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ABSTRACT Neisseria meningitidis serogroup B (NmB) strains have diverse antigens, 
necessitating methods for predicting meningococcal serogroup B (MenB) vaccine strain 
coverage. The genetic Meningococcal Antigen Typing System (gMATS), a correlate of 
MATS estimates, predicts strain coverage by the 4-component MenB (4CMenB) vaccine 
in cultivable and non-cultivable NmB isolates. In Taiwan, 134 invasive, disease-caus
ing NmB isolates were collected in 2003–2020 (23.1%, 4.5%, 5.2%, 29.8%, and 37.3% 
from individuals aged ≤11 months, 12–23 months, 2–4 years, 5–29 years, and ≥30 
years, respectively). NmB isolates were characterized by whole-genome sequencing and 
vaccine antigen genotyping, and 4CMenB strain coverage was predicted using gMATS. 
Analysis of phylogenetic relationships with 502 global NmB genomes showed that most 
isolates belonged to three global hyperinvasive clonal complexes: ST-4821 (27.6%), ST-32 
(23.9%), and ST-41/44 (14.9%). Predicted strain coverage by gMATS was 62.7%, with 
27.6% isolates covered, 2.2% not covered, and 66.4% unpredictable by gMATS. Age 
group coverage point estimates ranged from 42.9% (2–4 years) to 66.1% (≤11 months). 
Antigen coverage estimates and percentages predicted as covered/not covered were 
highly variable, with higher estimates for isolates with one or more gMATS-positive 
antigens than for isolates positive for one 4CMenB antigen. In conclusion, this first study 
on NmB strain coverage by 4CMenB in Taiwan shows 62.7% coverage by gMATS, with 
predictable coverage for 29.8% of isolates. These could be underestimated since the 
gMATS calculation does not consider synergistic mechanisms associated with simultane
ous antibody binding to multiple targets elicited by multicomponent vaccines or the 
contributions of minor outer membrane vesicle vaccine components.

IMPORTANCE Meningococcal diseases, caused by the bacterium Neisseria meningitidis 
(meningococcus), include meningitis and septicemia. Although rare, invasive meningo
coccal disease is often severe and can be fatal. Nearly all cases are caused by six 
meningococcal serogroups (types), including meningococcal serogroup B. Vaccines 
are available against meningococcal serogroup B, but the antigens targeted by these 
vaccines have highly variable genetic features and expression levels, so the effective
ness of vaccination may vary depending on the strains circulating in particular coun
tries. It is therefore important to test meningococcal serogroup B strains isolated from 
specific populations to estimate the percentage of bacterial strains that a vaccine can 
protect against (vaccine strain coverage). Meningococcal isolates were collected in 
Taiwan between 2003 and 2020, of which 134 were identified as serogroup B. We did 
further investigations on these isolates, including using a method (called gMATS) to 
predict vaccine strain coverage by the 4-component meningococcal serogroup B vaccine 
(4CMenB).
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T he Neisseria meningitidis (Nm) bacterium causes invasive meningococcal disease 
(IMD) by crossing the epithelium of the nasopharynx and passing into the blood

stream (1). IMD is associated with a case fatality rate (CFR) of 4.1%–20.0% (2) and 
long-term sequelae in up to 25% of survivors, such as neurological or hearing impair
ment, chronic pain, scarring, and amputation (3–5). Estimations of the incidence of 
IMD in the AsiaPacific region are limited by inadequate population-based surveillance 
systems in most countries (6). In Taiwan, IMD is a notifiable disease, and hospitals are 
obliged to report cases to the Taiwan Centers for Disease Control (CDC). Between 1993 
and 2020, 380 IMD cases were reported (7), but PCR positivity is not included in the 
diagnostic criteria used in Taiwan (8), so the true number of IMD cases is likely higher (9, 
10).

Globally, 12 Nm serogroups have been identified, with six (NmA, NmB, NmC, NmW, 
NmX, and NmY) responsible for most IMD cases (11). In Taiwan, Nm serogroup B 
(NmB) disease was predominant in 1993–2020; overall, NmB was identified in 66% of 
recovered isolates and in 81% of isolates collected in 2003–2020 (7). This increase in 
NmB isolates was accompanied most notably by a decrease in NmW isolates (35% of 
recovered isolates in 1996–2002 versus 2% in 2003–2020). NmB IMD is prevalent in 
various AsiaPacific countries (12). In China, results of a meta-analysis suggested that the 
proportion of NmB disease cases was 30% in 2010–2020 and an increase in incidence 
during this period, with 52% of cases in 2015–2020 caused by NmB (13). In Japan, 
between 2003 and 2020, NmB caused 26% of 188 IMD cases (14), while in South Korea, 
NmB accounted for 37% of 19 IMD cases in 2010–2016 (15). In Vietnam, a study of 
military hospitals between 2014 and 2021 found that 91% of 69 IMD cases were caused 
by NmB (16).

Two protein-based meningococcal serogroup B (MenB) vaccines have been licensed: 
the 4CMenB vaccine (Bexsero, GSK) (17, 18) and MenB-FHbp vaccine (Trumenba, Pfizer), 
which contains two of the three factor H-binding protein (fHbp) variants (subvariants 
3.45 and 1.55) (19). 4CMenB includes three recombinant protein antigens, Neisseria 
adhesin A (NadA, peptide 3.8), neisserial heparin-binding antigen (NHBA, peptide 2), and 
fHbp (subvariant 1.1), plus detergent-extracted outer membrane vesicle (OMV) obtained 
from a New Zealand outbreak isolate, containing porin A protein (PorA, serosubtype 
1.4) as the main vaccine antigen (17, 20). Bexsero is the only MenB vaccine available in 
Taiwan, where it was licensed for the immunization of individuals aged 2 months and 
older in May 2021 (21).

The licensure of MenB vaccines relied on safety data and immunogenicity results 
generated by the serum bactericidal antibody assay using human complement (hSBA 
assay), testing against vaccine antigenspecific indicator strains (22). As well as demon
strated immunogenicity, estimation of vaccine strain coverage enables understanding 
of the potential performance of MenB vaccines. Strain coverage by 4CMenB has been 
predicted using the Meningococcal Antigen Typing System (MATS) and genetic MATS 
(gMATS) (23–25). The latter can be performed using genome sequencing data for Nm 
from cultivable and non-cultivable clinical isolates, while MATS cannot be used for 
non-culture confirmed IMD cases. MATS data from more than 3,000 isolates from 17 
countries were used to calibrate gMATS (25).

In the serogroup analysis of Nm isolates collected in Taiwan in 2003–2020, 134 
NmB isolates were identified (7). Here, the NmB isolates are characterized by whole-
genome sequencing (WGS) and vaccine antigen genotyping, and 4CMenB vaccine strain 
coverage is predicted using gMATS.
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RESULTS

Distribution of NmB isolates

Of the 134 NmB isolates, 83 (61.9%) were collected in the period 2003–2008, 20 (14.9%) 
in 2009–2014, and 31 (23.1%) in 2015–2020. Forty-four NmB isolates (32.8%) were from 
children aged under 5 years, of which 31 (23.1%) were from children aged under 12 
months, while 40 (29.8%) were from individuals aged 5–29 years, and 50 (37.3%) isolates 
were from individuals aged 30 years or older (Fig. 1).

Genetic characteristics of NmB isolates

The phylogenetic distribution of clonal complexes of the 134 NmB isolates, relative 
to 502 randomly selected NmB isolate genomes downloaded from PubMLST, was 
reconstructed in a network created in SplitsTree using the NeighborNet algorithm. 
Excluding singlets (i.e., profiles not assigned to a clonal complex: 18 isolates), eight clonal 
complexes were represented (Fig. 2). The most prevalent was sequence type (ST) 4821 
complex (37 isolates, 27.6%), followed by ST-32 complex (32 isolates, 23.9%), ST-41/44 
complex (20 isolates, 14.9%), and ST-3439 complex (17 isolates, 12.7%).

Vaccine antigen genotyping

Reconstructions created from phylogenetic network analysis of 499 fHbp peptides, 508 
NHBA peptides, and 130 NadA peptides downloaded from PubMLST and correspond
ing to NmB genomes only were superimposed with the peptides present in the 134 
NmB isolates (Fig. S1 to S3). The prevalence of fHbp variants 1, 2, and 3 among the 
NmB isolates was 28.4% (38 isolates), 63.4% (85 isolates), and 4.5% (6 isolates), respec
tively (data not available for five isolates) (Fig. S1). The most common fHbp peptides 
were peptides 1.13, 2.16, 2.19, and 2.101. The NHBA peptides in the 134 NmB isolates 
were widely distributed among the global range of NHBA peptides (Fig. S2). The most 
common NHBA peptides were peptides 528 (31 isolates; 23.1%), 669 (27; 20.1%), 2 (17; 
12.7%), and 803 (12; 9.0%).

Thirty-two Taiwan NmB isolates (23.9%) contained NadA peptides; Fig. S3 shows the 
results of the phylogenetic network analysis of NadA peptides in the isolates. For PorA, 
11 (8.2%) isolates harbored PorA VR2 matching with peptide 4, with the remaining 123 
isolates containing a diversity of other PorA peptides (see next section).

FIG 1 Distribution of 134 NmB isolates by patient age group.
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Predicted MenB strain coverage

The predicted 4CMenB vaccine strain coverage by gMATS for the 134 isolates was 62.7% 
[lower limit (LL), 27.6%; upper limit (UL), 97.8%] (Fig. 3). Overall, 27.6% of isolates were 
covered, 2.2% were not covered, and 66.4% were unpredictable by gMATS (data not 
available for 3.7% of isolates) (Fig. 3). Only 29.8% of isolates were therefore predictable 
(covered/not covered) by gMATS. Coverage by number of antigens showed that the 
proportion of isolates predicted to be covered by gMATS was highest (23.9%) for isolates 
with one 4CMenB vaccine antigen (Fig. 3).

The gMATS coverage point estimates for each time period were 66.3% (LL, 33.7%; UL, 
98.8%) for 2003–2008, 65.0% (LL 30.0%; UL 100%) for 2009–2014, and 51.6% (LL 9.7%; UL 
93.5%) for 2015–2020. Analysis by Pearson’s chi-squared test showed no statistically 
significant differences in coverage point estimate by time period (data not shown). For 
each age group, gMATS coverage point estimates were 66.1% (LL 35.5%; UL 96.8%) for 
children younger than 12 months; 50.0% (LL 0%; UL 100%) and 42.9% (LL 14.3%; UL 
71.4%) for children aged 12–23 months and 2–4 years, respectively; and 63.8% (LL 27.5%; 

FIG 2 Phylogenetic distribution of clonal complexes of 134 NmB isolates from Taiwan in relation to 502 randomly selected NmB isolates genomes downloaded 

from PubMLST, as reconstructed in network created in SplitsTree using the NeighborNet algorithm based on single-nucleotide polymorphisms identified by 

kSNP algorithm.
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UL 100%) and 64.0% (LL 28.0%; UL 100%) for individuals aged 5–29 years and 30 years or 
older, respectively.

The analysis of gMATS coverage by clonal complex showed isolates with ST-41/44 
complex contributed most to gMATS coverage (18 out of 20 isolates were covered), 
with contributions also from ST-162 (five of five isolates), ST-3439 (four of 17 isolates), 
ST-35 (two of two isolates), ST-4821 (two of 37 isolates), and ST-32 (one of 32 isolates) 
complexes (Fig. 4). gMATS point estimates for the complexes were 97.5% (LL, 95.0%; 
UL, 100%) for ST-41/44, 100% for ST-162 and ST-35, 61.8% (LL 23.5%; UL 100%) for 
ST-3439, 52.7% (LL 5.4%; UL 100%) for ST-4821, and 51.6% (LL 3.1%; UL 100%) for 
ST-32. However, gMATS coverage predictions for several clonal complexes were affected 

FIG 3 gMATS-based coverage distribution of isolates by the number of 4CMenB vaccine antigens contained in isolate contributing to coverage. Overall, 27.6% of 

isolates were covered, 2.2% were not covered, and 66.4% were unpredictable by gMATS. 4CMenB, 4-component MenB vaccine; U, unpredictable by gMATS; NA, 

genotyping data not available.

FIG 4 gMATS-based coverage distribution of isolates by clonal complex. ST, sequence type.
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by high proportions of unpredictable isolates (76.5% unpredictable for ST-3439; >90% 
unpredictable for ST-4821 and ST-32).

The analysis of single 4CMenB antigen coverage by gMATS showed coverage for four 
fHbp variant 1 peptides (peptides 1.1, 1.4, 1.14, and 1.90) (Fig. S4A). Analysis of data 
according to coverage of isolates containing at least one gMATS-positive antigen showed 
predicted coverage for isolates containing one of 14 fHbp peptides, including peptides 
belonging to fHbp variants 2 and 3 (Fig. 5A).

Results for the NHBA antigen indicated coverage for five peptides (peptides 1, 2, 20, 
21, and 3) and a high rate of unpredictable coverage for other antigen peptides (Fig. S4B) 
but, for isolates with at least one gMATS-positive antigen, coverage was detected for nine 
NHBA peptides (Fig. 5B). For NadA, gMATS does not consider this 4CMenB antigen as 
there is no robust correlate with the NadA MATS outcome (as explained in Materials and 
Methods). Taking into account isolates containing at least one gMATS-positive antigen, 
among the 32 isolates with NadA peptides, one was covered, and among 102 isolates 
without NadA peptides, 36 had predicted coverage by gMATS, three were not covered, 
and the remainder had unpredictable coverage (Fig. 5C).

Coverage was demonstrated for 11 isolates harboring PorA VR2 matching with 
peptide 4, the exact match for the 4CMenB vaccine antigen. Analysis according to 
coverage by at least one gMATS-positive antigen predicted coverage for an additional 26 
isolates with 11 other PorA VR2 peptides (Fig. 5D).

DISCUSSION

This is the first study to evaluate the predicted coverage of NmB strains by 4CMenB in 
Taiwan, which was shown to be 62.7% using the genome-based tool, gMATS. Almost 
two-thirds of isolates were recovered in 2003–2008, followed by a drop in number in the 
second 6-year period. A subsequent increase in 2015–2020 reflected a reported increase 
in NmB disease in China during the same period (13). Approximately one-third of isolates 
were from children aged under 5 years, most of which were from infants (under 1 year 
old), a critical age-based risk group for MenB vaccination (26).

It was reported previously that NmB was the predominant serogroup in Taiwan in 
2003–2020, and its prevalence had increased from 50.0% of isolates in 1996–2002 to 
81.2% in 2003–2020 (7). In our analysis, 86.6% of NmB isolates from Taiwan were 
represented by eight clonal complexes, most commonly one of three global hyperinva
sive clonal complexes, ST-4821, ST-32, and ST-41/44 (7, 27), and a newly assigned clonal 
complex, ST-3439 (7). ST-4821 was the leading NmB clonal complex, and this is also a 
major clonal complex group in China (7, 27, 28), where ST-4821 was initially identified in 
NmC strains, followed by NmB strains through capsular switching (29–31). An analysis of 
378 NmB strains isolated in China between 2005 and 2016 found that ST-4821 was the 
most prevalent lineage in both patient-derived (37.9%) and healthy carrier-derived 
(35.6%) strains (32). In Taiwan, most ST-4821 isolates (40 of 50 ST-4821 Nm isolates) were 
NmB. ST-4821 and ST-32 were identified previously in association with two IMD out
breaks in Taiwan, one in a junior high school, and another at a military base (7). Outside 
of Asia, ST-32 and ST-41/44 were found to be the most common clonal complexes in an 
analysis of invasive NmB isolate panels from the United States, Australia, Canada, and 
nine European countries (33). In Taiwan, the percentages of NmB isolates assigned to 
ST-32 and ST-41/44 were higher than reported in China (2005–2016; 1.7% and 3.4%, 
respectively) (32).

The prevalences of fHbp variants 1 and 2 in our study are similar to those (32.1% and 
61.9%, respectively) reported in a study of fHbp variants in 84 NmB patient strains 
isolated in China up to 2016 (34). Interestingly, in the same study, an examination of 445 
NmB isolates derived from healthy carriers showed a 90.7% prevalence of fHbp variant 2 
(34). Another study in China reported a higher proportion of variant 1 in NmB isolates 
from patients than from healthy carriers, suggesting that fHbp variant 1 correlates 
positively with NmB pathogenicity (32). Studies conducted in other regions show 
differences in the distribution of fHbp variants, with variant 1 predominant in invasive 
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FIG 5 gMATS-based coverage distribution of isolates for individual 4CMenB vaccine antigen variants or peptides by gMATS strain coverage overall. 4CMenB, 

4-component MenB vaccine; NA, genotyping data not available.
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NmB isolate panels from the United States, Australia, Canada, and Europe (33). This 
highlights the importance of continuous monitoring to identify possible changes in the 
circulation of fHbp variants and new subvariants.

The NHBA peptides identified in the NmB isolates from Taiwan reflected the global 
distribution of peptides. Of the six most represented NHBA peptides in Taiwan, four (2, 
20, 503, and 669) were also identified in the study in China (32). Two of the gMATS 
unpredictable peptides (528 and 669) are in the same cluster as NHBA peptide 2 (so 
matched to the vaccine). Almost one-quarter of isolates were positive for NadA peptide, 
which was similar to the percentage (27%) reported in a study of a global NmB strain 
panel (25) but higher than reported in NmB isolates from China, where 8% of 432 
isolates were PCR-positive for the nadA gene (32). In Taiwan, we found that few isolates 
harbored the PorA variant contained in the 4CMenB vaccine, with high diversity in PorA, 
as reported in NmB isolates from China (32).

The predicted 4CMenB strain coverage by gMATS has a degree of uncertainty (LL 
27.6%; UL 97.8%) that reflects the large proportion of unpredictable isolates by gMATS. 
However, half of gMATS unpredictable isolates are considered as covered by gMATS (25), 
and, in our study, the proportion of isolates predicted as not covered by 4CMenB was 
low (2.2%). The 62.7% gMATS point estimate is in line with gMATS estimates of between 
58% and 91% reported in studies conducted in Europe, North America, and Australia (25, 
35–41). Moreover, the 4CMenB coverage of NmB strains recovered in 2005–2016 in China 
was 63.6%, in terms of isolates containing one or two matching 4CMenB variants (32). 
In our study, among the different age groups, 4CMenB strain coverage by gMATS was 
highest for infants.

Interpretation of the predicted strain coverage needs to take into account that, 
overall, 66% of isolates were categorized as unpredictable, with predictable gMATS 
coverage for only 29.8% of NmB isolates. However, the gMATS-unpredictable percen
tages in the present analysis were highly variable, particularly in isolates positive for one 
antigen (fHbp, NHBA, or PorA) versus isolates gMATS-positive for one or more antigens. 
This suggests that unpredictable peptides may contribute to protection individually 
or in association with other 4CMenB antigens. Indeed, there is evidence that 4CMenB 
elicits antibodies against multiple surface-exposed antigens, which may act in concert 
and be functional against meningococcal strains not predicted to be covered (42). 
Different OMV components may also assist in providing protection since, while PorA 
is the immunodominant antigen (17, 20), OMV contains a complex mixture of anti
gens (43). Antibodies induced by fHbp, NHBA, and minor OMV components can bind 
the bacterial surface simultaneously, overcoming limitations of low surface expression 
and high antigenic diversity and triggering complement-mediated bacterial lysis (42). 
gMATS also underestimates the contribution of NadA antigen to coverage (44) and 
has specific limitations connected with the genotype–phenotype association approach 
(25). Underestimation of coverage with gMATS was demonstrated in an analysis of 40 
isolates representative of IMD in England and Wales (25). Along with all gMATS-covered 
strains, 57% of gMATS-negative strains and 75% of gMATS-unpredictable strains were 
killed by hSBA. This analysis also showed a lower estimate of strain coverage by gMATS 
(72%–73%) than by hSBA assay (88%) (25, 45), which is a more precise measurement of 
coverage but not feasible for analyzing large numbers of NmB strains (46). Ultimately, 
the true impact and effectiveness of MenB vaccines can only be confirmed through 
real-world evidence of clinical outcomes. For 4CMenB, studies of real-world effectiveness 
in various age groups and with different vaccination schedules report effectiveness 
estimates of up to 94% against NmB disease (47).

In conclusion, the results of this analysis of NmB isolates from Taiwan show overall 
4CMenB strain coverage of 62.7% by gMATS, which is in line with estimates from other 
countries, but coverage was predictable for only 29.8% of isolates. These are likely to 
be underestimates since, similar to MATS, gMATS does not measure the contribution to 
killing of synergistic mechanisms associated with simultaneous binding of antibodies 
elicited by multicomponent vaccines, such as 4CMenB, to multiple antigenic targets. 
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The contribution of NadA and minor OMV vaccine components is also not taken into 
consideration with gMATS. Nevertheless, these results contribute to better understand
ing of disease-causing NmB strains in Taiwan and indicate the need to monitor their 
epidemiology.

MATERIALS AND METHODS

Nm isolates

As explained previously (7), 165 Nm isolates were recovered between 2003 and 2020 
from the blood of patients with IMD and obtained from the Biobank Section of the 
Taiwan CDC. A total of 134 NmB isolates underwent genome sequencing and assembly 
from the raw sequencing reads provided by author Dr. Min-Chi Lu (7). Genome assembly 
was conducted with the Unicycler v.0.4.9b pipeline based on SPAdes assembler (48).

Phylogenetic analysis

WGS of bacterial isolates was conducted by the Taiwan CDC, and 4CMenB antigen typing 
was used to generate allelic profiles for the 134 NmB isolates, as described previously (7).

We characterized the whole-genome diversity of the Taiwan NmB isolates in 
terms of their phylogenetic relationships with a sampled subset of 502 NmB isolate 
genomes downloaded in September 2022 from the PubMLST Neisseria database (https://
pubmlst.org/organisms/neisseria-spp). The 502 NmB isolates were randomly selected 
from the PubMLST list of >8,000 NmB genomes, representing the global collection of 
genomes archived in the database.

Phylogenetic reconstructions were made using NeighborNet method (49) computed 
by SplitsTree software (version 4.14) (50) and based on the sequences alignment of 
single-nucleotide polymorphisms computed by kSNP (version 4.0) algorithm.

Vaccine strain coverage prediction by genotyping

The fHbp, nhba, nadA, and porA genes and their protein translations were extracted 
from the whole-genome sequences by BIGSdb application (version 1.24) using default 
settings (51). Alleles and corresponding peptide identification numbers (IDs; protein 
variants) were assigned using the PubMLST Neisseria species database definitions. 
Antigenspecific strain coverage predicted by gMATS was defined by identifying peptide 
IDs significantly associated with MATS coverage/non-coverage for that antigen, as 
described previously (25) and shown in Table S1.

For fHbp and NHBA antigens, peptide IDs present in more than five isolates were 
considered. Peptide IDs for which the percentage of MATS-covered strains was higher 
than 60% or lower than 40% were considered predictors of coverage or non-coverage, 
respectively, if a test of proportions rejected 50% as null hypothesis (P < 0.05 or 
<0.001). Peptide IDs not fulfilling these criteria were considered unpredictable. The 
same approach was attempted for NadA, testing the association of nadA gene pres
ence/absence, and NadA-MATS coverage. However, the information for this antigen, 
limited to its presence/absence, failed to establish a robust correlate with NadA MATS 
outcome. For this reason, the contribution of NadA antigen to the gMATS coverage 
estimation was disregarded. The contribution to coverage by the OMV component was 
estimated by sequencing part of the porA gene encoding variable region 2 (VR2) and 
checking identity to the variant present in the vaccine, i.e., PorA VR2 match with peptide 
4 was defined as covered (PorA VR2 = 4) and other cases as not covered (23).

An isolate was defined as gMATS-covered if one or more antigenspecific predictions 
for that strain were covered. If all antigenspecific gMATS predictors were not covered, 
the isolate was defined as gMATS not covered. All remaining isolates were defined as 
gMATS unpredictable. Previous gMATS coverage data on over 3,000 MenB isolates found 
that 49% of gMATS unpredictable isolates were MATS-covered (25), so half of gMATS 
unpredictable isolates were considered as covered by gMATS in this analysis.
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