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One of the foremost challenges in the post-genomic era will be to
chart the gene regulatory networks of cells, including aspects such
as genome annotation, identification of cis-regulatory elements
and transcription factors, information on protein–DNA and pro-
tein–protein interactions, and data mining and integration. Some
of these broad sets of data have already been assembled for build-
ing networks of gene regulation. Even though these datasets are
still far from comprehensive, and the approach faces many import-
ant and difficult challenges, some strategies have begun to make

connections between disparate regulatory events and to foster new
hypotheses. In this article we review several different genomics
and proteomics technologies, and present bioinformatics methods
for exploring these data in order to make novel discoveries.
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INTRODUCTION

Charting GRNs (gene regulatory networks) – that is, how all the
functional molecules of these networks exist, interact and react
spatio-temporally – is a major focus of interest in modern biology.
In the networks, TFs (transcription factors) receive input informa-
tion from upstream signal transduction cascades and bind, directly
or indirectly via other TFs, to target sequences on so-called cis-
regulatory regions of genes. Bound TFs stimulate or repress the as-
sembly of pre-initiation complexes on the gene promoter, thereby
promoting or inhibiting RNA polymerase assembly. Thus the in-
formation is transferred downstream to other regulatory genes and
to the structural genes whose products account for the catalytic
and structural versatility of the cell. This is an intricate and precise
regulatory process that provides living cells with their remarkable
properties. Biological results clearly show that the mechanism of
regulation is a multi-level system of high complexity formed by
genes and TFs, which determines how organisms develop and
respond to environmental stimuli. This involves physical, inform-
ational, proximal, distal, upstream and downstream cis-regulatory
elements on the DNA, as well as protein–protein, protein–DNA
and other ‘component–component’ interaction events.

GRNs must be based in the genomic DNA sequence and, in ex-
perimental terms, the relevant sequence is that containing the
genes in networks and their cis-regulatory control elements [1,2].
With the high-throughput sequencing of the complete genomes of
a large variety of species, new experimental strategies combined
with information technology and computational modelling have
been developed for exploring these rapidly accumulating new
data, allowing biologists to accelerate the pace of understanding of
the logic of GRNs in a systematic manner [3,4]. Using DNA
microarray technology, for example, patterns of similar expression
profiles under various conditions have been linked to shared regu-
latory mechanisms [5,6]. The computational approaches used to
analyse and elucidate these control mechanisms are various [7].
Popular approaches include searching for novel cis-elements
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using the program PROJECTION [8], or the more recent Gibbs
Recursive Sampler [9] and YMF [10].

Studies of GRNs in yeast [11], and of those for the development
of the endoderm in a sea urchin embryo [3], illustrate the power of
combining genomic techniques with computational analysis, and
also indicate additional challenges. Recently, a genome-wide
analysis of the binding sites of TFs in the yeast Saccharomyces
cerevisiae was achieved [12]. That study not only documents
potential pathways used by yeast cells to regulate gene expression,
but also identifies network motifs, the simplest units of network
architecture. Integration of such datasets with other information,
such as protein–protein interactions, can provide detailed insight
into specific cellular processes, such as GRNs [12]. However, to
create meaningful output, the information collected from each
approach or their combination should be of high quality [13]. Sub-
stantial effort must be devoted to organizing the information into
databases in structured formats that can be interrogated compu-
tationally in order to manage, integrate, analyse and visualize all
of the data.

In the present review, we discuss several novel functional
genomic and proteomic strategies in conjunction with some bio-
informatic approaches for elucidation of the components of GRNs
and links between these components. We will review work
completed and in progress to chart GRNs, focusing on hypothesis-
and discovery-driven data mining and integration, and cons-
truction of regulatory network motifs in cells.

GENOME ANNOTATION

The mapping, sequencing and dissecting of genomes provides an
invaluable resource for the study of regulatory networks. At pre-
sent, the annotation of whole genome sequences for functional ele-
ments is clearly one of the most formidable challenges facing the
bioscience community. Despite extensive research in the area of
gene prediction, current predictors do not provide a complete
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solution to the problem of gene identification [14]. For example,
micro-exons and small genes remain difficult to locate, because
discriminatory statistical characteristics are less likely to appear in
short strands. Furthermore, some genes do not possess the
characteristic features that identify most genes, and hence it is im-
possible to track them by using gene predictors that rely on these
features. Consequently they often can be missed and designated as
hypothetical ORFs (open reading frames) [14].

An additional challenge to genome annotation efforts lies in the
prediction of genes for non-coding RNA, including genes of
rRNAs, tRNAs and small RNAs. The small RNA subfamily con-
tains siRNAs (small interfering RNAs) and microRNAs that have
been revealed recently, as well as snRNAs (small nuclear RNAs)
and snoRNAs (small nucleolar RNAs), each with their own pro-
perties and functions, from structural through regulatory to cata-
lytic [15]. These types of genes have been hard to detect both ex-
perimentally and computationally because of their small size, lack
of an ORF and diverse nature. Even in the Escherichia coli gen-
ome, only a proportion of the population of genes encoding small
RNAs was predicted [16].

In addition to finding new genes, the refinement and verification
of the results of gene prediction are also extremely important. Both
comparative genomics [17] and genome-wide functional analyses
[18] show that the S. cerevisiae genome, despite its low content
of introns, requires annotation improvements. A number of app-
roaches, including large-scale sequencing of random cDNAs, or
ESTs (expressed sequence tags) [19,20], recent analyses of the
genomic sequences of a number of related yeast species [21,22],
Gateway-based ORFeome cloning [23,24] and proteomics-based
protein expression [25], have been used to distinguish between
real and misannotated ORFs. Through continual refinement, the
false genes can be removed and novel ORFs added. Correct
information from the corresponding protein-coding gene annota-
tion is critical for constructing tools such as DNA chips, protein
arrays [26] and reverse transfection strategies [27], allowing
researchers to study the activity of thousands of genes at a time.

DECIPHERING CIS-REGULATORY CODES

The heart of GRNs consists of genes encoding TFs and the cis-
regulatory elements that control the expression of those genes
[1]. Each of these cis-regulatory elements receives multiple inputs
from other genes in the network; these inputs are the TFs for which
the element contains the specific target site sequences. The func-
tional linkages of which the network is composed are those
between the outputs of regulatory genes and the sets of genomic
target sites to which their products bind [3,28]. These cis-regula-
tory elements act like a kind of ‘code’, transforming a set of
input information into a second set as output [1].

Genome annotation requires not only the identification of cod-
ing segments of genes and the mapping of novel transcripts, but
also information on how individual genes are separately regulated.
Coding regions in the genomes of higher eukaryotes occupy only
a small fraction of the total genome. In the case of the human
genome, protein coding sequences account for less than 2 % of
the total. These genomes contain vast amounts of cis-regulatory
sequences responsible for directing spatial and temporal patterns
of gene expression in response to metabolic requirements, deve-
lopmental programmes and a plethora of external stimuli [29].
Therefore, identifying and characterizing these cis-regulatory se-
quences represents the first step towards building complex models
of regulatory networks [30]. Accordingly, many high-throughput
experimental and computational strategies are emerging.

ChIP-chip (chromatin immunoprecipitation–DNA microarray)
is one such approach, which can efficiently map global binding

sites for TFs and chromatin proteins on a genome-wide scale
in vivo. The approach combines a modified ChIP procedure, which
had been used previously to study protein–DNA complexes. The
purified protein-bound DNA is amplified, labelled and hybri-
dized to intergenic DNA microarrays. This approach was first used
successfully in yeast [12,31–34], was also developed in Droso-
phila [35,36], and has been used more recently in a limited fashion
to identify TF binding sites in mammalian cells [37–40]. For
example, the ChIP-chip assay has been used with human DNA
microarrays to identify binding sites for GATA-1 in the 75 kb
sequence of the β-globin locus [39], binding sites for E2F in pro-
moters of genes expressed during cell cycle entry [37], and
binding sites for NF-κB (nuclear factor-κB) across the whole of
chromosome 22 [40].

ChIP-chip assays provide a treasure trove of experimental data.
However, it is difficult to confidently assign TFs to genes solely
on the basis of these binding data because, although the data
are obviously very good, there clearly exists a significant degree
of error of uncertain magnitude. Taking two yeast cell cycle-
associated studies, for example, the agreement between the
binding data of Simon et al. [32] for Mbp1, Swi4 and Swi6
(the components of the transcription factors MBF and SBF) and
those of Iyer et al. [33] for the same proteins is only moderate [7].
In addition, the technique can only map the probable protein–
DNA interaction loci within ∼ 1–2 kb resolution. Moreover,
binding does not prove that there is regulation and, importantly,
does not distinguish between positive and negative regulation.
The use of both binding information and large-scale expression
data from DNA microarrays should prove to be an important and
powerful combination of analyses that can be expected to result
in the reliable assignment of a TF to a gene [32,41].

Like DNA microarrays in the late 1990s, it is almost certain
that the new ChIP-chip technology will quickly catch on with
researchers worldwide, and before long large numbers of high-
throughput DNA-binding datasets will be available. Powerful
and sophisticated computer algorithms, such as GRAM (Genetic
Regulatory Module) [42], REDUCE [43,44] and modified MOTIF
REGRESSOR [45], will be needed to analyse these data.

The development of the ChIP-chip technique has experienced
two important stages: from yeast to multicellular organisms such
as Drosophila, and then to mammalian cells. With the develop-
ment of ChIP-chip assays for use in cells from higher eukaryotes,
some inherent challenges still exist, including the large size of the
genome and intergenic sequences, the complexity of gene regu-
lation and chromatin structure, and the high proportion of repet-
itive elements. Can the ChIP-chip assay be applied to an entire
mammalian genome? This will be a new developing trend.

Compared with the above experimental strategies, computa-
tional methods for deciphering cis-regulatory regions have a
longer history and greater power [30,46,47]. Many algorithms for
the large-scale discovery of candidate regulatory regions have
been developed. Detailed consideration of these algorithms is
beyond the scope of this review, and more specific descriptions are
found elsewhere [30,46–48]. Although these methods are unable
to assign specific TFs to their cognate binding sites, they can still
be of tremendous use in identifying relevant binding site motifs.
Other types of programs can currently be obtained from internet
resources. Here, with the availability of some whole genomes, we
will mainly discuss the strategy of comparative genomics [49].
This method is a powerful approach for dissecting the com-
plexities of cis-regulatory codes [50]. The rationale behind this ap-
proach is that evolutionary conservation of a feature implies that it
has been retained by selection, which means that it is likely to have
a function (also referred to as ‘phylogenetic footprinting’) [51].
Indeed, several studies [50,52] have shown that putative TF
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binding sites are enriched in conserved non-coding genomic se-
quences (footprints). This approach has proved valuable not only
on a gene-by-gene scale, but also on a genomic basis [48,52],
and several algorithms have been developed for cross-species
sequence comparisons, complete with gene, in some cases, TF
binding site and annotation [53,54]. Two recent studies are very at-
tractive. Cliften et al. [55] sequenced the genomes of five different
Saccharomyces species and aligned them with the S. cerevisiae
genome sequence, thereby identifying hundreds of sequences.
They estimated that there are around 5500 different conserved
upstream motifs, and that 73 % of these are made up of combi-
nations of the known binding sites of 37 TFs [55]. Nobrega et al.
[56] compared human DACH (Dachsund) flanking sequences
with mouse genomic DNA and, by combining additional genome
comparison information from distantly related vertebrates such as
frog, zebrafish and pufferfish, reported that they contain several
important enhancers.

Despite the potential power of comparative sequence-based ap-
proaches, they still have some limitations when conducting ge-
nome-wide searches for regulatory sites. For example, it is not
possible to identify, merely from alignment data, the functional
role of an identified conserved sequence motif. Moreover, some
conserved elements may be found in intergenic regions far from
any coding sequence, so it is not always clear what gene is subject
to regulation by the elements in question.

Using a purely computational approach, uncertainty remains as
to whether a predicted cis-regulatory element actually possesses
the expected function [57]. With a purely experimental method,
on the other hand, difficulty remains in predicting cis-regulatory
elements on a large scale. Thus the union of experimental and
computational strategies represents a new approach to deciphering
cis-regulatory codes [58]. The most successful of these ap-
proaches to date appear to be those that rely on gene expression
profiles from DNA microarrays. Some of these are currently
being employed to study genome-wide transcriptional regulation
[59–62]. Typical analyses include clustering of binding sites
and finding DNA sequence regions where their local density
is high [59,60], or predicting the targets of a TF using support
vector machines [61]. Other methods have combined transcrip-
tional profiling data with additional information such as shared
DNA binding motifs, and been applied to identify novel TF combi-
nations in the promoters of yeast genes [62]. Among the more
commonly used of these programs, REDUCE is an excellent
algorithm and is designed for analysis of a single transcrip-
tome [5,64]. Furthermore, the algorithm has been successfully
applied to analyse genome-wide protein–DNA interaction data in
Drosophila [43,44]. In addition, other functional genomics and
proteomics data, rather than genome sequence and expression
profiling information, have been used to facilitate the identi-
fication of TF binding sites using appropriate computational tools.
Recently, Ettwiller et al. [65] combined functional information
such as protein–protein interactions and metabolic networks with
genome information in S. cerevisiae and developed a new scoring
method to predict cis-regulatory motifs in the upstream regions
of genes. Roulet et al. [66] coupled appropriate bioinformatics
tools with a high-throughput SELEX/SAGE (systematic evolution
of ligands by exponential enrichment/serial analysis of gene
expression) method for quantitative modelling of mammalian TF
binding sites.

As mentioned above, although many high-throughput and
powerful methods have emerged, deciphering cis-regulatory
codes still faces some formidable challenges. First, several regula-
tory DNAs, enhancers, silencers and insulators are scattered
within tens of kilobases of transcription start sites, upstream
or downstream of the gene, or within its introns in higher eu-

karyotes [67], thus introducing significant complexity into such
approaches, and false positive rates can be high. Secondly, a
typical promoter or enhancer usually contains multiple TF binding
sites and receives input from a number of different signalling
cascades [28]. Thirdly, but not least, most TF binding sites are
short sequence elements (6–20 bp) and extremely difficult to use
for sequence comparisons. A large number of such motifs may
occur randomly in the genome, and the vast majority of these
have no role to play in gene regulation. An additional aspect is
that the genomes of eukaryotic cells usually contain a wealth of
information not encoded directly in their DNA sequence (termed
‘epigenetic regulatory information’), such as DNA methylation
and the histone code (i.e. various post-translational modifications
of histones). How to mine and integrate this information into
GRNs will be an enormous challenge.

IDENTIFICATION OF TFs

TFs lie at the centre of gene regulation [29]. The regulation of
specific genes by TFs can be defined as a direct transcriptional
regulatory interaction. When all such interactions in a living cell
are considered, what we see is a complex set of interactions,
which is known as the GRN. These regulatory networks form the
framework for gene expression, determining which genes should
be expressed in a cell, and when. Precise control of gene ex-
pression is achieved by combinatorial and concerted interactions
of various TFs with their cognate binding sites, with each other
and with the transcription initiation complex [68,69]. There-
fore their identification is crucial to the understanding of gene reg-
ulatory mechanisms. Emerging evidence suggests that organism
complexity correlates with increases in both the proportions and
absolute numbers of TFs per genome [67].

Compared with the identification of cis-regulatory elements, the
development of strategies for isolating and identifying TFs lags
behind. Current TF coding information is predicted mainly from
genome analysis based on computational methods. For example,
through sequence similarity or structural comparison, Riechmann
et al. [70] characterized the entire complement of TFs encoded by
the genomes of Arabidopsis, Drosophila, Caenorhabditis elegans
and S. cerevisiae. Recently, several in silico analyses identified
a total of 326 putative C2H2 zinc-finger proteins in the genome
of Drosophila [71], and 147 bHLH (basic helix–loop–helix) [72]
and 107 MADS-box protein-coding genes [73] in the Arabidopsis
genome.

Madan Babu and Teichmann [74] have reported a novel method
for identifying TFs. In this approach, structural domains are first
assigned to sequences, and then sequences that have known DNA
binding domains are identified as potential TFs. Importantly, the
authors ensured that DNA binding domains seen in DNA repair
proteins and some enzymes were not included in the analysis. This
is a better approach, because the HMM (Hidden Markov Model)-
based structural domain assignment method picks up more distant
homologues in a reliable manner than sequence comparison
methods [74]. Using this method, Madan Babu and Teichmann
identified a total of 271 E. coli TFs from the SUPERFAMILY
database. For 121 of these 271 TFs, experimental information
about the genes that they regulate had been provided in previous
studies. Individually, these 121 TFs each regulate from 1 to
197 genes; altogether, there are 1302 genes and 303 operons in the
regulatory network [75]. To investigate the regulation of TFs,
the authors integrated the information available from other studies,
to produce a diagram of the TF regulatory network in E. coli [74].
Figure 1 shows the network of 35 TFs currently known to regulate
each other in E. coli. For example, FNR and ArcA regulate four TF
genes, and the tdcA gene is regulated by a combination of several
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Figure 1 Regulatory network of TFs in E. coli

This figure illustrates the core of the GRN in E. coli, where TFs regulate other TFs [74]. Short horizontal lines from which bent arrows extend represent cis-regulatory elements responsible for the
expression of the genes named below the line. When more than one TF regulates a gene, the order of their binding sites is as given in the figure. An arrowhead indicates activation and a horizontal
bar indicates repression when the position of the binding site is known. If only the nature of TF regulation is known, without binding site information, ‘+’ and ‘−’ symbols indicate activation and
repression respectively. These examples may be indirect rather than direct regulation. The circles with the different colours as given in the key represent the different families of DNA binding domains.
The names of dominant regulators are in bold. FIS, factor for inversion stimulation; IHF, integration host factor. Modified with permission, from Madan Babu, M. and Teichmann, S. A., (2003), Nucleic
Acids Res. 31, 1234–1244. c© Oxford University Press.

TFs. Using the current information on the E. coli GRN shown in
Figure 1, it appears that TFs vary with regard to the number of
genes they regulate. The majority of TFs are ‘fine tuners’ that con-
trol a limited, specific set of genes, while a small number of TFs are
‘dominant TFs’, that regulate a large number of genes, and also
interact with a large number of TFs to amplify their influence
[74,76,77]. Figure 1 shows one central part of the GRN currently
known in E. coli [74]. From these events we can see that, even in
simpler organisms such as the prokaryote E. coli, there are also
cascades of TFs that regulate each other in order to amplify or
diversify the effect of a signal on gene regulation. It is estimated
that roughly 5–10 % of the total coding capacity of the metazoan
genome is dedicated to the coding of TFs [67]. Therefore the TF
regulatory networks in such organisms would be more intricate
than in E. coli. We can envision that computational methods
similar to that described above could be developed to identify TFs
and to dissect the complicated GRNs of TFs in metazoans.

The traditional experimental approaches for the identification of
TFs, such as DNA affinity chromatography [78] and DNA binding
assays [79], are usually time-consuming, labour-intensive and
low-throughput. One of the main reasons is that TFs are normally
present at very low concentrations in cells. To understand gene
regulation, the development of high-throughput methods is
needed. The first method for the identification of DNA binding
proteins on a genome-wide basis was provided by Hazbun and

Fields [80]. They combined a gel shift assay with pools of 6144
glutathione S-transferase fusion proteins in yeast and identified
several TFs that bound to a specific cis-regulatory sequence. This
method demonstrates the feasibility of identifying DNA binding
activities by rapidly assaying a large fraction of the predicted
ORFs of an organism for binding to a regulatory DNA motif.

Recent advances in proteomics and MS have created unpre-
cedented power for the identification of DNA binding proteins
[81]. Nordhoff et al. [82] reported a method that relies on MALDI-
TOF (matrix-assisted laser desorption/ionization time-of-flight)
MS to identify DNA binding proteins that bound to a DNA probe
harbouring specific cis-regulatory motifs immobilized on to small
paramagnetic particles. Bound proteins were analysed directly by
MALDI-TOF MS and then identified by retrieving databases [82].
In another report, Woo et al. [83] developed a powerful method for
the identification of DNA binding proteins seen in electrophoretic
mobility shift assays by utilizing high-resolution two-dimensional
electrophoresis coupled with MS [83]. These two methods,
combined with DNA chip technology, could be applied to identify
TFs systematically.

MAPPING PROTEIN–DNA INTERACTIONS

Protein–DNA interactions – that is, physical binding of trans-
acting regulatory gene products to specific cis-acting elements of
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the regulated genes – are at the heart of the regulatory mechanisms
that control gene expression in the GRN. A more complete under-
standing of these protein–DNA interactions will permit more com-
prehensive and quantitative mapping of the regulatory pathways
within cells, as well as a deeper understanding of the potential
functions of individual genes regulated by newly identified TF
binding sites [29]. Numerous techniques have been employed
for studying protein–DNA binding interactions, including several
methods in vitro, sensitive fluorescence-based approaches and
high-throughput array-based assays in vivo.

The first class of methods, such as gel mobility shift assays, is
the most commonly used [79]. For example, using electrophoretic
mobility shift assays, the protein–DNA complex results in a de-
crease in the electrophoretic mobility of the DNA fragment in
non-denaturing polyacrylamide or agrose gels. The assay usually
involves the addition of a binding protein to the DNA sample and
separation of the free and complexed DNA by gel electrophoresis
with autoradiography or fluorescence detection. The whole pro-
cess requires a large amount of sample and is too laborious and
time-consuming to be used for the analysis of a large number of
protein–DNA interactions.

Fluorescence-based approaches for measuring specific protein–
DNA interactions have been developed to circumvent the defi-
ciencies of such methods [84]. For example, fluorescence detec-
tion eliminates environmental concerns related to the disposal
of radioactive waste and provides outstanding sensitivity of de-
tection, even to the level of single molecules [85]. However, the
methodologies are not practical for gathering data on vast numbers
of protein–DNA interaction pairings.

Methodologies to map protein–DNA interactions using array-
based assays have been developed in yeast [12,31,33], Drosophila
[35,36] and mammalian cells [37,39,86]. To date, the interactions
of over 100 yeast TFs with cognate DNA regulatory sequences
have been mapped on a genome-wide scale. For example, Lee et al.
[12] constructed a series of yeast strains in which each of the 141
known yeast regulators was epitope-tagged at its C-terminus and
expressed under the control of its normal promoter at its appro-
priate chromosomal locus. After the growth of each strain, ChIP
analysis was carried out, in which each tagged protein was purified
along with its population of bound DNA, and the identity and
amount of DNA was determined using intergenic microarrays. Of
the 141 TFs, 106 were identified, and the study allowed not only
a genomic view of protein–DNA interactions, but also the de-
scription of a number of different networks of transcription regu-
lation in the cell, and a functional assessment of the role of each
TF in yeast [12]. Recently, Sun et al. [36] demonstrated the use
of genomic DNA tiling path microarrays to map protein–DNA
interactions at high resolution along large segments of genomic
DNA from Drosophila.

DISSECTING PROTEIN INTERACTION NETWORKS

Networks of protein interactions mediate many cellular responses
to environmental stimuli and direct the execution of devel-
opmental programmes. Each protein typically interacts and reacts
with other interaction partners to execute their functions. The se-
lectivity of these interactions determines the developmental poten-
tial of the cell and its response to extracellular stimuli.

No individual factor is capable of playing a dominant role in
generating the immense specificity required to regulate trans-
cription, especially in eukaryotes. The GRN is composed of and
mediated by cascades of interacting components or complexes,
which bind to promoters and enhancers, or communicate between
activators and repressors and sites of transcription initiation. Each
of these complexes might be a key player in regulating a given

gene. Complexes of TFs, co-repressors and chromatin binding
proteins maintain normal cells in a quiescent state, and disruption
of these protein interactions may be significant in permitting the
unregulated growth of cancer cells [87]. A major challenge is to
determine how all of these complexes work together to ensure
proper regulation.

For example, in a gene regulatory pathway, the transcriptional
regulatory proteins receive input information from upstream
signal transduction cascades that are regulated by specific protein
interactions. Then the proteins will bind to short cis-DNA
sequence motifs found in the promoter and enhancer regions of
downstream genes and, through interactions with other com-
ponents of the transcription machinery, promote access to DNA
and facilitate the recruitment of RNA polymerase enzymes to the
transcriptional start site [88]. Therefore protein interactions pro-
vide the mechanistic basis for much of gene regulation in all
organisms. Comprehensive analysis of protein interaction events,
integrated with cis-regulatory and TF binding information, will
provide a powerful first step towards charting GRNs.

An enormous amount of protein–protein interaction infor-
mation has been obtained for some organisms using high-
throughput Y2H (yeast two-hybrid) systems [89], MS-based pro-
teomics [90–92], protein arrays [93] and fluorescence-based
interaction assays [94,95]. These large-scale datasets have pro-
vided a wealth of new leads in many areas of biology, such as
global protein function prediction [96] and functional module
discoveries [97]. Some work is obviously not directly related to
the subject of this review, but the results are testimonies that these
methodologies are scalable and beneficial to the understanding
and charting of GRNs. Of particular relevance to gene regulation,
for example, Yatherajam et al. [89] performed a systematic Y2H
analysis of TAF–TAF (TATA-binding protein associated factor)
interactions and their topological arrangements within TFIID.
Many studies have shown that TFIID plays important roles in
many aspects of the regulation of gene expression [98]. Newman
and Keating [93] used protein arrays to test 492 pairings of a nearly
complete set of coiled-coil strands from human bZIP (basic-region
leucine zipper) TFs.

The scaling-up of protein interaction screens using the Y2H
system has made it possible to analyse complete proteomes and
identify thousands of interactions. Surprisingly, several proteome-
wide screens in the yeast S. cerevisiae have yielded very little
overlap in the interactions detected. Several analyses of genomic
Y2H results suggest that about 50% represent valid interactions
[99–102]. These results are largely unexpected, and lead to
speculation on high error rates in large-scale interaction screens
and the need for an upward revision and reliability assessment
of the number of protein interactions in yeast and other organ-
isms. For example, integrating Y2H data on protein interactions
with data on protein complex composition from affinity chroma-
tography plus MS and co-expression data from transcriptome
analyses allows the production of a list of validated protein inter-
actions [99,100,102].

Since many protein complexes participate in gene regulation,
affinity tagging coupled with MS-based proteomics may have a
significant impact on the dissection of gene regulatory mech-
anisms [90]. Considerable efforts have been devoted to developing
tagging systems optimized for the analysis of protein complexes
[103]. Here we will highlight the current state of one popular
tagging system – the TAP (tandem affinity purification) method –
and its role in the identification of transcription complexes. The
TAP method is a protein tag-based affinity purification tech-
nique originally developed and successfully employed in yeast
[104,105]. Technically, two affinity tags, Protein A and cal-
modulin-binding peptide, separated by a TEV (tobacco etch virus)
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protease cleavage site, are fused the protein of interest [105]. The
TAP-tagged protein is expressed in yeast cells to physiological
concentrations to form a complex with endogenous components.
Extracts prepared from cells expressing the TAP-tagged protein
are subjected to two successive high-stringency purification steps.
Once the purified complex is available in soluble form, it is re-
solved by SDS/PAGE, and the protein bands are digested in-gel
and identified by MS [104,105]. One application of this method-
ology for analysing transcription complexes was described by
Mueller and Jaehning [106]. To further characterize the compo-
sition and function of the complex between Paf1 and RNA poly-
merase II, and to compare it with the Srb–mediator complex in
yeast, they TAP-tagged the products of four chromosomal genes:
CDC73, SRB5, HPR1 and CTR9. MS analyses of the associated
complexes revealed that the two complexes were biochemically
different [106]. Another two fascinating studies demonstrating
the power of the method will also be mentioned here [107,108].
In the first study, Chung et al. [107] combined the TAP-tagging
method with cryo-electron microscopy and determined the struc-
ture of a complex between RNA polymerase II and TFIIF [107]. In
another work, Rodriguez-Navarro et al. [108] TAP-tagged a novel
nuclear protein, Sus1, and found that it is physically associated
with SAGA, a histone acetylase complex, and the Sac3–Thp
complex, which is involved in mRNA export. The results partially
elucidated the physical nature of transcription-coupled mRNA
export [108]. Although most applications of the approach have
thus far been described for yeast complexes, the TAP method can
be modified and used for the retrieval of protein complexes from
higher eukaryotes, such as human [109–111] and Drosophila
[112]. For instance, more recently, Bouwmeester et al. [109]
analysed the human tumour necrosis factor-α/NF-κB signal trans-
duction pathway, and identified receptor, kinase and TF-
associated complexes.

Compared with Y2H and array-based approaches, this strategy
has the advantages that the fully processed and modified protein
can serve as the bait, that the interactions take place in the native
environment and cellular location, and that multi-component
complexes can be isolated and analysed in a single operation
[111,113]. In addition, the sensitivity of the method is very high,
and it is able to identify proteins characterized by low levels of
expression, such as TFs and TF-associated complexes [111,114].
Therefore the amount of sample purified by this method is usually
limited, and the electrophoretic step is not desirable. Accordingly,
the TAP-MudPIT (multidimensional chromatography–MS) ap-
proach and other variant methodologies are emerging [115,116].
However, the TAP MS method also has some drawbacks. For
example, the strategy does not provide information on the orient-
ation of complex components; thus complex characterization and
Y2H analyses are ideally complementary.

As demonstrated above, each method for identifying protein
interactions has its drawbacks, and none gives complete or unam-
biguous data. Side-by-side comparisons of data obtained by dif-
ferent methods show limited reproducibility and a prevalence of
false positives and false negatives [99]. Many biologically relevant
protein interactions are of low affinity, transient and generally
dependent on the specific cellular environment in which they
occur. Thus a straightforward affinity experiment will detect only
a subset of the protein interactions that actually occur. The
development of quantitative methods based on stable-isotope
labelling [117] is likely to revolutionize the study of stable or
transient interactions and interactions dependent on post-
translational modifications. In such experiments, accurate quanti-
fication by means of stable-isotope labelling is not used for
protein quantification per se; instead, the stable isotope ratios dis-
tinguish between the protein compositions of two or more pro-

tein complexes. In the case of a sample containing a complex and
a control sample containing only contaminating proteins, the
stable-isotope method can distinguish between true complex
components and non-specifically associated proteins. In situations
where complexes are isolated from cells in different states,
the method can identify dynamic changes in the composition
of a protein complex [91,92]. For example, Ranish et al. [91]
employed the method to guide the identification of the genuine
components of a large RNA polymerase II pre-initiation complex
(approx. 68 subunits) within a high background of co-purifying
proteins following a simple one-step DNA affinity procedure.
The method increases the tolerance of high background levels
and allows for fewer purification steps and less stringent washing
conditions, thus increasing the chance of finding transient and
weak interactions.

NETWORK MOTIFS OF GRNs

Recent advances in data connection and analysis are generating
unprecedented amounts of information about GRNs. However, it
is still extremely difficult to construct GRNs based on this infor-
mation, due to network complexity. Some studies have proposed
that such networks can be dissected into small functional modules
[118]. Therefore the notion of motifs widely used for sequence
analysis is generalized to the level of networks. Of particular rele-
vance to GRNs, specific building blocks of complex networks,
or network motifs [12,76], have been identified in GRNs of E.
coli and yeast. Network motifs are regulatory circuit patterns that
occur in the network far more often than in randomized networks
with the same degree sequence [76,119]. Each network motif can
perform a specific information-processing task, such as filtering
out spurious input function, generating temporal programmes
of expression or accelerating the throughput of the network
[12,76,119].

Lee et al. [12] have developed a high-throughput method to
identify six frequently appearing network motifs, ranging from
multi-input motifs (in which a group of regulators binds to the
same set of promoters) to regulatory chains (alternating regulator–
promoter sequences generating a clear temporal succession of
information transfer). They assembled these motifs into larger
network structures, and constructed the regulatory logic of the cell
cycle in yeast from the location and expression data [12]. A
similar set of highly significant regulatory motifs was uncovered
previously in the bacterium E. coli by Alon and co-workers [76].
The significance of these structures raises the question of whether
they have specific information-processing roles in the network.
If they do, they might be useful for understanding network dyna-
mics in terms of elementary computational building blocks. One
of the most significant motifs in both E. coli and yeast is the FFL
(feed-forward loop) [12,76]. The FFL, a three-gene pattern, is
composed of two input TFs, one of which regulates the other, and
both jointly regulating a target gene. Lee et al. [12] found that
39 TFs are involved in 49 FFLs potentially controlling 240 genes
in the yeast network. Recently, Mangan and Alon [120] analysed
the structure and functions of the FFL on the basis of mathematical
modelling and simulations. The results showed that the FFL
has eight possible structural types; half are termed incoherent
FFLs and the other half coherent FFLs. These authors found that
the incoherent FFLs speed up the response time of target gene
expression following stimulus steps in transcription networks. On
the other hand, the coherent FFLs serve as a sign-sensitive delay
element: a circuit that responds rapidly to step-like stimuli in one
direction, and as a delay to steps in the opposite direction [121].

Network motifs are emerging as our knowledge of GRNs be-
come complete [119]. It would be fascinating to study the function
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of additional regulatory network motifs to determine whether
GRNs can be understood in terms of recurring circuit elements,
each with a defined information-processing role. Once a diction-
ary of network motifs and their function is established, one can
envision researchers detecting new network motifs. These motifs
can be used as building blocks to construct large network
structures through a computational approach that combines
genome-wide binding information with large-scale transcriptome
data in the absence of original knowledge of regulator functions
[122]. From the study of Lee et al. [12] we can deduce that the
network of transcriptional regulators that control genes encoding
other transcriptional regulators is highly connected. Such a deduc-
tion implies that the network substructures for cellular functions
such as the cell cycle and development are themselves co-
ordinated at a transcriptional regulatory level. We can envision
mapping the regulatory networks that control gene expression pro-
grammes in further depth in yeast and in other higher eukaryotes.
Knowledge of these networks will be of significance for under-
standing human health and designing new strategies to resist
diseases [123].

DISCOVERY BY DATA MINING AND INTEGRATION

As described above, vast amounts of valuable data have been gen-
erated by large-scale functional genomic and proteomic experi-
ments. These include profiling of mRNA and protein expression
at the whole-genome level, locating the binding sites of given TFs
along the genome, and proteome-wide identification of interacting
proteins. Each dataset by itself calls for the application of appro-
priate computational tools for data processing, let alone the
integration of different types of information [123]. These integ-
rative analyses provide new molecular insights that could not be
revealed using each type of information alone. Of particular rele-
vance to gene regulation, several such studies have been reported,
most of which involve the integration of mRNA profiling data in
the yeast S. cerevisiae with other types of data [62,124]. Although
data relating to the unravelling of transcriptional profiling are not
discussed as one of the main points of this article, several examples
in this section will also include the mining and integration of such
information and other kinds of data resources.

First, the combination of genome-wide data for TFs and their
target genes and data for protein–protein interactions based on
classical graph algorithms has identified a large number of gene
regulatory circuits [125]. These datasets consists of 5976 protein
pairs connected as protein–DNA interactions [12,31–33] and
8184 protein pairs connected by protein–protein interactions. A
total of 746 statistically significant circuits are obtained by the
cellular process assessment, and by either the cellular localization
assessment or the knockout results assessment (or by both). Such
circuits can be used for complex regulatory tasks. For example,
some circuits regulate genes participating in metabolism; some
may function as an efficient positive or negative feedback loop, a
key component of various control systems.

In a second example of functional genomic insight, it has been
shown that the effect of the transcriptional regulatory network in
S. cerevisiae on the expression of targeted genes can be deter-
mined by integrating gene expression and TF binding data [126].
The gene expression dataset originates from a genome-wide trans-
criptional profile of the mitotic cell cycle in yeast [127] and ana-
lysis of the expressed genes using a local clustering method [128].
TF binding data are explored by merging the results of genetic,
biochemical and ChIP-chip assays [12,129–131]. The analysis
contains 7419 interactions connecting 180 TFs with their 3474
target genes. Previous studies of the data discovered six basic
motifs. The study of Yu et al. [126] found significant connections

between the two kinds of datasets. Genes targeted by the same TF
tend to be co-expressed, and the correlation is stronger for genes
targeted by multiple, common TFs. In addition, target genes of the
same TFs are more likely to share similar functions than expected
randomly. Relationships between TFs and target genes are more
complex than just co-expression. The degree of complexity is
different in different motifs.

As a final example of the value of large-scale datasets, Manke
et al. [132] integrated high-throughput protein–DNA interaction
data into the overall network of experimental protein interactions,
resulting in the production of a graphic representation of
synergistic TF interactions (Figure 2). Two main types of datasets
for yeast were used: (1) large collections of protein–DNA binding
information obtained from genome-wide location analyses [12],
the TRANSFAC database [131] and putative binding sites of TFs
based on computational prediction algorithms [132]; and (2) col-
lections of proteome-wide Y2H protein–protein interactions
[133,134] and whole protein complex analysis [111,113]. The
overlap of the corresponding datasets is very small. For example,
of the 106 TFs investigated by Lee at al. [12], only 12 were found
in the purified complexes identified by Gavin et al. [111], 35 in
the sets reported by Ho et al. [113] and 50 in TRANSFAC.
Through high-stringent theoretical analysis and computational
extraction, a large number of prevalent co-occurring TF pairs
were identified from large-scale protein–DNA binding data
[12,131,132]. To increase the reliability of TF pair predictions,
several sources of physical protein–protein interaction infor-
mation were mined [111,113,133,134]. The Y2H screens provide
valuable information on possible pairwise interaction; the protein
complexes can be interpreted as complete sub-graphs in which
each protein is linked to every other. Finally, according to synergy
and their co-occurrence frequency, the 50 highest-ranking syn-
ergistic TF pairs were obtained, and are represented in Figure 2
[132]. The figure illustrates the complementary character of
the available DNA binding data and highlights the significance
of a given TF pair, as measured by large-scale protein inter-
action networks. This is very similar in spirit to previous efforts
correlating transcriptome and interactome mapping data [135].
Although these original large-scale data contain inherent imper-
fections, they provide a valuable opportunity to systematically
search additional information. Using the frequently occurring
transcriptional module Mcm1–Fkh2–Ndd1, for example, several
new target genes involved in cell-cycle control and filament for-
mation were identified [132]. Such results particularly encourage
researchers to computationally integrate these diverse datasets
and observe significant commonalities in them. Such integration
may allow the investigators to identify many well known regu-
latory modules and extract biologically relevant sub-networks
[132,135]. Through finding commonalities in the datasets, the
reliability of network predictions can be increased [132].

Taken together, the observations described above suggest that
the large-scale datasets discussed in this review can be correlated
and integrated for the unicellular yeast S. cerevisiae, and new
discoveries made. For multicellular organisms, this approach
remains difficult. However, with the development of assays such
as the ChIP-chip method applied to mammalian cells and the
recent appearance of the first multicellular protein interaction
networks for Drosophila [136] and C. elegans [137], we believe
that the notion of such data integration can be extended to high
eukaryotes, and even to whole animals.

DATABASES AND SOFTWARE TOOLS

Charting a complicated network of gene regulation is a major
challenge [3], which will require the integration of many layers
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Figure 2 Synergy graph of TFs in S. cerevisiae

The figure shows the results of joint analysis of large-scale protein–DNA binding information and protein–protein interaction data [132]. It can be visualized as a network in which the TFs are nodes
and TF pairs are weighted links (edges) between the nodes. Black edges indicate results based on in vivo genome-wide location analysis data [12], red edges correspond to TRANSFAC database
information [131], and green links are results of in silico predictions. There are always two lines with different colours aligning with each other between two TFs. The number on each edge serves as a
rank measure, as described in [132]. The colour scheme for the nodes illustrates the predominant functional category (where known) of regulated genes: orange, mitotic cell cycle; pink, budding and
filament formation; green, amino acid metabolism; yellow, nitrogen and sulphur utilization; blue, C-compound and carbohydrate utilization; red, TFs; grey, unspecific or several functional categories.

of systematic cell and molecular biology and many direct lines of
research. The conventional methods for creating a network model
include performing a series of experiments to identify specific
interactions and conducting extensive literature surveys. Recent
developments of high-throughput strategies have resulted in
the accumulation of large amounts of data, including protein–
protein, protein–DNA and genetic interactions [138], as well as
information on cis-acting and trans-acting factors. These data
will require powerful information storage, and query and analysis
engines to handle data manipulation computationally. Current
representational models of GRNs will need to evolve substantially
in order to manage these data in a meaningful way.

Several large-scale, comprehensive databases on GRNs have
been created. Databases such as AraC-XylS [139], Regulon DB
[75], PlantCARE [140], AGRIS [141], EPD [142], TRRD [143]
and TRANSFAC [131] are intended to serve as repositories for
information on the regulation of gene transcription. A database of

transcriptional start sites for human genes has been created and can
thus provide a rich source of raw data for searches for promoter-
proximal regulatory sequences [144]. Other databases such as
TRANSCompel® [145], MIPS [134], BIND [146], DIP [133],
MINT [147], GRID [148] and GeneNet [149] serve as repositories
for protein and genetic interactions and associated regulatory
events. These databases, when cross-referred to gene expression
databases, which already have stored huge amounts of DNA
microarray information from many organisms [150,151], will
generate comprehensive and large-scale raw data for charting
GRNs of different organisms. Constructing and maintaining a
high-quality database requires a substantial amount of effort.
Thus, creating a database large enough to capture gene regulatory
information will require massive community investment and
commitment, ranging from the individual researcher to funding
agencies and journals, as well as innovation from database deve-
lopers. Important goals of these databases include minimal
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redundancy, maximal annotation and integration with other data-
bases [152].

Although such databases are useful sources of knowledge,
there are numerous examples in information management and
processing where the existence of multiple and/or specialized file
formats has hindered accessibility, information exchange and in-
tegration [153]. Therefore it will also be important to standardize
these data. It is crucial that software development is linked at
an early stage through agreed documentation, XML (eXtensible
Makeup Language)-based definitions and controlled vocabularies
that allow different tools to exchange primary datasets. Consi-
derable effort has already gone into interaction databases
[133,134,146–149] and system biology software infrastructure
[154], which should be built upon by current and future functional
genomics and proteomics initiatives/researchers. Lessons learned
from the analysis of DNA microarray data, including clustering,
compendium and pattern-matching approaches, should be trans-
portable to analysis of GRNs [155,156]. A proteomics standards
initiative is currently developing formats for MS and protein–
protein interaction data and annotation [157]. SBML (System
Biology Markup Language; see http://sbw-sbml.org), along with
CellML, represent attempts to define a standard for an XML-based
computer-readable format that enables models to be shared and
used even in a different software environment. SBW (System
Biology Workbench) is built on SBML and provides a modular,
broker-based and message-passing framework for system biology
research. Both SBML and SBW represent the collective efforts of
a number of research groups sharing the same vision [154].

Data standardization will make it easy to retrieve information
from different databases [153]. A variety of software tools will be
necessary in order to process and analyse the resulting large-scale
data, as well as to understand data relationships quickly and to
make biologically relevant predictions [158]. For molecular inter-
actions, general-purpose graph viewers such as Pajek [159] are
available to organize and display the data as a two-dimensional
network; specialized tools such as Cytoscape [160] and Osprey
[161] provide these capabilities and also link the network to
molecular interaction and functional databases such as BIND
[146], DIP [133] and TRANSFAC [131]. Indeed, these visu-
alization software tools perhaps could be developed as the inter-
active entry point to the integrated network of gene regulation,
where a gene of interest connects directly to the latest information
about that gene and its relationships. Using Cytoscape, for
example, the software is able to integrate both molecular inter-
actions (such as protein–protein, protein–DNA and genetic
interaction data) and state measurements together in a common
framework, and to then bridge these data with a wide assortment of
whole parameters and other biological attributes [160]. Cytoscape
focuses on the high-level representation of components and
interactions. Discoveries and hypothesis generation prompted by
large-scale datasets generated across all manner of model systems
will depend on data assembly tools such as Cytoscape or Osprey.

CONCLUSIONS AND FUTURE PERSPECTIVES

The past few years have witnessed a number of functional ge-
nomics, proteomics and bioinformatics approaches to dissecting
the structure and function of GRNs at a genomic level. These
have helped to identify and characterize components of GRNs
and links between them, as well as to elucidate the important gene
regulatory events in E. coli, yeast and sea urchin. Yet there is still
a need both for additional high-throughput technologies and for
computational methods with which to analyse large datasets and to
integrate complex and disparate kinds of protein–protein, protein–

DNA and genetic interactions, as well as expression profiling
information. As is often the case, advances in technology have
driven scientific breakthroughs. More recently, the development
of a computational method to analyse a gene co-expression
network should provide a novel point of view for understanding
GRNs from evolutionary and conserved points of view [162].

Another perspective will be for the field of gene regulatory
research to work hand in hand with those focused on pivotal bio-
logical processes, such as the cell cycle and development, in order
to best convert the broad but shallow gene regulatory infor-
mation available into a deeper understanding. Looking ahead,
genomics, quantitative proteomics and computing sciences will be
integrated into a comprehensive strategy for designing, modelling
and analysing experiments to investigate complex biological net-
works: a new endeavour in the multidisciplinary field of bioinfor-
matics. Therefore, in the near future, we might have a reasonably
complete picture of the GRN of a simple model organism, such as
E. coli or yeast. This picture, in turn, will provide a blueprint for
understanding the GRNs of other, more complex, model organ-
isms and of humans.
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