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ABSTRACT

Previous studies suggest that the risk of human infection by hantavirus, a family of rodent-
borne viruses, might be affected by different environmental determinants such as land cover,
land use and land use change. This study examined the association between land-cover, land-
use, land use change, and human hantavirus infection risk. PubMed and Scopus databases
were interrogated using terms relative to land use (change) and human hantavirus disease.
Screening and selection of the articles were completed by three independent reviewers.
Classes of land use assessed by the different studies were categorized into three macro-
categories of exposure (‘Agriculture’, ‘Forest Cover’, ‘Urban Areas’) to qualitatively synthesize
the direction of the association between exposure variables and hantavirus infection risk in
humans. A total of 25 articles were included, with 14 studies (56%) conducted in China, 4
studies (16%) conducted in South America and 7 studies (28%) conducted in Europe. Most of
the studies (88%) evaluated land cover or land use, while 3 studies (12%) evaluated land use
change, all in relation to hantavirus infection risk. We observed that land cover and land-use
categories could affect hantavirus infection incidence. Overall, agricultural land use was
positively associated with increased human hantavirus infection risk, particularly in China
and Brazil. In Europe, a positive association between forest cover and hantavirus infection
incidence was observed. Studies that assessed the relationship between built-up areas and
hantavirus infection risk were more variable, with studies reporting positive, negative or no
associations.

Introduction . .
several other hantaviruses and occurs mostly in the

Hantaviruses are negative-sensed, single-stranded
RNA viruses belonging to the Orthohantavirus genus.
Various species of rodents serve as reservoir hosts for
hantaviruses [1]. Humans can be infected through
aerosolized rodent urine, droppings, saliva, or particles
containing viral quanta [2], while current evidence
does not suggest that human-to-human transmission
occurs [3]. Thus, the geographic distribution of human
cases of hantavirus infection is closely related to the
distributions of its rodent host species [4,5].

In general, there are three clinical syndromes that are
caused by hantaviruses: i) Hemorrhagic Fever with Renal
Syndrome (HFRS) is caused by Seoul, Dobrava, Saarema,
and Hantan viruses and is mostly prevalent in Europe
and Asia; ii) Nephropathia Epidemica (NE), a milder form
of HFRS, that is mainly caused by Puumala hantavirus
and occurs in Europe; iii) Hantavirus CardioPulmonary
Syndrome (HCPS) or Hantavirus Pulmonary Syndrome
(HPS) caused by Andes virus, Sin Nombre virus, and

Americas [6]. [7]. To date, more than 50 hantavirus
species have been identified and only 24 of them are
considered pathologically relevant to humans [8].
Globally, there are around 200 severe HCPS cases
reported per year in the Americas and over 100,000
HFRS-NE cases reported per year in Europe and Asia
with China accounting for 70%-90% of all cases [5].
Given the potential for multiple environment-
rodent-pathogen-human interactions, rodent-borne
diseases behave as dynamic systems that often adapt
and respond to external perturbations, such as climatic
and environmental factors [9]. Among different envir-
onmental drivers, land-use and land-use changes have
a direct impact on rodent species survival and repro-
duction, influencing their spatio-temporal distribu-
tions [9,10]. Land use drivers include factors such as
expansion of agricultural land, deforestation, sprawling
of urban environments, habitat fragmentation, and
other changes to the biophysical environment [11].
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Table 1. Population, exposure, outcomes, and criteria used to
assess the eligibility of studies.

Population Human Population
Exposure Agriculture, Urbanization, Land use, Land use change,
Land cover
Outcome(s)  Human Hantavirus Infection: i) Haemorrhagic Fever with
Renal Syndrome (HFRS), ii) Nephropathia Epidemica
(NE), iii) Hantavirus CardioPulmonary Syndrome
(HCPS)
Exclusion Review and qualitative studies
Criteria
Inclusion Articles in English
criteria

Land use and land use change might act as a selective
force that favors the abundance and diversity of reser-
voir hosts and affects host - pathogen dynamics and
prevalence [10]. The risk of zoonotic virus transmission
has in fact been observed to be highest from domes-
ticated land as competent species have globally
increased in abundance or expanded in range by
adapting to human-dominated landscapes [12]. In
addition, it has been suggested that land-use drivers
and future trajectories could influence the future risk of
human infection by shaping rodent density and distri-
bution, exacerbating virus transmission among reser-
voirs, and increasing rodent-human contacts [9].
However, these associations are likely dependent on
the geographical location, reflecting the presence and
differences in behaviors, ecological traits and popula-
tion dynamics of different pathogens, vectors and
human populations involved. The generality of the
effect of land-use has been questioned as in some
areas positive associations have been reported, while
null or inverse associations were reported in other
areas. For instance, agricultural land has been asso-
ciated with increased risk of hantavirus infection in
China [13-15] and Brazil [16,17], but not in Argentina
[18,19] and Europe [20]. Similarly, forest cover has been
repeatedly reported as an influential factor for
Hantavirus infection risk in Europe [21,22], but not
elsewhere [15,23]. In addition, the effect of land use
on hantavirus infection risk, are of relevance under the
current climate change scenarios. Indeed, climate
change has been linked repeatedly to higher risk of
hantavirus infection. Land use expansion (e.g. for agri-
cultural purposes) can interact with changing of the
climate conditions (e.g. increased temperature or
extreme rainfall events) in shaping the hantavirus
infection risk (e.g. increase rodent densities [24-26].
Gaining insight into the ways in which distinct land-
covers and land-uses relate to the risk of zoonotic virus
outbreaks across different regions of the world is
essential to mitigate negative impacts on human
health, healthcare systems, and economic develop-
ment, as well as to devise targeted public health inter-
ventions that are adapted to different geographic
contexts. Here, we present a systematic review com-
bining spatial and spatial-temporal epidemiological

studies that evaluate the relationship between HCPS,
HFRS, or NE cases with land-cover and land-use,
namely the proportion of a specific land cover/use in
a given area, and land-use changes trend, namely the
relative change of the proportion of a specific land use
in a given area in two different time points, with no
geographical and temporal limitation.

Methods

This systematic review was conducted following the
PRISMA protocol [27].

Study selection

The population, exposures, and outcomes of interest are
reported in Table 1, together with the inclusion and
exclusion criteria. The search strategy was used to identify
studies published between January 1973 and April 2023
and reported in two electronic academic literature data-
bases: PubMed, and Scopus. Full search strings are shown
in Supplementary Materials and were based on keywords
related to our population, exposure, and outcome of
interest. All titles and abstracts obtained were indepen-
dently screened by three reviewers (MY, GM, AB) to check
potential suitability for inclusion. Decision conflicts were
resolved through discussions until consensus was
reached, all discrepancies were documented, and each
excluded article was labeled with reviewers’ rationales.
Second, the reviewers independently checked the full
text of identified articles by the abstract screening to
identify articles fulfilling the inclusion criteria. Manual
search of the references of the articles selected for full
reading and systematic reviews previously published on
the topic was also performed to identify additional arti-
cles that could match our inclusion criteria.

Data extraction

Finally, the reviewers independently carried out the
data extraction process using a predetermined data
extraction sheet (Supplementary Materials, Table S1).
From each study that met the eligibility criteria we
extracted the following information: country and year
of origin, study design, population size, exposure of
interest, outcome of interest, statistical methodology,
other covariates considered in the analyses, major
findings, and the inclusion of the study’s limitations.
In addition, for those studies that explicitly reported
numeric measures of association between the expo-
sure of interest (land cover, land use or land use
change) and the outcome under study (prevalence,
incidence, or presence of human hantavirus infection),
we extracted the point estimate for regression coeffi-
cients (Odds Ratios or Relative Risks) as well as its
uncertainty values (95% Confidence Intervals (Cls)).



Data analysis

In order to ensure consistency among studies reporting
numeric estimates of association, regression coefficients
and 95% confidence intervals (Cls) were re-expressed in
a comparable unit: a 1% increase in land cover in the
selected area. Coefficients extracted from studies using
incidence rates (number of new cases divided by resident
population in a given time interval) at the municipality/
district level were expressed as relative risks (RRs), while
coefficients extracted from studies using the presence of
the disease in the municipality/district (i.e. occurrence of at
least one case in the area) or the point pattern of cases (i.e.
geocoded residences) compared to the point pattern of
non-cases were expressed as odds ratios (ORs). In addition,
commonly investigated land covers and land uses were
categorized into three macro-categories: ‘Agriculture’
(including agricultural land uses, such as crops, pastures,
and orchards, as well as agricultural land use changes, such
as agricultural intensification and natural habitat conver-
sion into crops), ‘Urban Areas’ (including built-up land
cover, such as artificial surfaces and human settlements,
and urbanization processes, such as active expansion of
urban areas), and ‘Forest Cover’ (including land cover and
natural habitat characterized by dense vegetation, such as
coniferous or tropical forests). This categorization was done
to summarize the results of identified studies, including
those that did not explicitly report numeric estimates (e.g.
studies with a predictive aim adopting machine learning
techniques or ecological niche models). For each study and
for each of the three macro-categories, we qualitatively
evaluated the evidence of association between exposure
and human hantavirus infection based on regression coef-
ficients and 95% Cls or, if not reported, by the direction of
associations as reported by the authors in the results and
discussion sections. Study results were labeled as
‘Negative' if at least one exposure belonging to the macro-
category was inversely associated with the outcome (i.e. an
increase in land cover corresponds to lower hantavirus
incidence/occurrence), ‘Positive’ if at least one exposure
belonging to the macro-category was positively associated
with the outcome (i.e. an increase in land cover corre-
sponds to higher hantavirus incidence/occurrence),
‘Bidirectional’ if some exposures belonging to the macro-
category showed both positive and negative associations
with the outcome within the same study, and ‘Null’ if no
evidence of association between the investigated expo-
sure and the outcome was found.

Results
Study characteristics

After exclusion of 67 duplicate records from the initial
database search, we screened a total of 351 titles and
abstracts for potential eligibility. Among 120 full-text
reviewed articles, 22 eligible studies were identified. We
identified 3 additional papers from references of
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identified papers as they fulfilled our eligibility criteria,
leading to a final set of 25 studies. Figure 1 describes the
eligible article identification process.

The 25 selected studies were published between
April 2004 and April 2023. Data extracted from the
selected articles are shown in Table 2. Of the 25
studies included in the review, 14 (56%) were con-

ducted in China [13-15,23,28-37], 7 (28%) in
Europe [20-22,38-41], and 4 (16%) in South
America [16-19]. Outcome identification was

homogeneous among different studies, since all
identified studies retrieved data on human hanta-
virus infection from national health databases
recorded by ministries of health or national epide-
miological surveillance programs, targeting mainly
symptomatic, laboratory-confirmed cases.
Concerning the spatial resolution of study out-
comes, 9 studies had information of the specific
location of cases (point pattern), 4 studies had
information at municipality level, and 12 studies
had information at a coarser level (e.g. district/
province). Concerning the type of exposure, 22
studies evaluated land cover and land use
(expressed as the proportion of a specific land
cover/use in a given area) while 3 studies explicitly
evaluated dynamical land use change (expressed
as the relative change of the proportion of
a specific land cover in a given area in two differ-
ent time points) [17,29,37]. More specifically, 16
studies evaluated at least one agricultural land
use, 21 studies evaluated forest cover and 14 stu-
dies evaluated built-up and artificial land covers
(Table 2). Concerning the type of analysis, 15 stu-
dies evaluated the relationship between the out-
come and exposure of interest on a spatial scale
(spatial studies) and 10 studies on a spatio-
temporal scale (spatio-temporal studies). Among
the 25 studies, 14 applied statistical regression
models to determine the association between han-
tavirus incidence in humans and land-use expo-
sures. the other 9 studies applied predictive
models to identify which land-use and land cover
features better explain the distribution of human
cases (7 studies used machine learning based eco-
logical niche models, and 2 studies used
a predictive model based on animal, human, envir-
onment contact matrix). The remaining 2 studies
applied both statistical regression models and
boosted regression trees. Of the 16 studies that
applied statistical regression models, extraction of
regression coefficients was possible for 11 studies.
The list of estimates (RR, OR) referred to specific
land cover/use exposures are shown in Table 3.
Concerning all studies included in the current
review, relationships between land covers and
land use macro-categories (‘Agriculture’, ‘Forest’,
and ‘Built’) are summarized in Figures 2 and 3.
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Figure 1.

Agricultural land use

Sixteen studies explicitly evaluated the association
between agricultural land uses and the risk of hanta-
virus infection among humans [13-20,23,28,30,31,34-
36,42]. Eleven studies were conducted in Mainland
China, four studies in South America, and one in
Europe. Most of these studies (12 out of 16) suggested
a positive relationship between agricultural land use
and the risk of hantavirus infection.

Concerning studies conducted in China, 10 out of
11 studies found a positive association. Using data at
county level from the whole of mainland China, Yan
et al. [28] first suggested that agricultural land such as
orchard cover could increase the risk of HFRS (RR for
1% increase in Orchards: 1.070; 95%Cl: 1.016-1.126)
[28]. Similarly, Fang et al. [13] found a positive associa-
tion between HFRS incidence among municipalities of
the Beijing metropolitan area and orchard land cover
(RR 1% Increase in Orchards: 1.043; 95% Cl: 1.017-
1.070) and rice paddies cover (RR for 1% increase in
Rice paddies: 1.270, 95% Cl: 1.040-1.530), but no evi-
dence of association with irrigable land cover (RR for
1% increase: 1.012; 95% Cls: 0.999-1.025) [13]. Xiao
et al. [23] developed an Ecological Niche Model
(ENM) on HFRS case locations applying a Genetic
Algorithm for Rule-set Production (GARP) and detected
a higher probability of cases among cultivated areas of

the Hunan Province in China [23], while Liu et al.
(2014), applying the same methodology, observed
that among different land uses, cultivated land and
shrublands were those affecting most the probability
of HFRS occurrence in the Dongting Lake District,
China [32]. Liang et al. [30], applying Boosted
Regression Trees, identified both rainfed and irrigated
croplands as major spatial drivers of HPRS incidence
through the analysis of cases that occurred in the
Shanxi province, China, between 2005-2017 [30], simi-
lar results were found by She et al. [34] by applying the
same methodology in the Shandong area. Xiao et al.
[14], using a predictive model based on animal,
human, land-use contact matrices identified cultivated
lands as the land use with higher risks of human HFRS
infection in two different areas of China [14,15]. Zhu
et al. [35,36] applying a Maximum Entropy Ecological
Niche Model in two distinct areas of China, found that
cultivated land positively influenced the spatial distri-
bution of HFRS [35,36]. Li et al. [31], on the contrary did
not report any association between cultivated land
cover and HFRS cases but a positive association with
grain yield at district level in some of the years under
study [31]. Out of four studies focused on the agricul-
tural land-use and risk of Hantavirus infection in South
America, two found a positive association, one found
an inverse association and one did not find strong
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Figure 2. Number of studies suggesting a positive (orange), negative (green), both positive and negative (yellow) and null (gray)
relationship between hantavirus infection in humans and macro-categories of land-cover/land-use. Panel A: all studies identified,

Panel B: studies reporting coefficient estimates and 95% cis.
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Figure 3. Number of studies suggesting a positive (orange), negative (green), both positive and negative (yellow) and null (gray)
relationship between hantavirus infection in humans and macro-categories of land-cover/land-use stratified by geographical area.
Panel A: all studies identified, Panel B: studies reporting coefficient estimates and 95% cis.

evidence of association. The two studies conducted in
Brazil found evidence of positive association between
croplands, agricultural intensity and HPS risk. Among
the municipalities belonging to the Sao Paulo state,
Prist et al. [16] detected a positive relationship
between municipalities reporting HPS cases and land
use for sugarcane farming (OR 1% Increase in
Sugarcane in Cerrado Region: 2.225: 95% Cl: 1.419-
3.158; 1% Increase in Sugarcane in the Atlantic
Region: 1.491, 95% Cl: 1.161-1.915) [43]. Similarly,
Muylaert et al. (2019) observed that the probability of
HPS occurrence across Brazil municipalities was asso-
ciated with agricultural expansion of land dedicated to
sugarcane farming (OR for 1% increase in sugarcane:
1.172, 95% Cl: 1.002-1.434) and of land dedicated to
maize farming (OR for 1% increase in maize 1.1996,
95% Cl: 1.002-1.363) [17]. On the contrary, Busch et al.
[18] did not find evidence of association between crop-
lands and HPS in Buenos Aires province [18] and Vadell
et al. [19] found an inverse association between agri-
cultural land use and HPS risk in Entre Rios, Argentina
[19]. The only study conducted in Europe (Belgium) did
not identify the agricultural land use as an influencing
variable for the distribution of NE cases [20].

Forest cover

Twenty-one studies explicitly evaluated the associa-
tion between forest cover and the risk of hantavirus
infection among humans [13-17,19-23,28,30,31,33-
36,38-41]. These studies were conducted in Europe
(n=7), Asia (n=11) and South America (n=3). The
direction of association between forest cover and han-
tavirus infection was heterogeneous among different
geographic locations.

Six out of seven studies conducted in Europe clearly
showed a positive association between forest cover
and risk of hantavirus infection [20-22,38-40]. Linard
et al. [38] found that NE incidence is positively asso-
ciated with forest cover among Belgian municipalities,
especially broad-leaved forests (RR for 1 % increase in
land cover: 1.048, p-value <0.05) [38]. Similarly, apply-
ing a regression tree analysis, Barrios et al. [20] found
that broad leaf forest coverage was the most influential
land use predictor in explaining spatial distribution of
NE cases in Belgium [20]. Schwarz et al. [40] detected
that the incidence of NE infections in the southern
districts of Germany was associated with the propor-
tion of areas covered by beech forests (RR for 1%
increase: 1.142, 95% Cl: 1.097-1.173) and seed plants



(e.g. pines, firs, yew, redwood) estimating a RR for 1%
increase equal to 1.229 (95% Cl: 1.182-1.277) [40].
Consistently, Cunze et al. [39] detected a positive asso-
ciation between NE incidence and forest cover analyz-
ing data covering all districts of Germany (RR for 1 %
increase: 1.009, 95%Cl: 1.005-1.014) [39]. In Sweden,
Zeimes at al. [21] reported an increased probability of
observing NE human cases with forest cover (RR for 1%
increase: 1.023, p value < 0.05) [21]. Another study con-
ducted by Zeimes at al. [22] on NE occurrence at the
European scale found that NE occurrence was more
likely in forests and built-up areas in forest ecotones
[22]. On the contrary Viel et al. [41] did not find evi-
dence of association between NE and forest land cover;
however, an increased NDV| was associated with NE
incidence [41]. Among the eleven studies conducted in
China, Yan et al. [28] did not find any evidence of
association between timber forest cover and incidence
of HFRS (RR for 1% increase: 1.073; 95% Cls: 1.039-
1.108) [28]. Similarly, Fang et al. [13] did not find any
evidence for forest cover (RR for 1 % increase: 1.006,
95% Cls: 0.994-1.017) [13]. Consistently, Liang et al.
[30] as well as Xiao et al. [15] did not detect any
significant contribution of covariates linked to forest
cover in explaining spatial distribution of HFRS cases
[14,30]. On the contrary, Li et al. (2014) analyzing at
provincial level all incident cases recorded in China
found a positive association between HFRS incidence
and mosaic forest/shrublands land cover [31]. Similarly,
on a national scale, Teng et al. [33] found that HFRS
incidence was positively associated with Forest land
cover (RR for 1 million hectare increase of forest: 1.357,
95% Cls:1.005-1.791). Finally, three study found that
compared to artificial and croplands, the number of
HFRS cases was lower in forest land areas [15,23,36]
while one study reported an inverted U-shaped rela-
tionship with HFRS incidence and forest cover [37]. In
south America, Mulayert et al. (2019) suggested that
municipalities at higher probability of reporting HPC
cases were those with high proportion of land covered
by forests (OR for 1 % increase: 1.336; 95% CIS: 1.066—
1.671) [17], while other studies found no evidence of
association between natural forest cover and HPC pre-
sence both in the Cerrado Region (OR for 1 % increase:
1.105, 95% Cls: 0.548-1.822) and in the Atlantic Forest
Region (RR for 1% increase: 1,284 (0.818-1.733) [16].
Lastly, Vadell et al. [19] found a positive association
between HPC cases and tree cover in Entre Rios,
Argentina [19].

Urban areas

We identified fourteen studies that explored the rela-
tionship between built-up areas and Hantavirus infec-
tion risk, which provided contrasting results [13-
15,20,23,29,30,33-39]. Eleven studies were conducted
in Mainland China, two studies in Europe, and none in
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South America. In China, Tian et al. [29] noted that
HFRS incidence rate and urbanization share
a u-shaped relationship over time, suggesting that
hantavirus infection risk is positively correlated with
urbanization in the first stage of urban development
where land alteration and population growth are hap-
pening at a rapid rate, whereas it is negatively corre-
lated in the second stage after urban population
growth reaches a steady rate and little to no further
land alteration occurs and sanitation measures are
implemented [29]. A similar result was found by Shen
et al. [37], who reported that at the beginning of
urbanization (urban expansion), HFRS incidence
increases, whereas in the second phase, HFRS inci-
dence decreases [37]. Consistently, two studies con-
ducted by Zhu et al. (35,36) found that active
construction sites were positively associated with the
spatial distribution of HFRS cases [35,36] Fours studies
did not detect any association between built areas and
HFRS among different areas of China [13,14,33,34]. Two
other studies conducted in China [23,30] showed that
HFRS increased with increases of built and urban areas.
Conversely, two studies found that built areas were
negatively correlated with hantavirus cases in the
metropolitan area of Beijing [13,15]. Among the three
studies conducted in Europe, one study conducted in
Belgium [38] showed an inverse association between
urbanization index and NE incidence (RR for level
increase: 0.782, p-value <0.05), while two studies
found no evidence of association [22,39].

Discussion

Emerging zoonotic diseases and reemerging infectious
diseases are increasingly recognized as major global
issues with potentially significant public health effects.
In this study, we reviewed the available evidence in the
literature on the association between landscape dri-
vers such as land cover, land use and land-use change
and human hantavirus infection, a rodent-borne
disease.

Rodents are frequently implicated as hosts of zoo-
notic diseases [44] and their distribution can be
affected by different environmental drivers such as
land cover and land use (change) [9]. Overall, we
found that different land-covers and land uses can
drive and shape the risk of human hantavirus infection
across different geographical areas. Hantaviruses are
maintained in nature through horizontal transmission
within competent rodent populations either through
direct or indirect contact from their habitat. Spillovers
or cross-species transmission, instead, occur when
humans inhale particles containing virus quanta
released in the environment [6]. Specifically, land-use
could shape the risk of transmission of hantaviruses
from the reservoir host to humans by influencing sev-
eral potential factors including: i) the abundance of
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competent hosts, ii) the pathogen transmission and
prevalence among competent hosts, iii) the probability
of rodent-human contact. In this study, results pro-
vided by spatial and spatio-temporal epidemiological
studies were stratified by land-cover/land-use category
(‘Agriculture’, ‘Forest Cover’, ‘Urban Areas’) and geo-
graphical area to further elucidate potential mechan-
isms and explore consistency of associations across
different geographical contexts.

Overall, studies included in the systematic review
suggested a positive association between agricultural
land use and human hantavirus infection. This associa-
tion was particularly evident among studies conducted
in China, with 91% of studies reporting a positive rela-
tionship between HFRS distribution and cultivated
land, presence of rice paddies and rainfed crops. In
South America the relationship was less clear but two
studies conducted in Brazil suggested that increased
sugarcane and maize production can increase HPS
incidence especially in communities characterized by
low socio-economic status. Agricultural land-use or
land-use change has been repeatedly linked to infec-
tious disease risks in humans [45]. Cultivated land,
indeed, represents areas characterized by both suffi-
cient food sources and shelter for rodent survival and
human presence [46]. Rodent population density gen-
erally responds to levels of food availability, and loca-
tion-specific rodent species occurrence is driven by
changes in food resources. Additionally, human domi-
nated ecosystems such as areas dedicated to culti-
vated land have been linked to a decrease of
biodiversity but often a relative increase in abundance
of some species (typically generalist species) [47]. i
Interestingly, rodents belonging to the Sigmodontinae
genus, which are the main hantavirus reservoir in South
America and Apodemus Agrarius and Rattus norvegicus
which are considered the main hantavirus reservoirs in
China, are considered generalist species [43,48,49]. In
addition, agricultural areas, when compared to natural
habitats are also linked to the presence of humans,
including rural workers and their families, which may
increase the probability of human-rodent contact and
of potential exposure risks [16]. A recent meta-analysis
including worldwide seroprevalence studies sug-
gested that occupational exposure to agriculture is
associated with a higher risk of hantavirus infection
(Farmer Occupational Status: OR: 1.875, 95% Cl 1.438-
2.445) [50]. In addition, rural communities, are also
characterized by poorer socio-economic conditions
and, thus, may be more likely to be exposed to rodents
or their excreta (e.g. for poor housing conditions and
poor sewage systems) [51].

This systematic review found that natural land com-
position such as coniferous forest and seed plant forest
could also shape human hantavirus infection risk.
A positive association between increased human han-
tavirus incidence and forest cover, was found in the

86% of studies conducted in Europe (Belgium,
Germany, and Poland, Sweden). In Europe, the main
reservoir of the Puumala Virus, the most common
hantavirus in Europe, is the bank vole (Myodes glareo-
lus) which occurs in forests, especially deciduous and
mixed woodland. Major individual risk factors for NE
infection in Europe frequently include living close to
forests, being employed as a forestry worker, and par-
ticipating in outdoor activities [52,53]. Several studies
have reported also that NE cases in Europe usually
occur during the mast years, when climatic and envir-
onmental conditions favor beechnut production and,
thus, food availability for rodent populations [40]. In
South America, the positive association between forest
cover and cases of human hantavirus infection was less
clear, likely due to the heterogeneity of environmental
factors, rodent population composition and different
biomes evaluated in the different studies. For instance,
Muyalaert et al. (2018) found a positive association
between forest cover and HPCS risk analyzing HPCS
diagnosed in all Brazilian municipalities, while Prist
et al. [16] did not find any evidence of association
between forest cover and HPCS incidence when focus-
ing on the Sao Paolo State. Although it is hard to draw
general conclusions about the association between
hantavirus risk and forest composition in South
America, it is apparent that rodent density and distri-
bution are affected by the differential levels of biodi-
versity that characterize both native and human
dominated forests [43].

Results on the relationship between artificial land
use and hantavirus infection risk were less conclusive.
Studies from Europe reported null results or evidence
of decreased risk of hantavirus infection among urban
areas. As mentioned before, the bank vole (Myodes
glareolus), prefers habitat forests to human dominated
landscapes. On the contrary, studies from China
showed contrasting results, with studies finding both
positive and negative associations with urban land
cover. One possible explanation for this variation has
been suggested by Tian et al. [29] proposing that the
association between HFRS incidence rate and urbani-
zation progression is characterized by a U-shaped rela-
tionship over time. This biphasic inverted U-shaped
effect of urbanization on the HFRS epidemic was also
observed by Shen [37]. Interestingly, two other studies
conducted by Zhu [35] found that active construction
sites were strongly associated with HFRS cases occur-
rence. These results might suggest that HFRS incidence
is positively associated with urban development in the
first stage where rural-to-urban land conversion and
human population growth, poor socio-economic con-
ditions increase drastically the interactions between
humans and reservoirs able to proliferate in urban
settings as the brown rat (Rattus norvegicus) and the
black rats (Rattus rattus) [54]. Later, the negative asso-
ciation between HFRS cases and the second stage of



urbanization process might be explained by the stabi-
lization of the urban growth, when socio-economic
and sanitation conditions improve. However, these
findings were not replicated by other studies con-
ducted in China. In addition, this hypothesis has not
been tested by any of the studies conducted in South
America, which has similarly been characterized by
a high urbanization rate over the last few decades [55].

This study is subject to the limitations inherent to
the primary studies making up the review. Most of the
studies included relied on reported data from minis-
tries of health, which usually rely on passive notifica-
tion systems, rather than direct measures of hantavirus
cases [56]. Aggregated data partially compromise the
accuracy of spatial relationship estimation between
exposure variables and human cases since the exact
location of the probable site of infection cannot be
obtained. Additionally, we observed a high heteroge-
neity between studies in the definition of exposures of
interest and covariates, as well as in the dimension of
spatial units used (e.g. point pattern, municipalities,
provinces), temporal extension and in the statistical
methods adopted (e.g. statistical regression vs
machine learning techniques). Moreover, most studies
applied an ecological study design whereby exposures
assessments are made on population averages rather
than the individual level. The majority of the studies
(88%) adjusted for one or more potential confounders
[16-19,21,22,28,29,31,33,38-41], while only two stu-
dies performed univariate regression [13,37]. Nine stu-
dies included some indicator of socio-economic
characteristics of the population under study (e.g. aver-
age income, % Rural workers, population density) [16-
18,21,22,29,33,38,40], twelve studies included some
indicator of climatic parameters of the area under
study (e.g. temperature, precipitation, relative humid-
ity) and/or some landscape-related features (e.g. NDVI,
EVI, slope, elevation, distance to water bodies) [16-
19,21,22,28,29,33,39-41], and three studies included
information on rodents population (e.g. rodent abun-
dance, rodent composition) [17-19]. In contrast, the
nine studies applying predictive models (i.e,
Ecological Niche Modelling, Regression Trees) included
several climatic, social, and environmental variables as
predictors [14,15,20,23,30,32,34-36].

In addition, it is important to note that studies that
apply machine learning predictive models are opti-
mized for prediction and may not provide interpreta-
ble estimates of the relationships between exposures
and outcomes. This is due to the complexity of the
algorithms used, which can make it difficult to under-
stand how specific factors contribute to predictions. As
a result, classical regression models provide estimates
easier to interpret as well as measures of uncertainty,
making them more suitable for studies aimed at unco-
vering relationships between variables. For this reason,
we additionally restrict the synthesis of evidence to the
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results from studies that reported interpretable coeffi-
cients and 95% confidence intervals (Figures 2 and 3:
Panel B). Moreover, publication bias could not be
excluded in this study. In this systematic review, efforts
were made to include published studies; however,
there is a possibility that unpublished studies with
negative or nonsignificant results were not captured.
Similarly, we only identified studies from three areas,
namely Europe, China, and South America. Even if
these areas account for the majority of the hantavirus
infections reported worldwide, no eligible studies from
other areas where hantavirus infection is documented
were retrieved (e.g. United States (US) and Russia) [4].
While the absence of studies from these regions is
a limitation, this is unlikely to be a direct result of
publication bias because both countries have active
scientific communities.

Assessing the quality of evidence from observational
studies with standard quality tools [57] is a critical aspect
of conducting systematic reviews. However, these tools
are typically designed for use with studies that evaluate
exposure and outcome data at the individual level, such
as case-control or cohort studies, and are often focused
on assessing the risk of bias in the individual studies. The
heterogeneity of study design and statistical analysis in
the studies included in our systematic review made it
challenging to apply such standardized quality assess-
ment tools. In particular, the studies included in our
review evaluated the relationship between hantavirus
risk and a wide range of environmental factors, includ-
ing land use, land cover, and climate variables, using
a variety of study designs and statistical methods. As
a result, it was difficult to compare the quality of evi-
dence across studies using a standardized tool.
Nevertheless, in the current review we attempted to
provide for each included study all important methodo-
logical features as the number of cases analyzed, the
number of ecological units involved, the adoption of
statistical methods to deal with spatio-temporal correla-
tion of the data, and the use of multivariable regression
techniques to partially remove the effect of confound-
ing variables, as well as to compare results across studies
to identify consistent findings and areas of uncertainty.

Overall, our systematic review suggested consistent
evidence of a positive association between agricultural
land use and human hantavirus infection in China and
South America, and a positive association between for-
est cover and human hantavirus infection in Europe.
However, specific mechanisms by which different land-
covers and land-uses can affect the hantavirus emer-
gence among humans are complex, and context or
location specific. Further clarification of these associa-
tions taking into consideration specificities of different
areas, communities potentially at risk and the temporal
change of land use is needed to address the potential
negative effects of anthropogenic environmental
changes on hantavirus epidemiology.
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