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Abstract. The a-amylase enzyme family is the largest
family of glycoside hydrolases. It contains almost 30 dif-
ferent enzyme specificities covering hydrolases, trans-
ferases and isomerases. Some of the enzyme specificities
from the family are closely related, others less so. This
study, based on the analysis of 79 amino acid sequences,
postulates two subfamilies in the framework of the a-
amylase family: the oligo-1,6-glucosidase subfamily and
the neopullulanase subfamily. The specific sequence in
the fifth conserved sequence region of the family served
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as the basis for defining the subfamilies: QpDln for the
oligo-1,6-glucosidase subfamily and MPKln for the
neopullulanase subfamily. This conserved sequence re-
gion is proposed to be the selection marker that enables
one to distinguish between the two subfamilies. The ‘in-
termediary’ sequence MPDLN can be characteristic of
the so-called intermediary group with a mixed enzyme
specificity of a-amylase, cyclomaltodextrinase and neop-
ullulanase. The evolutionary trees clearly supported the
proposed definition of the two subfamilies.

Key words. Alpha-amylase enzyme family; oligo-1,6-glucosidase; neopullulanase; conserved sequence region; evo-
lutionary relatedness; protein bioinformatics.

The a-amylase enzyme family contains almost 30 differ-
ent enzyme specificities covering hydrolases, trans-
ferases and isomerases [1]. In the sequence-based classi-
fication system of glycoside hydrolases it forms a clan
GH-H grouping the families 13, 70 and 77 [2]. These en-
zymes can cleave and/or synthesise the a-1,4-, a-1,6- and
less commonly a-1,2- and a-1,3-glucosidic linkages, as
well as act on sucrose (a-1,5-bonds) and trehalose (a-
1,1-bonds) [1]. The catalytic domain of all of these en-
zymes should adopt the structure of a parallel (b/a)8 bar-
rel [1–3] first recognised for amylolytic enzymes in the
structure of Taka-amylase A [4] which is an a-amylase
from Aspergillus oryzae. From sequence and evolution-
ary points of view, some mammalian transport proteins
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and antigens have been suggested to be related to the en-
zymatically active members of the family [5].
Although the amino acid sequences of a-amylase family
members have diverged so efficiently that numerous
specificities have emerged, they possess several well-con-
served sequence stretches known as conserved sequence
regions [1, 3, 6–13]. These contain most of the residues
that play important functional roles. Four of them, the re-
gions I, II, III and IV, were definitively established in 1986
[9]. They cover the strands b3, b4, b5 and b7 of the (b/a)8

barrel with the three catalytic residues: Asp206, Glu230
and Asp297 (Taka-amylase A numbering) positioned near
the C termini of b strands 4, 5 and 7, respectively. Further,
three conserved sequence regions, regions V, VI and VII,
were identified at the beginning of the 1990s [10–13].
These cover the strands b2 and b8 (regions VI and VII)
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and a short stretch (region V) near the C terminus of do-
main B protruding from the catalytic barrel between
strand b3 and helix a3. The conserved strands b2 and b8
were shown to exhibit features characteristic of certain
specificities or taxonomic groups [14, 15]. The fifth con-
served sequence region, region V (173_LPDLD in Taka-
amylase A), was originally described for a-amylases [10]
and later also identified in the other enzyme specificities
from the family [13]. The aspartate from the middle of the
region (Asp175 in Taka-amylase A) is well conserved and
may be involved in binding of a calcium ion in the en-
zymes from this family [16].
There have been several reports on evolutionary relation-
ships among the individual enzyme specificities as well as
in the frame of a given specificity from the a-amylase fam-
ily (e.g. [11, 12, 15, 17–25]). In the past few years, how-
ever, the number of available sequences has substantially
increased (almost 1000 according to the CAZY server ac-
cessed on 3 May 2002; [2]) and new enzyme specificities
have also been recognised to belong to the family [1].
There may be groups of enzymes in the a-amylase family
that are more closely related to each other [1]. In cases
when the degree of sequence similarity is very high and the
data concerning the characterisation of biochemical activ-
ity of a given sequence are lacking or not unambiguous,
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this may result in incorrect classification. For example, a
few sequences of cyclodextrin glucanotransferases were
classified incorrectly as a-amylases [26, 27] due to a su-
perficial observation of four conserved sequence regions
without deeper analysis [14]. It is thus of special impor-
tance to know as exactly as possible the sequence features
that are required or at least highly characteristic of each en-
zyme specificity or enzyme group.
The aim of the present work was to define two enzyme
subfamilies within the framework of the a-amylase fam-
ily: the oligo-1,6-glucosidase subfamily and the neopul-
lulanase subfamily. Both comprise several enzyme speci-
ficities and can be distinguished from each other by the
specific sequence motif of the fifth conserved sequence
region. This region can thus be used as an identification
and selection marker. Several amylases that possess a mo-
tif containing the features of both the oligo-1,6-glucosi-
dase and neopullulanase subfamilies are proposed to con-
stitute an intermediary group.

Materials and methods

All amino acid sequences as well as enzyme specificities
used in the present study are listed in table 1. The listing

Table 1. The a-amylase family enzymes used in the present study.

Enzyme EC number Organism Abbreviation GenPept Reference

Oligo-1,6- 3.2.1.10 Bacillus cereus Bacce.ogl CAA37583.1 [28]
glucosidase Bacillus coagulans Bacco.ogl BAA11354.1 [29]

Bacillus flavocaldarius Bacfl.ogl BAB18518.1 [30]
Bacillus sp. F5 Bac-F5.ogl BAA00534.1 [31]
Bacillus subtilis Bacsu.ogl AAG23399.1 GenBank Acc.

No. AY008307
Bacillus thermoglucosidasius Bacth.ogl BAA01368.1 [32]
Erwinia rhapontici Erwrh.ogl AAK28737.1 [33]

a-Glucosidase 3.2.1.20 Aedes aegypti Aedae.agl AAA29352.1 [34]
Anopheles gambiae (Agm1) Anoga-1.agl CAA60857.1 [35]
Anopheles gambiae (Agm2) Anoga-2.agl CAA60858.1 [35]
Apis meliffera Apime.agl BAA11466.1 [36]
Bacillus sp. DG0303 Bac-DG.agl AAF71997.1 [37]
Bacillus sp. SAM1606 Bac-SAM.agl CAA54266.1 [38]
Bacillus stearothermophilus Bacst.agl BAA12704.1 [39]
Bifidobacterium adolescentis (AglA) Bifad-1.agl AAK27723.1 GenBank Acc.

No. AF411186
Bifidobacterium adolescentis (AglB) Bifad-2.agl AAL05573.1 GenBank Acc.

No. AF411186
Brevibacterium fuscum Brefu.agl BAB60692.1 GenBank Acc.

No. AB025195
Candida albicans Canal.agl AAA34350.2 [40]
Drosophila virilis (Mav1) Drovi-1.agl AAB82327.1 [41]
Drosophila virilis (Mav2) Drovi-2.agl AAB82328.1 [41]
Erwinia rhapontici Erwrh.agl AAK28739.1 [33]
Kluyveromyces lactis Klula.agl CAB46746.1 GenBank Acc.

No. AJ007636
Pediococcus pentosaceus Pedpe.agl CAA83671.1 GenBank Acc.

No. L32093
Penicillium minioluteum Penmi.agl CAC09327.1 [42]
Pichia angusta Pican.agl AAF69018.1 [43]
Saccharomyces cerevisiae CB11 Sacce-CB.agl AAA34757.1 [44]
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Table 1 (continued)

Enzyme EC number Organism Abbreviation GenPept Reference

Saccharomyces cerevisiae FSP2 Sacce-FSP.agl BAA07818.1 GenBank Acc.
No. DA3761

Sinorhizobium meliloti Sinme.agl AAD12047.1 [45]
Staphylococcus xylosus Staxy.agl CAA55409.1 [46]
Streptomyces lividans Strli.agl AAC46450.1 [47]
Thermomonospora curvata Thscu.agl AAA57313.1 [48]
Thermus caldophilus Theca.agl AAD50603.1 [49]

Dextran 3.2.1.70 Aspergillus parasiticus Asppa.dgl AAF26276.1 [50]
glucosidase Streptococcus equisimilis Stceq.dgl CAA51348.1 [51]

Streptococcus mutans Stcmu.dgl AAA26939.1 [52]
Streptococcus suis Stcsu.dgl AAB65079.1 [53]

Trehalose-6-P- 3.2.1.93 Bacillus subtilis Bacsu.t6p CAA91015.1 [54]
hydrolase Escherichia coli Ecoli.t6p AAC43382.1 [55]

Pseudomonas fluorescens Psefl.t6p AAG31032.1 [56]

Amylosucrase 2.4.1.4 Neisseria polysaccharea Neipo.asu CAA09772.1 [22]

Sucrose 2.4.1.7 Agrobacterium vitis Agrvi.sph CAA80424.1 [57]
phosphorylase Leuconostoc mesenteroides Leume.sph BAA14344.1 GenBank Acc.

No. D90314
Pseudomonas saccharophila Psesa.sph AAD40317.1 GenBank Acc.

No. AF158367
Streptococcus mutans Stcmu.sph AAA26937.1 [58]

Isomaltulose 5.4.99.11 Erwinia rhapontici Erwrh.isy AAK28735.1 [33]
synthase Klebsiella sp. LX3 Kle-LX3.isy AAK82938.1 [59]

Trehalose synthase 5.4.99.16 Pimelobacter sp. R48 Pim-R48.tsy BAA11303.1 [60]
Streptomyces coelicolor Strco.tsy CAA04601.2 [61]
Thermus aquaticus Theaq.tsy BAA19934.1 [62]

Cyclomalto- 3.2.1.54 Alicyclobacillus acidocaldarius Aliac.cmd CAB40078.1 [24]
dextrinase

Bacillus sp. A2-5a Bac-A2.cmd BAA31576.1 GenBank Acc.
No. AB015670

Bacillus sp. I-5 Bac-I-5.cmd AAA92925.1 [63]
Bacillus sphaericus Bacsf.cmd CAA44454.1 [64]
Thermoanaerobacter Thbth.cmd AAA23219.1 [65]
thermohydrosulfuricus
Thermococcus sp. B1001 Thc-B1001.cmd BAB18100.1 [66]
Thermotoga maritima Thtma.cmd AAD36898.1 [67]
Thermotoga neapolitana Thtne.cmd CAA08867.1 GenBank Acc.

No. AJ009832

Maltogenic 3.2.1.133 Bacillus acidopullulyticus Bacac.mam CAA80246.1 GenBank Acc.
amylase No. 222520

Bacillus stearothermophilus Bacst.mam AAC46346.1 [68]
Bacillus subtilis Bacsu.mam AAF23874.1 [69]
Thermus sp. IM6501 The-IM.mam AAC15072.1 [70]

Neopullulanase 3.2.1.135 Bacillus sp. KCTC8848P Bac-KCT.npu AAL07400.1 [71]
Bacillus sp. KSM-1876 Bac-KSM.npu BAA02521.1 [72]
Bacillus polymyxa Bacpo.npu AAD05199.1 [73]
Bacillus stearothermophilus Bacst-IMA.npu AAK15003.1 [74]
IMA6503
Bacillus stearothermophilus TRS40 Bacst-TRS.npu AAA22622.1 [75]
Bacteroides thetaiotaomicron Batth.npu AAC44670.1 [76]
Thermoactinomyces vulgaris (TVAI) Thevu-1.npu BAA02471.1 [77]
Thermoactinomyces vulgaris (TVAII) Thevu-2.npu BAA02473.1 [78]

Intermediary 3.2.1.1 Bacillus megaterium Bacme.amy CAA30247.1 [79]
group (MpDln) 3.2.1.1 Clostridium acetobutylicum ATCC824 Cloac-ATCC.amy AAD47072.1 [80]

3.2.1.1 Dictyoglomus thermophilum (AmyC) Dicth-C.amy CAA34072.1 [81]
3.2.1.1 Mycoplasma pulmonis Mycpu.amy CAC13805.1 [82]
3.2.1.1 Thermotoga maritima Thtma.amy AAD36902.1 [83]
3.2.1.1 Xanthomonas campestris (periplasmic) Xanca-P.amy BAA07401.1 [84]

Neopullulanase- 3.2.1.41 Bacillus flavocaldarius Bacfl.pul BAB18516.1 [85]
like (MpKln) 3.2.1.1 Dictyoglomus thermophilum (AmyB) Dicth-B.amy CAA31586.1 [81]

not det. Klebsiella oxytoca (CymH) Kleox.nd CAA60007.1 [86]
3.2.1.41 Thermococcus aggregans Thcag.pul CAB94218.1 [87]



for the clan GH-H provided by the CAZy web-server 
(3 May 2002) served as a database [2]. The sequences
were retrieved from GenPept on the ENTREZ system
[88, 89]. The final set consisting of 79 sequences was ob-
tained using the strategy described as follows:

(1) First, the search focused on the a-amylase family
specificities indicated previously [13, 20] as those
with a characteristic sequence motif in their fifth
conserved sequence region. These specificities 
were oligo-1,6-glucosidase and neopullulanase with
sequences 167_QPDLN for the Bacillus cereus
oligo-1,6-glucosidase [28] and 295_MPKLN for 
the B. stearothermophilus neopullulanase [75]. As
specificities possessing similar motifs, a-gluco-
sidase, dextran glucosidase, trehalose-6-phosphate
hydrolase, amylosucrase, sucrose phosphory-
lase, isomaltulose synthase and trehalose synthase in
addition to oligo-1,6-glucosidase, and cyclomal-
todextrinase, maltogenic amylase in addition to
neopullulanase were recognised. The C-terminal
parts of two exceptionally long sequences (Thermus
aquaticus trehalose synthase [62] residues 565–
963, and Clostridium acetobutylicum ATCC-824 
a-amylase [80] residues 541–760) were disre-
garded.

(2) In the second step, attention was given to those se-
quences that were experimentally proven. In other
words, all sequences of putative and hypothetical
proteins from various complete-genome sequencing
projects were disregarded despite their apparently
convincing sequence similarity to experimentally
confirmed members of the a-amylase family.

(3) In the next step, BLAST tools [90] were used to find
sequences (especially from the a-amylase family)
that might be closely related to oligo-1,6-glucosidase
and neopullulanase via the fifth conserved sequence
region with the previously identified intermediary
motif MPDLN [91]. Thus seven sequences were
added, all designated as a-amylases. However, since
the sequence of the ‘a-amylase’ from C. aceto-
butylicum DSM 792 [92] contains a histidine in the
position corresponding to catalytic b4 strand Asp206
from Taka-amylase A, it was not included in the final
set. The remaining six sequences were marked as an
‘intermediary group’.

(4) BLAST was also applied for finding the sequences
(especially from the a-amylase family) that would
have the sequence motif characteristic of either
oligo-1,6-glucosidase (QpDln) or neopullulanase
(MpKln). This search yielded four sequences with a
motif similar to that of neopullulanase (two pullulan
hydrolases, one a-amylase and one sequence without
assigned specificity). These four sequences were re-
ferred to as ‘neopullulanase-like’.

(5) Finally, the odd sequence of trehalose synthase 
from Pseudomonas stutzeri [GenBank Acc. No.
AF113617] was eliminated from further analysis. It
contains many longer insertions in comparison with
other trehalose synthases, a strange motif even in the
fifth conserved sequence region (259_QPSLN), as
well as trehalose-synthase-unlike features in other
conserved sequence regions.

All sequence alignments were performed using the pro-
gram CLUSTAL W [93] and subsequently manually
tuned where applicable. The neighbour-joining method
was used for building the evolutionary trees [94]. The
Phylip format tree output was applied using the boot-
strapping procedure [95]; the number of bootstrap trials
used was 1000. The trees were drawn with the program
TreeView [96].
The three-dimensional structures of oligo-1,6-glucosi-
dase from B. cereus, neopullulanase TVAII from Ther-
moactinomyces vulgaris and the high-pI a-amylase
isozyme from barley were retrieved from the Protein Data
Bank [97] under the PDB entry codes: 1UOK [98], 
1BVZ [99] and 1AMY [100], respectively. The protein
structures were displayed using the program WebLab-
ViewerLite (Molecular Simulations).

Results and discussion

The fifth conserved sequence region as a definition
marker
In this study, 79 amino acid sequences of several related
enzyme specificites (table 1) from the a-amylase family
were compared. The main goal of the present work was to
use the fifth conserved sequence region (173_LPDLD in
Taka-amylase A) for defining the two closely related sub-
families, i.e. the oligo-1,6-glucosidase subfamily and the
neopullulanase subfamily. As can be seen from fig. 1, the
sequence of the fifth conserved region is highly specific
for both subfamilies with QpDln for the oligo-1,6-glu-
cosidase subfamily and MPKln for the neopullulanase
subfamily. These short sequence stretches are proposed
as the identification and selection markers or sequence
fingerprints for each of the subfamilies.
With regard to enzyme specificities, the oligo-1,6-glu-
cosidase subfamily consists at present of oligo-1,6-glu-
cosidase (for EC numbers, see table 1), a-glucosidase,
dextran glucosidase, trehalose-6-phosphate hydrolase,
amylosucrase, sucrose phosphorylase, isomaltulose syn-
thase and trehalose synthase. All these enzymes contain
in the fifth conserved region the sequence that corre-
sponds to the template sequence QpDln. Worth mention-
ing is that amylosucrase and sucrose phosphorylases have
a hydrophobic residue (tryptophan or isoleucine) in place
of the well-conserved proline that is only in five cases re-
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Figure 1. The conserved sequence regions (CSRs) of oligo-1,6-glucosidase and neopullulanase subfamilies from the a-amylase family.
The abbreviations of enzyme sources are given in table 1. The best conserved parts of the sequence of an a-amylase family member com-
prise the strands b2, b3, b4, b5, b7 and b8 as well as the short stretch located near the C terminus of loop 3 connecting strand b3 and he-
lix a3. The latter fifth conserved sequence region is central to the present study and is therefore boxed. The colour code for the enzymes
is as follows: oligo-1,6-glucosidase subfamily – blue; neopullulanase subfamily – red; indermediary group – dark yellow; neopullulanase-
like members – pink, transferases – turquoise. The sequence features are highlighted as follows: oligo-1,6-glucosidase subfamily specific
– blue; neopullulanase subfamily specific – red; transferase specific – turquoise; intermediary group specific – yellow (in CSR V) and
green (in CSR II); three catalytic residues – black and white inversion; invariant residues – dark-grey and white inversion; conserved
residues (present in at least 75% of the sources) – light grey.



placed by alanine (mostly in trehalose-6-phophate hydro-
lases). A hydrophobic residue (valine) in this position was
furthermore found only (fig. 1) in the a-glucosidase from
Saccharomyces cerevisiae strain CB11 [44].
As far as the enzyme specificities from the neopullu-
lanase subfamily are concerned, at present this subfamily
is formed by three specificities: cyclomaltodextrinase,
maltogenic amylase and neopullulanase (for EC num-
bers, see table 1). The sequence of these enzymes in the
fifth conserved region corresponds satisfactorily with the
template MPKln. Although in a few cases, the methion-
ine can be substituted with leucine and the lysine can be
replaced by arginine (fig. 1), both changes preserve the
chemical nature of the amino acid residue side chain.
The cyclomaltodextrinases from Thermotoga maritima
[67] and Thermotoga neapolitana [GenBank Acc. No.
AJ009832] contain a glutamate (LPELN; fig. 1) instead
of lysine, a fact that could make these two enzymes more
similar to the oligo-1,6-glucosidase subfamily with a
dominating aspartate. The cyclomaltodextrinase from T.
maritima was biochemically characterised as a novel type
of this enzyme specificity [101]. Its sequence [67] shares
more than 88% sequence identity with that of the T.
neapolitana enzyme [GenBank Acc. No. AJ009832]. In
most of the remaining conserved sequence regions, how-
ever, these two Thermotoga cyclomaltodextrinases ex-
hibit the features of the neopullulanase subfamily (fig. 1)
and also contain the neopullulanase-like shorter domain
B (for details, see below). Since they lack the N-terminal
domain (characteristic of the true members of the neop-
ullulanase subfamily), both these enzymes could repre-
sent a new type of cyclomaltodextrinase and thus should
not be classified into the neopullulanase subfamily.
Remarkably, three enzymes designated as neopullu-
lanases exhibit an intermediary sequence in the fifth con-
served region (MPDlN): Bacillus sp. KCTC8848P [71],
B. polymyxa [73] and Bacteroides thetaiotaomicron [76].
The neopullulanase from B. polymyxa was reported as a
‘novel’ neopullulanase [102] that produced only panose
as a final product from pullulan hydrolysis unlike the typ-
ical neopullulanase described originally by Imanaka and
Kuriki [103]. From the sequence point of view also, it was
found [73] to be most similar to a-amylases from Bacil-
lus megaterium [79] and Dictyoglomus thermophilum
AmyC [81] both of which are proposed in this work to
constitute an ‘intermediary group’ (see below). This
should also be the case of Bacillus sp. KCTC8848P neo-
pullulanase with 92% sequence identity with the B.
polymyxa enzyme [71]. The neopullulanase activity of
the enzyme from B. thetaiotaomicron [76] was assigned
based on the production of panose from pullulan but the
activity of this enzyme against pullulan was approxi-
mately equal to its activity against amylose [104].
The sequence MPDLN mentioned above is exclusively
characteristic of several a-amylases constituting the ‘in-

termediary group’. The intermediary character of the se-
quence MPDLN is in the replacement of oligo-1,6-glu-
cosidase-like glutamine by the neopullulanase-like me-
thionine, whereas the aspartate is conserved as in the
oligo-1,6-glucosidase subfamily, i.e. not substituted by
the neopullulanase-like lysine (fig. 1). This is consistent
with experimental findings that some of these ‘a-amy-
lases’ appear to have the mixed substrate specificity of a-
amylase, cyclomaltodextrinase and neopullulanase [84,
105]. The a-amylase from T. maritima was found, how-
ever, to be active against soluble starch and pullulan in the
ratio 100:4 [83], indicating that its neopululanase activ-
ity is very low.
In this respect, the two a-amylases from D. thermo-
philum, designated AmyC and AmyB [81], containing
MPDLN and MPKIN, respectively (fig. 1), should be of
great interest. Unfortunately, one cannot say unambigu-
ously whether or not these sequence features correlate
with the enzyme specificities, due to the lack of speci-
ficity analysis data, since both Dictyoglomus a-amylases
were tested on soluble starch only [81]. Nevertheless, the
MPKIN sequence of AmyB indicates that this Dictyoglo-
mus ‘a-amylase’ could rank among the neopullulanase-
like members together with the CymH protein from Kleb-
siella oxytoca with as yet not determined specificity [86]
having MPKLN (fig. 1). Finally, two interesting, ex-
tremely thermostable pullulanases, those from Bacillus
flavocaldarius [85] and Thermococcus aggregans [87],
with LPKLK and LPKLN, respectively, are also included
in the group of the so-called ‘neopullulanase-like’ en-
zymes (fig. 1).
All these proposals concerning the definition of the
oligo-1,6-glucosidase subfamily, the neopullulanase sub-
family and the intermediary group, based on the sequence
fingerprint of the fifth conserved region, can be sup-
ported by the following analysis of the remaining parts of
the amino acid sequences.

Subfamily-associated features in the remaining parts
of the amino acid sequences
In this section, we will focus on sequence features char-
acteristic of the individual subfamilies and groups that
are present in the other conserved sequence regions (fig.
1) as well as in the remaining segments of the complete
sequence alignment (not shown).
Thus, in the conserved region VI (strand b2) there is a
tryptophan (Trp49 in B. cereus oligo-1,6-glucosidase)
characteristic for the oligo-1,6-glucosidase subfamily in
the i-3 position with respect to the conserved C-terminal
proline (fig. 1). The neopullulanase subfamily has a tyro-
sine (Tyr191 in T. vulgaris neopullulanase TVAII) in that
position (fig. 1). Importantly, the three neopullulanases
with the intermediary sequence in the fifth conserved re-
gion (Bac-KCT.npu, Bacpo.npu and Batth.npu) do not
contain the neopullulanase-like tyrosine but an oligo-1,6-
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glucosidase-like tryptophan similar to most of the en-
zymes from the intermediary group (fig. 1). A glutamine
residue present in this position in the a-amylase from C.
acetobutylicum ATCC824 is a conserved feature of the
so-called animal group of a-amylases [11]. Of the four
enzymes from the neopullulanase-like group, only the ‘a-
amylase’ AmyB from D. thermophilum has in this posi-
tion tyrosine replaced by the tryptophan (fig. 1). Of in-
terest is that in the frame of the oligo-1,6-glucosidase
subfamily, a group of transferases (EC 2: amylosucrase
and sucrose phosphorylases; see table 1) exhibits its own
sequence features. All these enzymes have only histidine
in the Trp/Tyr position (fig. 1).
A sequence feature discriminating the two subfamilies
can also be found in the conserved region I (strand b3).
There is a hydrophobic residue (Leu99 in B. cereus oligo-
1,6-glucosidase) versus alanine (glycine) in the oligo-
1,6-glucosidase versus neopullulanase subfamilies, re-
spectively, in the position succeeding the almost invariant
N-terminal aspartate (fig. 1). Again, the three neopullu-
lanases (Bac-KCT.npu, Bacpo.npu and Batth.npu) with
leucine and methionine fulfil the criteria of the interme-
diary group or, in a wider sense, the entire oligo-1,6-glu-
cosidase subfamily. The fact that the four neopullulanase-
like enzymes contain hydrophobic phenylalanine (Dicth-
B.amy and Thcag.pul) as well as the alanine and glycine
(Bacfl.pul and Kleox.nd) supports the contention that
they could also have an intermediary character. As far as
the transferases are concerned, in the succeeding posi-
tion, that is throughout hydrophobic, they have either
isoleucine or methionine in comparison with an almost
invariantly conserved valine (fig. 1). Note that the
isoleucine is also found in the ‘odd’ neopullulanase from
B. thetaiotaomicron (fig. 1).
In conserved sequence region II (strand b4), there are a
few features characteristic of the neopullulanase subfam-
ily. These are the tryptophan (Trp322 in T. vulgaris neo-
pullulanase TVAII) and the stretch VANE at the C termi-
nus of this region (fig. 1). Both these features are not con-
sistently present in all neopullulanases. However, the
mutant TVAI enzyme from T. vulgaris whose AAQY
stretch is substituted by VANE (as in the TVAII enzyme;
cf. fig. 1), in contrast to expectations, did not exhibit the
anticipated neopullulanase-like properties [106]. Note
that some amylopullulanases also contain at the C-termi-
nal end of this conserved region the stretch VANE or
VENE but they have a completely different sequence in
their fifth conserved region [S. Janecek, unpublished re-
sults]. What is however more important is that the three
neopullulanases discussed above (Bac-KCT.npu, Bacpo.
npu and Batth.npu) lack both the tryptophan and the
VANE stretch completely (fig. 1). Moreover, two of the
three (Bac-KCT.npu, Bacpo.npu) contain at the C termini
of this region, a histidine that is characteristic for many a-
amylases and several other specificities from the a-amy-

lase family [1] and which is conserved also in the inter-
mediary group shown in fig. 1. This histidine is found in
a few a-glucosidases (Bacst.agl, Drovi-2.agl, Erwrh.agl
and Staxy.agl) as is the neopullulanase-like tryptophan in
oligo-1,6-glucosidases from Bacillus coagulans, Bacillus
sp. strain F5 and Bacillus subtilis (fig. 1). The group of
transferases may be distinguished from the rest of the en-
zymes again by the hydrophobic residue replacing the N-
terminal conserved glycine (except for the sucrose phos-
phorylase from Agrobacterium vitis; fig. 1).
Concerning the conserved sequence region III (strand
b5), a C-terminal histidine (i+3 position from the cat-
alytic glutamate; Glu354 in T. vulgaris neopullulanase
TVAII) can perhaps be considered to be the feature of the
neopullulanase subfamily, but its presence in neopullu-
lanases as well as in the neopullulanase-like group is not
convincing (fig. 1). As could be expected from the previ-
ous analysis, the three – from the sequence point of view
– not unambiguous neopullulanases (Bac-KCT.npu,
Bacpo.npu and Batth.npu) do not have this histidine. It is,
on the other hand, found in four yeast a-glucosidases
(Canal.agl, Pican.agl, Sacce-CB.agl and Sacce-FSP.agl;
fig. 1). Of the five transferases, all four sucrose phospho-
rylases (i.e. except for the amylosucrase from Neisseria
polysaccharea) contain histidine in the i+2 position from
the catalytic glutamate; Glu255 in B. cereus oligo-1,6-
glucosidase). A corresponding histidine is found only in
the a-glucosidase from Pediococcus pentosaceus.
A similar situation is found for the last two conserved se-
quence regions, region IV (strand b7) and region VII
(strand b8). There is a serine preceding the invariant C-
terminal dipeptide HD (His420-Asp421 in T. vulgaris
neopullulanase TVAII) in the region of strand b7 and a ty-
rosine (Tyr454 in T. vulgaris neopullulanase TVAII) in
the region of strand b8 (fig. 1) that could be ascribed to
the neopullulanase subfamily. These two residues, like
the C-terminal histidine from the previously conserved
sequence region of strand b5, are not exclusively present
in the neopullulanase subfamily members (fig. 1) and
thus cannot be used as specificity markers. Interestingly,
while in the conserved region VI (strand b2), the inter-
mediary group contains rather the feature of the oligo-
1,6-glucosidase subfamily, in conserved region VII
(strand b8), this group behaves like the members of the
neopullulanase subfamily (fig. 1). The four sucrose phos-
phorylases again have their own features in these two re-
gions: a threonine in b7 and a valine in b8 (Thr289 and
Val379 in A. vitis sucrose phosphorylase). Of these, only
the b7 strand threonine can be found in one of the re-
maining enzymes, namely in the a-amylase from C. ace-
tobutylicum ATCC824 (fig. 1).
With regard to the five transferases (one amylosucrase
and four sucrose phosphorylases; see table 1), their spe-
cific features can also be traced in the fifth conserved se-
quence region that is used as a definition marker in this
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study. Although they seem to belong to the oligo-1,6-glu-
cosidase subfamily satisfying the sequence criterion
QxDln, they have a hydrophobic residue at position ‘x’
(amylosucrase – tryptophan; sucrose phosphorylases –
isoleucine) and the dipeptide ‘ln’has been changed to ‘id’
(fig. 1). Note that from the entire set of 79 sequences
studied here, there are only two that are partly similar in
this respect: the a-glucosidase from S. cerevisiae CB11
contains a valine in position ‘x’ whereas the a-amylase
AmyB from D. thermophilum has an isoleucine in the po-
sition of ‘l’ (fig. 1).
As far as the remaining parts of the amino acid sequence
alignment are concerned (not shown), several differences
can be found that discriminate the two subfamilies from
each other. Thus, at the N-terminal part of the alignment,
the neopullulanase subfamily enzymes contain an
alignable segment that has no equivalent among the
oligo-1,6-glucosidase subfamily enzymes. This segment
corresponds to the N-terminal domain, preceding the cat-
alytic (b/a)8 barrel, found in three-dimensional structures
of neopullulanase TVAII from T. vulgaris [99] and Ther-
mus maltogenic amylase [107]. In agreement with obser-
vations mentioned above, the ‘neopullulanases’ from B.
polymyxa [73] and Bacillus sp. KCTC8848P [71], lack-
ing the N-terminal domain, behave like the members of
the oligo-1,6-glucosidase subfamily or, at least, the en-
zymes from the intermediary group. The same is true for
the T. maritima and T. neapolitana cyclomaltodextrinases
[67; GenBank Acc. No. AJ009832] that were also dis-
cussed above as exhibiting the neopullulanase-unlike se-
quence feature in the fifth conserved region (LPELN; fig.
1). The ‘odd’ neopullulanase from B. thetaiotaomicron
[76] seems to contain the N-terminal segment; however,
its sequence is evidently different from those of true
neopullulanase subfamily enzymes. Of the four neopullu-
lanase-like group enzymes (table 1), the pullulanase from
B. flavocaldarius [85] lacks the N-terminal segment,
while the other three have some N-terminal sequence. Of
these, only the N-terminal segment of the K. oxytoca
CymH protein [86] agrees well with the equivalent parts
of the enzymes from the neopullulanase subfamily.
The other significant sequence feature distinguishing the
two subfamilies can also be seen in domain B. The en-
zymes belonging to the oligo-1,6-glucosidase subfamily
should share the structure of domain B from B. cereus
oligo-1,6-glucosidase [98], i.e. one a helix and a three-
stranded antiparallel b sheet, whereas the enzymes be-
longing to the neopullulanase subfamily seem to lack the
second b strand (153_WQYD in B. cereus oligo-1,6-glu-
cosidase) from the antiparallel b sheet, as indicated pre-
viously [20]. There are, however, a few enzymes origi-
nally designated as cyclomaltodextrinase and neopullu-
lanase that do contain the domain B strand b2. These are
again the three ‘odd’ neopullulanases (Bac-KCT.npu,
Bacpo.npu and Batth.npu) and very probably the cyclo-

maltodextrinase from Thermococcus sp. B1001 [66]. Re-
markably, the CymH protein from K. oxytoca, that looks
in the other parts of its sequence like a neopullulanase
subfamily enzyme, shares unambiguously the structure
of domain B from an oligo-glucosidase, i.e. it contains
the second b strand.
The transferases (EC 2; one amylosucrase and four su-
crose phosphorylases, table 1) seem to constitute an in-
dependent group in the frame of the oligo-1,6-glucosi-
dase subfamily. This was shown in the above discussion
concerning the similarities and differences in conserved
sequence regions (fig. 1) and is also clear when compar-
ing the entire sequences. For example, there is a strongly
conserved tyrosine position (Tyr63 in B. cereus oligo-1,6-
glucosidase), which is also conserved in the neopullu-
lanase subfamily, but which only in the four sucrose
phosphorylases is substituted by a phenylalanine (not
shown). In domain B, structurally at least, the amylosu-
crase should share the structure of the B. cereus domain
B with the three-stranded antiparallel b sheet [108]. The
amylosucrase from N. polysaccharea [108], moreover,
contains a domain B¢ inserted between the seventh b
strand and seventh a helix. Interestingly, all four sucrose
phosphorylases have a segment of comparable length in-
serted in that part of the sequence, but these insertions are
not sequentially similar to domain B¢ of amylosucrase
(not shown). The difference between the amylosucrase
and sucrose phosphorylases seems to be located at the N-
terminal end where the amylosucrase has an N-terminal
domain [108] while the sucrose phosphorylases seem to
start directly with the catalytic (b/a)8 barrel domain
(alignment not shown).

Tertiary structure comparison
The sequence changes in the fifth conserved region
analysed above (fig. 1) are reflected in the tertiary struc-
tures of these enzymes. Figure 2 shows the situation con-
cerning the calcium-binding aspartate from the fifth con-
served sequence region (Asp175 in Taka-amylase A) and
its equivalents in the counterpart enzymes from the oligo-
1,6-glucosidase and neopullulanase subfamilies. In the
oligo-1,6-glucosidase subfamily, based on the three-di-
mensional structure of B. cereus oligo-1,6-glucosidase
[98], the aspartate is conserved (fig. 1) but the Ca2+ ion,
present in a-amylases (fig. 2A), is absent. It is replaced
with a presumably protonated Nz atom of lysine (Lys206
in B. cereus oligo-1,6-glucosidase; fig. 2B). A similar ar-
chitecture was proposed in amylosucrase [108]. On the
other hand, in the neopullulanase subfamily, based on the
three-dimensional structure of T. vulgaris neopullulanase
[99], the aspartate is replaced by lysine (fig. 1) and the
Ca2+ ion is absent as expected. In this case, the Nz atom
of the lysine substituting the aspartate (Lys295 in Ther-
moactinomyces vulgaris neopullulanase) directly occu-
pies the Ca2+ position (fig. 2C).
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Figure 2. The arrangement of the selected residues involved in
binding of a calcium ion in barley a-amylase (A) and the corre-
sponding residues in Bacillus cereus oligo-1,6-glucosidase (B) and
Thermoactinomyces vulgaris TVAII neopullulanase (C). The cal-
cium ion in A is shown as a black sphere. For illustration, the entire
fifth conserved sequence region with conserved aspartate (A, B)
(coloured black) and substituted lysine (C) (coloured black) is de-
picted. While in a-amylase, the aspartate is involved in Ca2+ bind-
ing, there is no calcium in either oligo-1,6-glucosidase and neopul-
lulanase. Since in the oligo-1,6-glucosidase (subfamily), the aspar-
tate is conserved, the calcium position is occupied by a binding
atom of another residue; Nz atom of Lys206 in the particular case
shown in B (coloured black). In neopullulanase (subfamily), the as-
partate is substituted by a residue with the longer side chain of Lys
or Arg, and the calcium position is occupied directly by a binding
atom of that residue, the Nz atom of Lys295 in the particular case
shown in C.

Evolutionary relationships
The evolutionary relationships among all 79 enzymes
studied in this work are shown in figure 3. Both trees
clearly reflect the existence of the two subfamilies in the
frame of the a-amylase family that was postulated above.
Regardless of whether the tree was based on the align-
ment of complete amino acid sequences (fig. 3A) or con-
served sequence regions only (fig. 3B), the basic
arrangement of both trees is very similar. The two sub-

families form their own large clusters with a separated in-
termediary group and the group of transferases.
In the neopullulanase subfamily part of the tree, the indi-
vidual enzyme specificities belonging to this subfamily
are more or less indistinguishable from each other [1, 24,
109–111] because there are no special branches leading
separately to cyclomaltodextrinases, maltogenic amy-
lases and neopullulanases.
Of the four neopullulanase-like enzymes (table 1), three
(Kleox.nd, Bacfl.pul and Thcag.pul) can be found among
the neopullulanase subfamily members. The most con-
vincing example is the CymH protein from K. oxytoca
[86], while the less convincing one seems to be the
unique pullulanase from T. aggregans [87]. Indeed, the
latter, due to its unique action on pullulan, has been
named as pullulan hydrolase type III [87]. Its position on
a quite long separate branch in both trees (fig. 3) indi-
cates that, although this enzyme may be closely related
to the neopullulanase subfamily, it nevertheless retains
its own uniqueness. The enzyme from B. flavocaldarius
designated as a pullulanase [85, 112], placed in fig. 3A
on a branch adjacent to the cyclomaltodextrinase from
Alicyclobacillus acidocaldarius [24], is, in the tree based
on the conserved sequence regions (fig. 3B), on a sepa-
rate branch. The two Thermotoga cyclomaltodextrinases,
which simultaneously have the fifth conserved sequence
region LPELN, lack the N-terminal domain, contain a
shorter domain B and exhibit the neopullulanase-like se-
quence features (fig. 1), are positioned near the border of
the neopullulanase subfamily cluster in both trees (fig.
3). Thus they very probably do not belong to the true
neopullulanase subfamily. The ‘intermediary’ positions
of the Bacillus flavocaldarius pullulanase (fig. 3) reflect
also both the presence of the neopullulanase-like se-
quence features (fig. 1) and the lack of the N-terminal
domain characteristic for true neopullulanases (data not
shown) [85, 109]. The fourth neopullulanase-like en-
zyme, the ‘a-amylase’ AmyB from D. thermophilum
[81], is positioned in both trees outside the neopullu-
lanase-subfamily part (fig. 3). Its position among the in-
termediary group (fig. 3A) seems to be more convincing
since it reflects the similarities and differences over the
entire amino acid sequence.
The positions in both trees of the three interesting ‘neo-
pullulanases’ from Bacillus sp. KCTC8848P [71], B.
polymyxa [73] and B. thetaiotaomicron [76] deserve spe-
cial interest. All of these are unambiguously placed out-
side the neopullulanase subfamily part of the trees, a fact
that is in agreement with the analysis of their amino acid
sequences given in the previous section. While the en-
zyme from B. thetaiotaomicron occupies slightly differ-
ent locations in the trees (compare fig. 3A and B), the two
Bacillus ‘neopullulanases’ (Bac-KCT.npu and Bacpo.
npu) go well together with each other and with the ‘a-
amylases’ from the intermediary group (fig. 3).
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Figure 3. Evolutionary trees of oligo-1,6-glucosidase and neopullulanase subfamilies from the a-amylase family. The abbreviations of enzyme
sources are given in table 1. The trees are based on the alignment of complete sequences (A) and conserved sequence regions shown in figure 1
(B). The branch lengths are proportional to the sequence divergence. The colour code for the enzymes is as follows: oligo-1,6-glucosidase sub-
family – blue; neopullulanase subfamily – red; intermediary group – dark yellow; neopullulanase-like members – pink, transferases – turquoise.
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The oligo-1,6-glucosidase subfamily parts of both evolu-
tionary trees are compact, similar to the neopullulanase
subfamily parts. The detailed subtle differences in clus-
tering of the individual enzyme specificities are not so
important, and the entire subfamily behaves as one larger
cluster. Nevertheless, a few groups can be found as con-
served in both trees, e.g. the insect and yeast a-glucosi-
dases (fig. 3). The compactness of the oligo-1,6-glucosi-
dase subfamily is especially evident in the tree based on
the alignment of complete sequences (fig. 3A). In the tree
based on the alignment of conserved sequence regions
(fig. 3B), the intermediary group was inserted between
the trehalose synthases and the rest of the enzymes from
the oligo-1,6-glucosidase subfamily. This may indicate
that the similarities observed in the framework of iso-

lated, although well-conserved and functionally impor-
tant sequence stretches might not be extendable into a
generalisation for the remaining parts of the amino acid
sequences.
The group of transferases (EC 2) is also worth mention-
ing. Although these enzymes are proposed to belong to
the oligo-1,6-glucosidase subfamily, their specific se-
quence features (fig. 1) discriminating them from the rest
of the enzyme specificities from the subfamily were dis-
cussed in the previous section. This is clearly reflected in
both evolutionary trees, where transferases form, in fact,
their own clusters (fig. 3), the sucrose phosphorylase and
amylosucrase specificities being clustered separately
from each other.
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Conclusions
To summarise, this work describes the definition of two
subfamilies in the framework of the a-amylase family:
the oligo-1,6-glucosidase subfamily and the neopullu-
lanase subfamily. They are defined based on the sequence
of the fifth conserved sequence region, i.e. identification
marker QpDln for the oligo-1,6-glucosidase subfamily
and MPKln for the neopullulanase subfamily. The region
can simultaneously be used as a marker distinguishing
the two subfamilies from each other, i.e. as a selection
marker. The sequence MPDLN is proposed as character-
istic of the so-called intermediary group with mixed en-
zyme specificity. The subfamily-associated sequence fea-
tures are also found in the other conserved sequence re-
gions. The evolutionary trees support the proposed
existence of the two subfamilies.
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15 Janeček Š., Leveque E., Belarbi A. and Haye B. (1999) Close
evolutionary relatedness of a-amylases from archaea and
plants. J. Mol. Evol. 48: 421–426

16 Boel E., Brady L., Brzozowski A. M., Derewenda Z., Dodson
G. G., Jensen V. J. et al. (1990) Calcium binding in a-amy-
lases: an X-ray diffraction study at 2.1-Å resolution of two en-
zymes from Aspergillus. Biochemistry 29: 6244–6249

17 Jespersen H. M., MacGregor E. A., Henrissat B., Sierks M. R.
and Svensson B. (1993) Starch- and glycogen-debranching
and branching enzymes: prediction of structural features of
the catalytic (b/a)8-barrel domain and evolutionary relation-
ship to other amylolytic enzymes. J. Protein Chem. 12:
791–805

18 MacGregor E. A., Jespersen H. M. and Svensson B. (1996) A
circularly permuted a-amylase-type a/b-barrel structure in
glucan-synthesizing glucosyltransferases. FEBS Lett. 378:
263–266

19 del-Rio G., Morett E. and Soberon X. (1997) Did cyclodextrin
glycosyltransferases evolve from a-amylases? FEBS Lett.
416: 221–224
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