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ORIGINAL ARTICLE

Invasive Assessment of Coronary Artery  
Disease in Clonal Hematopoiesis of 
Indeterminate Potential
J. Brett Heimlich , MD, PhD*; Michael A. Raddatz , MD, PhD*; John Wells , MD; Caitlyn Vlasschaert , MD, PhD;  
Sydney Olson, BS; Marcus Threadcraft , MD; Kristoff Foster, MD, MA; Emmanuel Boateng, MD; Kelsey Umbarger , BS;  
Yan Ru Su , MD; Dan M. Roden , MD; Colin M. Barker , MD, MA; Alexander G. Bick , MD, PhD

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) occurs due to acquired mutations in bone marrow 
progenitor cells. CHIP confers a 2-fold risk of atherosclerotic cardiovascular disease. However, there are limited data 
regarding specific cardiovascular phenotypes. The purpose of this study was to define the coronary artery disease phenotype 
of the CHIP population-based on coronary angiography.

METHODS: We recruited 1142 patients from the Vanderbilt University Medical Center cardiac catheterization laboratory and 
performed DNA sequencing to determine CHIP status. Multivariable logistic regression models and proportional odds models 
were used to assess the association between CHIP status and angiography phenotypes.

RESULTS: We found that 18.4% of patients undergoing coronary angiography had a CHIP mutation. Those with CHIP had a 
higher risk of having obstructive left main (odds ratio, 2.44 [95% CI, 1.40–4.27]; P=0.0018) and left anterior descending 
(odds ratio, 1.59 [1.12–2.24]; P=0.0092) coronary artery disease compared with non-CHIP carriers. We additionally found 
that a specific CHIP mutation, ten eleven translocase 2 (TET2), has a larger effect size on left main stenosis compared with 
other CHIP mutations.

CONCLUSIONS: This is the first invasive assessment of coronary artery disease in CHIP and offers a description of a specific 
atherosclerotic phenotype in CHIP wherein there is an increased risk of obstructive left main and left anterior descending 
artery stenosis, especially among TET2 mutation carriers. This serves as a basis for understanding enhanced morbidity and 
mortality in CHIP.
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C lonal hematopoiesis of indeterminate potential 
(CHIP) results from acquired mutations in bone 
marrow progenitor cells. More than 10% of indi-

viduals older than 65 years old have CHIP, and the 
presence of a CHIP mutation is associated with a 50% 
increase in mortality across numerous studies.1–4 CHIP 
leads to a 2-fold risk of atherosclerotic cardiovascular 
disease (ASCVD), which accounts for a large fraction 

of the increased mortality.1,5,6 However, there are lim-
ited data detailing patient-level CVD manifestations in 
humans.

Mutations in DNA methyltransferase 3A (DNMT3A) 
or ten eleven translocase 2 (TET2) together repre-
sent >70% of all CHIP cases.3,4 TET2 is the second 
most common CHIP mutation and has been consis-
tently linked to the development of atherosclerotic 
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disease in animal models, human studies, and popula-
tion-based biobanks.1,7,8 Mechanistic studies suggest 
these effects are mediated through an altered inflam-
matory axis involving myeloid lineage cells.7,9,10 For 
example, a myeloid lineage-specific TET2-knockout 
mice, and specifically TET2-knockout macrophages, 
promote accelerated atherosclerosis development, 
dependent on an enhanced expression of chemo-
kines and secretion of IL (interleukin)-1β and IL-6.7 
Conversely, DNMT3A has been more closely linked 
to heart failure.11–14 Patients with heart failure with 
DNMT3A mutations are more likely to have progres-
sive disease with higher rates of mortality, possibly 
due to enhanced fibroblast activation and subsequent 
cardiac fibrosis.15–17

To date, evaluation of specific coronary phenotypes 
has been limited. Using coronary computed tomog-
raphy calcium quantification, Jaiswal et al found that 
CHIP status was associated with an elevated Agatston 
score, suggesting more severe calcific coronary artery 
disease (CAD) in the setting of CHIP. This study also 
identified an association with increasing variant allele 
frequency size. In another study, retrospective analy-
sis of CHIP in patients from the CULPRIT-SHOCK 
trial (Culprit Lesion Only PCI versus Multivessel PCI 
in Cardiogenic Shock) revealed that among patients 
in cardiogenic shock after myocardial infarction, those 
with CHIP suffered increased morbidity and mortality 
when compared with non-CHIP patients.18 Secondary 
analysis found that there were neither differences in 
the rates of ST-segment elevation myocardial infarc-
tion (STEMI) nor the frequency of triple vessel dis-
ease within the CULPRIT-SHOCK cohort. Finally, a 
study evaluating patients with STEMI found that while 
the presence of either DNMT3A or TET2 CHIP led to 
poorer outcomes, it did not influence the rates of 1-, 2-, 
or 3-vessel coronary disease.19

Despite the availability of ample population-based 
biobank epidemiology and several retrospective analy-
ses, there have been no prospective studies of CHIP 
in the cardiovascular setting, and the current literature 
lacks deep characterization of cardiovascular pheno-
types, including evaluation with coronary angiography.

METHODS
Full methods are available in the Supplemental Material. Patients 
were enrolled under the Vanderbilt University Medical Center. 
Institutional Review Board approval no. 090828 in accordance 
with the treaty of Helsinki. The data repository will be posted to 
an open-source repository such as Open Science Framework 
as a spreadsheet file without any identifiable information. The 
spreadsheet will be granted without restriction upon publication 
of this and ongoing work using this data. Statistical analyses 
were performed using the statistical programming language, R, 
version 4.3.1, with packages Hmisc and rms.20,21

RESULTS
We sequenced 1469 patients, of whom 1142 had 
complete data and did not have a STEMI at the 
time of catheterization. Of these, 210 (18.4%) had  
CHIP mutations with a variant allele frequency of >2%. 
CHIP mutations spanned the expected spectrum of 
common mutations (Figure 1). CHIP patients were 
significantly older (median, 68 [interquartile range, 
60–74] versus 59 [52–68] years; P<2.2×10−16; Table; 

Nonstandard Abbreviations and Acronyms

ASCVD	 atherosclerotic cardiovascular disease
CAD	 coronary artery disease
CANTOS	� Canakinumab Anti-inflammatory  

Thrombosis Outcome Study
CHIP	� clonal hematopoiesis of indeterminate 

potential
DNMT3A	 DNA methyltransferase 3A
IL	 interleukin
LM	 left main
OR	 odds ratio
STEMI	� ST segment elevation myocardial 

infarction
VAF	 variant allele frequency

Figure 1. Clonal hematopoiesis of indeterminate potential 
(CHIP) is highly prevalent in a catheterization laboratory 
population.
CHIP prevalence by age (A) and mutation count (B), and variant 
allele fraction (VAF) distribution by driver gene (C).
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Figure 1A) and more likely to be taking dual antiplate-
let therapy, beta blockers, and calcium channel block-
ers (Table S3). CAD and dyspnea were more commonly 
listed as indications for angiogram among patients with 
CHIP (Figure 2A). When fully adjusted, CHIP remains 

significantly associated with the CAD indication alone 
(odds ratio [OR], 1.56 [1.03–2.34]; P=0.034; dyspnea 
OR, 1.45 [0.99–2.14]; P=0.057). Across all vascular 
territories, patients with CHIP more often had both any 
plaque and obstructive plaque (Figure 2B).

In multivariable-adjusted analysis, CHIP carrier sta-
tus was significantly correlated with any stenosis and 
obstructive stenosis in the left main (LM) coronary artery 
(OR, 1.85 [1.26–2.72]; P=0.021 and OR, 2.44 [1.40–
4.27]; P=0.021; Figure 3) and nonsignificantly correlated 
with obstructive stenosis in the left anterior descending 
coronary artery (OR, 1.59 [1.12–2.24]; P=0.097; Fig-
ure 3). There were no associations with other vascular 
territories.

When stratified by driver genes, TET2 mutants and 
other non-DNMT3A mutants were associated with LM 
stenosis and obstructive LM stenosis (Figure 4; Table S4). 
TET2 was also associated with obstructive left anterior 
descending stenosis (OR, 2.62 [1.34–5.11]; P=0.0049). 
When all patients with CHIP were stratified by variant 
allele frequency, there was a association of obstructive 
LM disease only among those with larger variant allele 
frequency (Figure 5), but there were no other significant 
associations across variant allele frequency.

DISCUSSION
CHIP is a known risk factor for the development of 
ASCVD; however, there have been no cohort-based 
studies evaluating specific cardiovascular pheno-
types, leaving a critical gap in the current literature. In a  
single-center, prospective, observational cohort study of 

Table.  Baseline Cohort Demographics Stratified by CHIP 
Status

 No CHIP CHIP P value 

Total 932 210  

Age 59 (52–68) 68 (60–74) <2.2×10–16

Sex, %, F 36.3% (338) 37.6% (79) 0.71

Race 0.11

 � Black 9% (84) 4.8% (10)  

 � Asian 0.4% (4) 1.0% (2)

 � White 71.8% (669) 79% (166)  

 � Pacific Islander 0.3% (3) 0% (0)

 � Unknown 18.5% (172) 15.2% (32)  

Ethnicity 0.60

 � HL 0.6% (6) 1% (2)  

 � Non-HL 81% (755) 83.3% (175)

 � Unknown 18.3% (171) 15.7% (33)  

Diabetes 35% (326) 33.8% (71) 0.75

Hypertension 76.6% (714) 79.0% (166) 0.45

Hyperlipidemia 70.9% (661) 76.7% (161) 0.094

Statin use 59.8% (557) 61.9% (130) 0.57

Smoker 52% (485) 54.3% (114) 0.56

Age is reported as median with interquartile range. All binned data is reported 
as a percentage with N in parentheses. CHIP indicates clonal hematopoiesis of 
indeterminate potential; F, female; and HL, Hispanic/Latino.

Figure 2. Referral patterns and plaque burden in patients with clonal hematopoiesis of indeterminate potential (CHIP).
Documented referral indication for coronary angiogram provided by the referring physician (A). Proportion of patients that has coronary 
atherosclerosis in specific coronary arteries stratified by CHIP status (B). LAD indicates left anterior descending; LCX, left circumflex; LM, left 
main; NSTEMI, non-ST elevation myocardial infarction; RCA, right coronary artery; and SCD, sudden cardiac death.
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patients undergoing cardiac catheterization, we report 
nearly 1 in 5 had a detectable CHIP mutation. This is 
a population highly enriched for CHIP carriers in the 

cardiac catheterization laboratory. The expected rate of 
CHIP is between 5% to 7% given the median age of 
this cohort when compared with large biobank data.1,3,5 

Figure 4. TET2 (ten eleven translocase 2) clonal hematopoiesis of indeterminate potential (CHIP) demonstrates more severe 
coronary artery disease (CAD).
Fifty percent of patients with multiple CHIP mutations have a TET2 mutation. Adjusted odds ratios for angiography outcomes stratified by 
CHIP gene mutation. Numeric data are displayed as percentage (N) for binary outcomes, and median (interquartile range) for continuous data. 
LAD indicates left anterior descending; and LM, left main. 

Figure 3. Patients with clonal hematopoiesis of indeterminate potential (CHIP) have higher rates of left main (LM) stenosis.
Adjusted odds ratios for angiography outcomes stratified by CHIP. Numeric data is displayed as percentage (N) for binary outcomes, and 
median (interquartile range) for continuous data. LAD indicates left anterior descending; LCX, left circumflex; and RCA, right coronary artery.
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However, our study population is similarly enriched for 
CHIP mutations when compared with other targeted 
studies of patients with cardiovascular disease. For 
example, 3 separate groups evaluating CHIP in heart 
failure cohorts reported frequencies ranging from 18.4% 
to 38.7%.15,16,22 This observation affirms the notion that 
cardiovascular cohorts are enriched for patients with 
CHIP and represents an opportunity for future studies 
focused on primary prevention in CHIP-related ASCVD.

Invasive analysis with coronary angiography revealed 
a specific risk pattern for those with CHIP in our study. 
In fully adjusted analyses, we find a significant associa-
tion between CHIP status and LM stenosis, LM obstruc-
tive stenosis, and left anterior descending obstructive 
stenosis by coronary angiography. Together, this rep-
resents a novel finding and potentially explains the 
enhanced morbidity and mortality associated with car-
diogenic shock and ASCVD in the setting of CHIP.18,19,23 
To the best of our knowledge, this is the first documen-
tation of a specific coronary atherosclerotic phenotype 
in patients with CHIP.

A larger effect size for obstructive lesions in any ves-
sel was seen for TET2 CHIP. This finding corroborates 
a growing set of data suggesting this subgroup exhibits 
more severe cardiovascular phenotypes, likely driven by 
inflammatory signaling. For example, in a subgroup anal-
ysis from the CANTOS (Canakinumab Anti-inflammatory 
Thrombosis Outcome Study), TET2 but not DNMT3A 
derived benefit from IL-1B inhibition on cardiovascular 

disease outcomes.9 Furthermore, in an analysis of the 
most recent release of ≈450K whole exomes from the 
UK Biobank, Vlasschaert et al5 showed that a genetic 
polymorphism in the IL-6 receptor gene (p.Asp358Ala) 
is protective against TET2-mediated incident CAD. Our 
findings in TET2 CHIP patients support the notion that 
precision approaches may be an effective means for 
identifying high-risk individuals for intensive primary or 
secondary prevention strategies.

Our study has several important limitations. Sample 
size limits our ability to interrogate differences, particu-
larly between driver genes and clone size. Additionally, 
the indications for catheterization vary across CHIP and 
non-CHIP patients, highlighting the heterogeneity of the 
referred population. Interestingly, although patients with 
CHIP were more likely to have CAD as an indication for 
angiography, CHIP does not seem to be associated with 
the presence of CAD alone in this population. Instead, 
there is an increased risk of a high-risk lesion. Patients 
with STEMI were excluded in the current analysis for 
several reasons. STEMI represents a fundamentally 
divergent pathophysiology when compared with stable 
coronary disease. The STEMI subgroup was small in our 
analysis (n=8), and their exclusion did not alter the sig-
nificance of any results reported. Furthermore, there has 
been 1 retrospective analysis of STEMI in the presence 
of either TET2 or DNMT3A CHIP, finding that patients 
who had a CHIP mutation predicted worse outcomes 
including major adverse cardiac events and death.19 This 

Figure 5. Left main (LM) stenosis is associated with higher variant allele frequency (VAF).
Adjusted odds ratios for angiography outcomes stratified by clonal hematopoiesis of indeterminate potential (CHIP) VAF. Numeric data are 
displayed as percentage (N) for binary outcomes, and median (interquartile range) for continuous data. LAD indicates left anterior descending.
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may reflect an increased prevalence of high-risk obstruc-
tive lesions in these patients, similar to the pattern 
described herein. Given the study design, these data are 
also not revealing of causality. Although the association 
between CHIP and ASCVD has been extensively exam-
ined, our understanding of how CHIP results in cardio-
vascular pathology is being refined as additional studies 
are published,4,24,25 and this approach adds to that body 
of literature.

The current study underscores the enormous poten-
tial of precision approaches in cardiovascular medicine. 
Here, we identify a genetic biomarker of coronary dis-
ease in ≈20% of the patients in a cardiac catheterization 
laboratory using commonplace and increasingly afford-
able methods. Our cost to perform this assay was <$5 
USD per patient. Through invasive coronary angiography, 
we define a specific CAD risk profile for patients with 
CHIP, noting that those with a TET2 driver mutation are 
at enhanced risk. In our cohort, 65% of patients carrying 
an isolated TET2 mutation had obstructive stenosis in a 
coronary vessel. Given these findings, early identification 
of CHIP mutations in patients could significantly alter 
current practice recommendations and primary preven-
tion strategies.
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