercury in
PCs after alimentary overload [155, 158–160] or after in-
traperitoneal injection [161]. Heavy metals can be ex-
creted through multidrug resistance proteins [162]. In
murine intestine, a multidrug resistance-associated pro-
tein (MRP) is found predominantly in the basolateral
membrane of PCs [163] raising the possibility that PCs
may use this molecule to transport heavy metals into the
body. The same molecule may also be involved in export
of other toxic compounds [164]. Glutathione S-trans-
ferase, an important drug-detoxifying enzyme also found
in PCs may function to self-protect and possibly con-
tribute to detoxification [165].

PC changes after irradiation and chemotherapy
Irradiation or chemotherapy can severely damage the in-
testinal epithelium and after such treatment, patients often
suffer from severe acute gastrointestinal disease. The
rapidly dividing stem cells and villous enterocytes are most
affected [166]. However, PCs can be damaged as well and
alterations range from inclusion structures to dose- and
time-dependent complete loss of PCs [167–169]. Sub-
lethal exposure to radiation or methotrexate was reported
to induce a reversible increase in PC numbers [170], in-
creased lysozyme content [166, 171], and PC metaplasia

Table 3. Diseases with PC alterations.

Disease PC Involvement References

Intestinal metaplasia occurrence of PCs outside the small intestine; most often in stomach 135, 136, 140,
or esophagus 215, 216

Inflammatory bowel disease PC metaplasia, hyperproliferation 141, 142, 217, 218
Necrotizing enterocolitis (NEC) PC cell increase and mRNA increase for HD5 and TNF; 94, 145, 146

low lysozyme levels
Celiac disease varying reports: reduced numbers of PCs; normal PC numbers with 17, 219–222

reduced lysozyme content; reduced PC numbers and reduced lysozyme 
tissue content; lack of a1-antitrypsin; PC hyperplasia

Familial adenomatosis polyposis (FAP) over 90% of adenomas contain PCs; increased numbers of PCs also in 223–226
flat mucosa in FAP patients; possible involvement of PC-derived 
epidermal growth factor in duodenal adenomas

Acrodermatitis enteropathica, ultrastructural changes that are reversible with zinc supplementation; 127, 147–150
zinc deficiency similar filamentous inclusions also found in neoplastic PCs
Autism in children associated increased PC numbers in duodenal crypts 227
with gastrointestinal symptoms
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[172] pointing to a potentially important function of PCs
in the regeneration of intestinal mucosa.

Summary and outlook

PCs seem to respond to a broad range of stimuli with a
rather uniform response, degranulation into the intestinal
lumen (fig. 4). The diversity of stimuli and the complex-
ity of PC granule composition suggest that PCs may have
multiple functions. Many studies have supported the con-
cept that PCs function in intestinal host defense through
their production and release of antimicrobial factors.
Other functions of PCs, less well supported by experi-
mental data and more speculative may include regulation
of inflammation, participation in stem cell protection and
crypt formation, and possibly in digestion and detoxifi-
cation. Future studies should be directed at more specific
documentation of each of the multiple proposed roles of
PCs, and how these functions are fulfilled in animals that
lack PCs naturally or through genetic manipulation.
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