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Oral transforming growth factor-beta receptor 1 inhibitor
vactosertib promotes osteosarcoma regression by targeting
tumor proliferation and enhancing anti-tumor immunity

Osteosarcoma is an aggressive malignant bone sarcoma
common among children, adolescents, and young adults.
Approximately 20% of patients present with pulmonary
metastasis, and an additional 40% develop pulmonary
osteosarcoma later. The survival outcome in patients with
recurrent osteosarcoma and pulmonary osteosarcoma has
not improved overmany decades [1]. Transforming growth
factor-β (TGF-β) is a potent immunosuppressive molecule
in the osteosarcoma tumor microenvironment (TME)
known to suppress the function of cytotoxic T cells
and natural killer (NK) cells and correlates with high-
grade osteosarcoma and pulmonary osteosarcoma [2].
Vactosertib (TEW-7197) is a highly selective and potent
small molecule inhibitor against Type 1 TGF-β Receptor
(activin receptor-like kinase 5; ALK5) [3]. Vactosertib is
orally available and has 10 times the potency of galunis-
ertib (IC50 = 11×10−3 µmol/L vs. 11×10−2 µmol/L) when
tested in 4T1 [4], and is well tolerated with a manageable
safety profile in adults, representing an attractive option in
osteosarcoma [3].
TGF-β1 levels correlate with overall survival in osteosar-

coma patients (Figure 1A). Vactosertib directly suppressed
mouse osteosarcoma and human osteosarcoma cell line
growth in a dose-dependent manner, with an IC50 of
0.79-2.1 µmol/L (Figure 1B). Vactosertib (1 × 10−1 µmol/L)
completely suppressed the TGF-β signaling interme-
diate, p-Smad2, in mouse osteosarcoma and human
osteosarcoma cells (Figure 1C). In contrast, other TGF-β1
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complex 1; pOS, pulmonary metastatic osteosarcoma; PD-1, programmed
death 1; PD-L1, programmed death-ligand 1; p.o., per oral; RNA-seq,
RNA sequencing; RT-PCR, real-time reverse transcription-polymerase
chain reaction; s.c., subcutaneous; TAMs, tumor-associated
macrophages; TGF-β1, transforming growth factor-beta 1; TME, tumor
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inhibitors, SB431542 and galunisertib, exhibited an IC50
of 2.05 × 103 µmol/L and 12 µmol/L, respectively, and they
were not able to suppress p-Smad2 at 1 × 10−1 µmol/L in
SAOS2 cells (Supplementary Figure S1A-B). Vactosertib
(1 × 10−1 µmol/L) treated SAOS2 cells displayed 35 upreg-
ulated and 72 downregulated genes, including decreased
expression of Ephrin-2 (EFNB2), IL-11, and prostate
transmembrane protein androgen induced1 (PMEPA1)
which were all associated with osteosarcoma progression
and metastasis (Supplementary Figure S2A) [5]. Gene Set
Enrichment Analysis (GSEA) revealed 14 down-regulated
gene sets, including Wnt Beta-catenin signaling, TGF-β1
andmammalian target of rapamycin complex 1 (mTORC1)
signaling (Supplementary Figure S2B), with Myelocy-
tomatosis (MYC) target genes among the most inhibited
(Supplementary Figure S2B-C).
SAOS2 treated with TGF-β1 (5 ng/mL) alone most sig-

nificantly increased c-Myc target genes, and vactosertib
co-treatment with TGF-β1 significantly suppressed the
same c-Myc target gene sets (Figure 1D). Expression of
individual c-Myc target genes was independently con-
firmed using real-time reverse transcription-polymerase
chain reaction (RT-PCR) (Supplementary Figure S2D).
TGF-β1 (5 ng/ml) treatment alone also significantly
increased c-Myc protein expression in SAOS2 cells, while
a low dose of vactosertib (1 × 10−1 µmol/L) com-
pletely abolished TGF-β1-induced c-Myc expression in
SAOS2 cells (Figure 1C, Supplementary Figure S2E).
This inhibition was extended beyond SAOS2 into other
human osteosarcoma and mouse osteosarcoma cell lines
(Figure 1C). Volcano plots identified PMEPA1, LTBP1, IL-
11 and JUNB as genes most significantly increased by
TGF-β1 and suppressed by vactosertib co-treatment in
SAOS2 cells (Supplementary Figure S2F-G). Previous stud-
ies have shown these genes to be involved in tumor
progressions and metastasis, and JUNB has also been
reported to bind the promoter of c-Myc and regulate its
expression [6].
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To test direct TGF-β inhibition of osteosarcoma
growth in vivo, we administered vactosertib (50 mg/kg, 5
days/week, per os [p.o.]) starting 14 days after SAOS2 inoc-
ulation (subcutaneous [s.c.]) into NK-depleted Nude mice
(Supplementary Figure S3A) and observed blunted tumor
growth in vactosertib treated group (Supplementary Figure
S3B). Similarly, improved survival rates, smaller tumor
volume and reduced metastasis were observed in SAOS2-
bearing NSG mice treated with vactosertib after almost
3 months (Supplementary Figure S3C-F), accompanied
by a reduction in p-Smad2 (Figure S3G) and c-Myc mRNA
expression in residual tumors in vivo (Supplementary
Figure S3H). As c-Myc amplification has been reported
in metastatic and chemo-resistant osteosarcoma [7],
we tested vactosertib on 143B, a c-Myc amplified human
osteosarcomawith high c-Myc at baseline (Supplementary
Figure S3I). 143B growth was not inhibited by a wide dose
range of vactosertib (10× 10−3 µmol/L to 10× 10−6 µmol/L)
in vitro (Supplementary Figure S3J). Although vactosertib
potently shut down pSmad2, ERK phosphorylation
remained unchanged in 143B (Supplementary Figure S3I).
Interestingly, vactosertib could not inhibit 143B tumor in

NSG mice in vivo (Supplementary Figure S3K) but was
able to do so in nude mice (Supplementary Figure S3L),
suggesting a tumor-extrinsic effect of vactosertib such as
through enhancement of NK cell function [8].
To assess the osteosarcoma-extrinsic effects of vac-

tosertib on the immune landscape of the primary
tumor sites, we employed a K7M2 model in BALB/c mice
(Figure 1E). Vactosertib treatment (50mg/kg, 5 days/week,
p.o.) significantly inhibited K7M2 tumor growth
(Figure 1F-G). While no statistically significant differences
were observed in the percentage of the CD45, CD11b or
MDSC (Ly6CloLy6GHi, Ly6CHiLy6G−) cell populations
(Supplementary Figure S3M), M2-like tumor-associated
macrophages (TAMs) (CD11b+F4/80+Arg+PD-L1+) were
significantly suppressed by vactosertib (Supplementary
Figure S3M). Using a pulmonary osteosarcoma model
where BALB/c mice were inoculated with 1×106 K7M2-
Luc cells (i.v.) and treated with vactosertib via oral gavage
starting 7 days later (Figure 1H), vactosertib-treated mice
exhibited a dramatic inhibition of pulmonary osteosar-
coma burden with a suppressed tumor c-Myc expression
(Figure 1I-J). At a higher dose, vactosertib was efficacious

F IGURE 1 Vactosertib inhibits osteosarcoma cell growth in vitro and in vivo. (A) Kaplan-Meier overall survival curves of high-grade
osteosarcoma patients and their expression of TGF-β1 in clinical biopsies. Data were obtained from “R2: Genomics analysis and visualization
platform” [http://r2.amc.nl]. Datasets provided by Kuijer (n = 88). The red line indicates high expression of TGF-β1 (n = 26), while the blue
line indicates low expression of TGF-β1 (n = 62). Kaplan-Meier curves showed worse overall survival rates of osteosarcoma patients with high
TGF-β expression compared to patients with low TGF-β1 expression (P = 0.032). (B) Effects of vactosertib on osteosarcoma proliferation.
Various doses of vactosertib (10×10−3 µmol/L to 10 µmol/L) were incubated with mOS (K7, K7M2, mOS493, and mOS482) or hOS (M132 and
SAOS2). Cell growth was quantified over a 4-day period using the IncuCyte Imaging System. The non-linear regression (curve fit) equation
was calculated using GraphPad prism (n = 5/group). (C) Vactosertib inhibits TGF-β1 signaling pathway in osteosarcoma cells. Various doses
of vactosertib (1×10−2 µmol/L to 1 µmol/L) were used to treat in K7, K7M2, mOS493, mOS482, SAOS2 and M132 cells 15 minutes before TGF-β1
(5 ng/ml) treatment. 1 hour after TGF-β1 treatment, cells were harvested and p-Smad2, Smad2 and β-actin expressions were measured by
Western blot analysis. TGF-β1 (5 ng/ml) or TGF-β1 (5 ng/ml) / vactosertib (Vacto) (1×10−1 µmol/L) were used to treat various osteosarcoma
(SAOS2, M132, K7M2, K7) for 24 hours and c-Myc and β-actin protein expressions were measured by Western blot analysis. (D)
RNA-sequencing analysis of human osteosarcoma (SAOS2) cells after TGF-β1 (5 ng/ml), TGF-β1+ vactosertib (1×10−1 µmol/L) or untreated
(UT) for 24 hours. GSEA enrichment plot of c-Myc target v1 and v2 pathway in TGF-β1 treatment versus untreated and in TGF-β1 + Vacto vs
TGF-β1. P values are < 0.001 and FWER is < 0.001 for both analyses. (E-G) Vactosertib inhibited OS cell growth in vivo. (E) BALB/c mice were
inoculated with 1×106 K7M2 (s.c.) on Day 0, and then treated with vehicle (p.o.) or vactosertib (50 mg/kg, p.o. 5 days/week) starting on day 11.
(F) tumor sizes were measured by caliper. n = 4, ***P < 0.001 using a two-way ANOVA between groups followed by post-hoc Bonferroni’s
multiple comparison tests. (G) Tumor weight was measured (n = 4). (H-J) Vactosertib inhibits mouse pOS development in vivo. (H) BALB/c
mice were inoculated with 1×106 K7M2-Luc (i.v.) on day 0, and then treated with vehicle (p.o.) or vactosertib (25 mg/kg p.o. 5 days/week)
starting on day 7. (I) BLI was measured once a week. (J) Relative mRNA expression of GP70 and c-Myc in lung samples of the vehicle or
vactosertib-treated mice on day 42 days after tumor injection compared with that of control lungs of no tumor-bearing mice. n = 5/group,
*P < 0.05 using an unpaired two-tailed t-test. (K-L) BALB/c mice were inoculated with 1×106 K7M2-Luc (i.v.) on Day 0, and then treated with
vehicle (p.o) or vactosertib (50 mg/kg, p.o. 5 days/week) starting on day 28 (4 weeks). Ten weeks after tumor injection, lung samples were
collected. (K) FACS was performed and expression of CD3, CD4, CD8, NK (CD49b), PD-1 and IFNγ was determined by FACS. Unbiased
immune cell profiling on 5000 live CD45.2 cells by t-SNE analysis was performed. tSNE density plots of live cells in vehicle or
vactosertib-treated samples. The frequency of T cell markers by conventional FACS analysis. Vehicle n = 4, vactosertib n = 7 *P < 0.05,
***P < 0.001, using an unpaired two-tailed t-test. (L) Examined for expression of F4/80, PD-L1, CD206 and Arg1 by FACS. tSNE density plots
of CD45.2+ cells in vehicle or vactosertib-treated samples. The frequency of myeloid cell markers by conventional FACS analysis. Vehicle
n = 4-7, vactosertib n = 7-9, *P < 0.05, **P < 0.01 using an unpaired two-tailed t-test. Abbreviations: BLI, bioluminescent imaging; c-Myc,
cellular-Myelocytomatosis; FACS, fluorescence-activated cell sorting; hOS: human osteosarcoma; p.o., per os; PD-1, Programmed death 1;
PD-L1, programmed death-ligand 1; RNA-seq, RNA sequence; s.c., subcutaneous; TGF-β1, Transforming growth factor-beta 1; tSNE,
t-distributed stochastic neighbor embedding; UT, untreated; Vacto, vactosertib.
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in suppressing tumor growth even when starting late
(3 weeks) at a higher tumor burden (Supplementary
Figure S4A-C), accompanied by reduced lung metastasis
(Supplementary Figure S4D-E). Interestingly, c-Myc
expression in lung tissue was similar despite its clinical
efficacy (Supplementary Figure S4F), implying a critical
role for enhanced anti-tumor immunity in vivo.
Poor response to osteosarcoma therapy is correlated

with low CD8+ T cells and IFNγ expression [9]. To
elucidate how vactosertib affects the in vivo immune
landscape, we performed multiparametric flow cytometry
(FACS) with tSNE analysis of lung tissues (Supplementary
Figure S5A). The analysis showed vactosertib-exposed
TME contained significantly more CD3+, IFN+CD8+ and
NK cells, along with a decreased prevalence of PD1+CD8+
T cells, PD1+CD4+ T cells (Figure 1K) and Foxp3+CD4+
T cell subsets (data not shown). Vactosertib exposure
resulted in the accumulation and deep infiltration of NK
cells within the tumors while they were scattered and
largely confined to the tumor periphery in vehicle controls
(Supplementary Figure S6).
Examination of the myeloid cells (Supplementary

Figure S5B) also showed a clear difference upon vac-
tosertib treatment, with a suppression of M2-like TAMs
expressing PD-L1+, CD206+PD-L1+, and Arg1+ markers
(Figure 1L). Similar to TAMs, vactosertib also diminished
F4/80− CD11b+Ly6G−Ly6C+ and CD11b+Ly6G+Ly6C+
myeloid cells (data not shown), further supporting vac-
tosertib as enhancing anti-tumor immunity in pulmonary
osteosarcoma TME. Finally, we tested co-treatment with
vactosertib and αPD-1/ αPD-L1 mAb for synergy against
osteosarcoma in vivo (Supplementary Figure S7). Vac-
tosertib alone inhibited osteosarcoma tumor growth as
well as αPD-L1 mAb alone or in combination. Interest-
ingly, in agreement with ongoing disappointing clinical
observation in osteosarcoma patients receiving aPD-1 ther-
apies [10], we did not observe a therapeutic efficacy with
aPD-1 mAb in vivo. As vactosertib significantly reduced
PD-1+ T-cells and suppressed PD-L1+ macrophages, the
lack of synergistic effects of vactosertib and ICB may be
explained by the reduction in the numbers of these cells.
The exact mechanism(s) for this lack of clinical efficacy by
targeting PD-1 in osteosarcoma await additional studies.
Based on our current study, a multi-continent (US,

Europe, Asia), multi-center phase I/II clinical trial
(NCT05588648) with vactosertib monotherapy for
osteosarcoma is actively enrolling. The application of
vactosertib as an adjuvant to additional cellular therapy
and immune-modulating approaches for osteosarcoma
and other cancers awaits thoughtful exploration, such as
inclusion in protocols targeting early-stage and high-risk
disease. Taken together, inhibition of TGF-β signaling
could be an effective therapeutic strategy against pul-

monary osteosarcoma through a multi-pronged approach
that targets tumor intrinsic and extrinsic factors to achieve
optimal immune-effector functions and maximal clinical
response.
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