Table 3.
no. | aroma-active compound | selected ions used for quantitation. | linear equations | R2 | ranges of concentration for provided linearity (μg/kg) | odor threshold in water (μg/kg) |
concentrations (μg/kg) |
OAV |
||
---|---|---|---|---|---|---|---|---|---|---|
cooked | reheated | cooked | reheated | |||||||
1 | pentanal | 44, 58, 86 | y = 0.4387× − 0.0282 | 0.9946 | 25.79–494.46 | 9b | 31.57 ± 1.14B | 102.38 ± 8.93 A | 4 | 11 |
2 | 2-methyl-3-buten-2-ol | 43, 59, 71 | y = 5.5312× + 0.0064 | 0.9919 | 0.01–1.25 | 51600c | 0.34 ± 0.01 A | 0.33 ± 0.01 A | <1 | <1 |
3 | dimethyl disulfide | 47, 79, 94 | y = 10.483× + 0.0002 | 0.9993 | 0.01–0.79 | 1.1a | 0.21 ± 0.00 A | 0.07 ± 0.02B | <1 | <1 |
4 | hexanal | 44, 56, 72 | y = 0.7435× − 0.01 | 0.9917 | 8.26–2401.08 | 1.00a | 246.17 ± 21.36B | 1070.33 ± 108.94 A | 246 | 1070 |
5 | 2-methyl-thiophene | 45, 97, 98 | y = 12.096× + 0.0036 | 0.9971 | 0.03–3.07 | 3000c | 0.20 ± 0.01 A | 0.13 ± 0.02B | <1 | <1 |
6 | 1-butanol | 31, 43, 56 | y = 1.003× + 0.0012 | 0.9997 | 0.05–39.42 | 459.20d | 4.31 ± 0.06B | 9.27 ± 0.91 A | <1 | <1 |
7 | heptanal | 44, 70, 114 | y = 0.2873× + 0.0018 | 0.9985 | 1.08–280.04 | 2.8a | 32.99 ± 0.25B | 69.46 ± 3.68 A | 12 | 25 |
8 | 2-pentylfuran | 53, 81, 138 | y = 17.305× + 0.015 | 0.9961 | 0.08–15.05 | 6b | 0.59 ± 0.01B | 2.35 ± 0.20 A | <1 | <1 |
9 | 1-pentanol | 42, 55, 70 | y = 2.2154× − 1 × 10−5 | 0.9998 | 0.22–65.46 | 4000a | 3.63 ± 0.01B | 14.95 ± 0.38 A | <1 | <1 |
10 | octanal | 41, 55, 84 | y = 2.0255× + 0.0012 | 0.9986 | 0.11–80.09 | 0.1c | 2.01 ± 0.28B | 17.89 ± 0.32 A | 20 | 179 |
11 | 1-octen-3-one | 27, 55, 70 | y = 2.4605× + 0.0007 | 0.999 | 0.01–9.63 | 0.1c | 1.75 ± 0.11 A | 1.41 ± 0.01B | 18 | 14 |
12 | (E)-2-heptenal | 55, 83, 112 | y = 3.0831× + 0.0017 | 0.9996 | 0.12–15.48 | 13a | 2.95 ± 0.41B | 8.30 ± 1.18 A | <1 | <1 |
13 | 1-hexanol | 43, 56, 105 | y = 7.5922× + 0.0062 | 0.9985 | 0.14–10.37 | 5.60a | 0.56 ± 0.10B | 4.06 ± 0.70 A | <1 | <1 |
14 | (Z)-3-hexen-1-ol | 41, 67, 100 | y = 0.0345× + 0.0019 | 0.992 | 27.96–972.3 | 200b | 104.75 ± 1.60 A | 97.91 ± 1.28B | <1 | <1 |
15 | 5-methyl-2-ethylpyrazine | 77, 106, 121 | y = 51.583× − 0.0019 | 0.9933 | 0.02–1.51 | 1000c | 0.10 ± 0.02 A | 0.09 ± 0.02 A | <1 | <1 |
16 | nonanal | 41, 57, 98 | y = 2.7061× + 0.0276 | 0.9928 | 3.10–123.20 | 1.00b | 16.52 ± 1.36B | 75.63 ± 6.96 A | 17 | 76 |
17 | (E)-2-octenal | 55, 70, 83 | y = 1.5036× + 0.0165 | 0.999 | 1.34–102.85 | 3.00a | 3.89 ± 0.05B | 13.49 ± 0.57 A | 1 | 5 |
18 | 1-octen-3-ol | 43, 57, 72 | y = 1.8271× + 0.0198 | 0.9988 | 3.14–150.82 | 1.5a | 7.00 ± 0.14B | 31.85 ± 0.48 A | 5 | 21 |
19 | 3-(methylthio)propanal | 48, 76, 104 | y = 0.3426× + 0.0001 | 0.995 | 0.01–3.14 | 0.04c | 0.74 ± 0.09 A | 0.42 ± 0.02B | 19 | 11 |
20 | (E,E)-2,4-heptadienal | 53, 81, 110 | y = 6.3891× + 0.0229 | 0.997 | 0.02–40.82 | 15.4a | 0.85 ± 0.02B | 2.18 ± 0.12 A | <1 | <1 |
21 | decanal | 41, 57, 70 | y = 0.2139× + 0.0004 | 0.997 | 0.15–20.01 | 2.00b | 2.56 ± 0.15B | 6.84 ± 0.21 A | 1 | 3 |
22 | benzaldehyde | 51, 77, 106 | y = 1.3412× + 0.0057 | 0.9995 | 1.70–152.35 | 41.70b | 26.51 ± 0.38B | 31.41 ± 1.02 A | <1 | <1 |
23 | (E)-2-nonenal | 43, 70, 83 | y = 0.2177× + 9 × 10−5 | 0.9963 | 0.25–9.99 | 0.08a | 2.93 ± 0.14B | 6.26 ± 0.19 A | 37 | 78 |
24 | formic acid octyl ester | 56, 70, 84 | y = 0.3159× + 9 × 10−5 | 0.9982 | 0.05–7.78 | 3132⁎ | 1.25 ± 0.20B | 3.63 ± 0.23 A | <1 | <1 |
25 | (E)-2-decenal | 55, 70, 154 | y = 0.2179× + 0.0001 | 0.9964 | 0.21–9.01 | 0.35a | 1.89 ± 0.05B | 2.33 ± 0.11 A | 5 | 7 |
26 | (E,E)-2,4-nonadienal | 67, 81, 138 | y = 1.1253× + 0.0012 | 0.9956 | 0.42–19.07 | 0.100a | 1.11 ± 0.01B | 5.75 ± 0.14 A | 11 | 58 |
27 | dodecanal | 41, 82, 109 | y = 0.3478× + 0.0002 | 0.9975 | 0.11–6.39 | 2.00b | 2.38 ± 0.13B | 4.08 ± 0.50 A | 1 | 2 |
28 | 4-ethyl benzaldehyde | 91, 119, 134 | y = 4.4924× + 5 × 10−5 | 0.9997 | 0.00–0.71 | 123.23d | 0.00 ± 0.00B | 0.02 ± 0.00 A | <1 | <1 |
29 | (E)-2-undecenal | 41, 70, 83 | y = 0.219× + 9 × 10−5 | 0.9952 | 0.11–5.90 | 1.40a | 1.83 ± 0.13B | 3.04 ± 0.56 A | 1 | 2 |
30 | 2-acetyl-2-thiazoline | 43, 60, 129 | y = 1.0494× + 3 × 10−5 | 0.9998 | 0.06–0.86 | 1e | 0.12 ± 0.01 A | 0.14 ± 0.01 A | <1 | <1 |
31 | (E,E)-2,4-decadienal | 41, 81, 152 | y = 77.564× + 0.0046 | 0.998 | 0.00–1.72 | 0.027a | 0.03 ± 0.00B | 0.21 ± 0.05 A | 1 | 8 |
32 | benzyl alcohol | 77, 79, 108 | y = 0.8016× + 0.0007 | 0.996 | 0.30–26.95 | 5500c | 3.76 ± 0.69B | 13.11 ± 2.55 A | <1 | <1 |
33 | phenethyl alcohol | 91, 92, 122 | y = 2.2791× + 0.0002 | 0.9998 | 0.02–1.55 | 4000c | 0.57 ± 0.05 A | 0.61 ± 0.04 A | <1 | <1 |
34 | methyleugenol | 147, 163, 178 | y = 2.41× + 0.002 | 0.9989 | 0.00–1.21 | 1250c | 0.09 ± 0.01 A | 0.10 ± 0.01 A | <1 | <1 |
35 | 3-phenyl-2-propenal | 103, 131, 132 | y = 1.3259× − 8 × 10−5 | 0.9999 | 0.01–3.91 | 90c | 0.15 ± 0.00B | 0.22 ± 0.00 A | <1 | <1 |
36 | 4-methyl-5-thiazoleethanol | 85, 112, 143 | y = 10.484× + 0.0502 | 0.9995 | 0.10–4.40 | 4748⁎ | 0.65 ± 0.06B | 1.19 ± 0.04 A | <1 | <1 |
Different uppercase letters show significant differences in concentrations of different samples in each row at P < 0.05.
Odor detection threshold in water according to ref. (Beldarrain, Moran, Sentandreu, Barron, & Aldai, 2022),
Odor detection threshold in water according to ref. (Han, Zhang, Fauconnier, & Mi, 2020),
Odor detection threshold in water according to ref. (Van Gemert, 2011),
Odor detection threshold in water according to ref. (Giri, Osako, & Ohshima, 2010),
Odor detection threshold in water according to ref. (Cerny & Grosch, 1993),
Represents that the odor threshold was detected in the present study.