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Abstract
Exosomes play a crucial role in regulating crosstalk between tumor and tumor stem-like cells through their cargo molecules. 
Circular RNAs (circRNAs) have recently been demonstrated to be critical factors in tumorigenesis. This study focuses on 
the molecular mechanism by which circRNAs from glioma stem-like cell (GSLC) exosomes regulate glioblastoma (GBM) 
tumorigenicity. In this study, we validated that GSLC exosomes accelerated the malignant phenotype of GBM. Subsequently, 
we found that circZNF800 was highly expressed in GSLC exosomes and was negatively associated with GBM patients. 
CircZNF800 promoted GBM cell proliferation and migration and inhibited GBM cell apoptosis in vitro. Silencing circ-
ZNF800 could improve the GBM xenograft model survival rate. Mechanistic studies revealed that circZNF800 activated 
the PIEZO1/Akt signaling pathway by sponging miR-139-5p. CircZNF800 derived from GSLC exosomes promoted GBM 
cell tumorigenicity and predicted poor prognosis in GBM patients. CircZNF800 has the potential to serve as a promising 
target for further therapeutic exploration.
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Introduction

Glioma is the most aggressive primary tumor of the central 
nervous system (CNS) with a poor prognosis [1]. GBM is 
determined by the World Health Organization (WHO) to be 
the highest grade of glioma and presents as a diffuse tumor 
with invasion into the normal brain [2–4]. Many studies have 

demonstrated that a group of GBM cells with self-renewal 
ability and differentiation potential are GSLCs [5–7]. GSLCs 
are thought to underlie GBM initiation and provide the driv-
ing force for GBM growth and maintenance [8, 9].

Exosomes are small extracellular vesicles (EVs) with a 
diameter of 40 to 160 nm (average ~ 100 nm) that mediate 
communication between cells [10, 11]. Exosomes contain 
constituents such as proteins, lipids, DNA, mRNAs and non-
coding RNAs, which play an important role in tumor angio-
genesis, invasion, metastasis, and drug resistance [11–13].

CircRNAs are a new class of RNA transcripts that are 
produced from head-to-tail splicing of exons and are differ-
ent from mRNAs in their production and structure, therefore 
they have unique cellular functions and potential biomedi-
cal applications [14]. Accumulating evidence shows that 
circRNAs act as important regulators in cancers, including 
GBM [13, 15, 16]. The important functions and mechanisms 
of circRNAs have been identified: (1) circRNA acts as a 
miRNA sponge [14, 17]; (2) circRNA functions as sponges 
or decoys for proteins and indirectly regulates their functions 
[13, 18]; (3) circRNA regulates transcription by interacting 
with small nuclear ribonucleoproteins (snRNPs) [19]; and 
(4) circRNA can be translated through internal ribosome 
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entry site (IRESs) and N6-methyladenosine (m6A)-mediated 
cap-independent translation initiation [20, 21].

In addition, microRNAs (miRNAs) (∼21 to 23 nucleo-
tides in length) are widely expressed in species. A number 
of researches revealed that miRNAs participate in regulat-
ing tumor proliferation, metastasis, and metabolism by bind-
ing to the 3'untranslated region (3'UTR) of target mRNAs 
[22–26].

Currently, there are few reports describing the role of 
GSLC-exosomal circRNAs in GBM. The biological func-
tions of circRNAs in GBM are not fully understood and 
require further investigation. In this study, we performed 
high-throughput RNA sequencing (RNA-seq) of exosomes 
derived from GSLCs and HEB cells (human normal astro-
cytes were used to be the control in cell lines). Subsequently, 
we identified a novel circular RNA (hsa_circ_0082096) 
named circZNF800, which is highly expressed in GSLC 
exosomes, and found that circZNF800 regulated GBM cells 
proliferation, migration, and apoptosis in vitro. Furthermore, 
mouse models were used to clarify the biological function 
of circZNF800 in GBM tumorigenesis. Mechanistically, we 
demonstrated that circZNF800 affected the PIEZO1/AKT 
axis by sponging miR-139-5p and ultimately acted as a 
tumor promoter in GBM.

Methods

Patients and Specimens

All glioblastoma patient tumor samples and normal tissues 
were collected from The First Affiliated Hospital of Uni-
versity of Science and Technology of China, which were 
approved by the Human Research Ethics Committee of the 
hospital. In this study, we obtained written informed con-
sent from each patient. A total of 31 resected glioblastoma 
tumors were obtained from June 2019 to January 2022, 
and all tumor tissues were clinically and histopathologi-
cally diagnosed as glioblastoma. Normal brain tissues were 
obtained from 15 patients with brain tissue resection due to 
craniocerebral injury during the period from June 2019 to 
January 2022. All samples were rinsed with PBS after the 
operation and cut into small pieces. All samples were stored 
at -80 ℃ for the following experiments. The information of 
all GBM patients was listed in Table 1.

Cell Lines and Cell Culture

Human glioblastoma (GBM) U87, U251 cell lines, normal 
human astrocyte cell line (HEB) and 293 T cell lines were 
purchased from the American Type Culture Collection 
(ATCC). These cells were authenticated using an STR assay 
(BGI, China). All cells were cultured in Dulbecco's modified 

Eagle's medium (HyClone, China) with 10% fetal bovine 
serum (Clark Bioscience, USA) and 1% penicillin–strepto-
mycin-amphotericin B solution (Solarbio, China) at 37 °C 
in a humidified atmosphere with 5% CO2. The glioma stem-
like cells (GSLCs) were purified from the neurospheres by 
magnetic cell sorting with CD133 microbeads (Miltenyi 
Biotec, Germany). The GSLCs were cultured with DMEM/
F12 serum-free medium supplemented with 2% B27 (Gibco, 
USA), 20 ng/mL bFGF (PeproTech, USA) and 20 ng/mL 
EGF (Gibco, USA) in a non-adhesive culture system.

Exosome Purification and Characterization

Debris and dead cells in the medium were removed by 
centrifugation at 3000 × g for 30  min and then filtered 
through a 0.22 μm filter. The medium was then subjected to 
120,000 × g for 70 min at 4 °C. After washing with PBS 
(120,000 × g for 70 min), the exosomes were resuspended 
in PBS. The morphology of exosomes was characterized by 
transmission electron microscopy (TEM) (Hitachi H-7650, 
Japan). The characterization of exosomes was confirmed 
by measuring the expression of exosome-specific mark-
ers and by western blotting and particle size by NanoSight 
analysis. To monitor exosome trafficking, exosomes were 
labeled with PKH26 (Sigma-Aldrich, USA). After PKH26 
staining, the exosomes were washed in PBS and collected by 
ultracentrifugation (120,000 × g for 30 min) at 4 °C. PKH26-
labeled exosomes were resuspended in PBS.

RNA Extraction and Quantitative Reverse 
Transcriptase PCR (qRT‑PCR)

Total RNA was extracted by using TRIzol (Invitrogen, USA) 
according to the manufacturer's instructions. RNase R treat-
ment was carried out for 30 min at 37 °C using 3 U/mg of 
RNase R (Epicenter Technologies, USA). Dzup Reagent 

Table 1   The relationship of circZNF800 and clinical characteristics 
in 31 glioma patients

Variable circZNF800

High
(n = 16)

Low
(n = 15)

Sex Male
Female

11
5

9
6

Age(year)  ≤ 45
 > 45

2
14

3
12

Location Frontal
Parietal
Occipital
Temporal

3
2
7
4

3
3
6
3

Recurrence NO
Yes

2
14

2
13
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(Sangon, China) was used to extract gDNA. Sample cDNA 
was synthesized using the GoScript Reverse Transcription 
System (Promega, USA) according to the manufacturer's 
protocol. Quantitative real-time PCR was performed with 
TransStart Green qPCR SuperMix (TransGen, China) on a 
real-time PCR system (Roche LightCycler96, Germany). 
GAPDH or U6 was used as the internal control, and the 
relative expression of target genes was calculated by the 
2−ΔΔCt method. Sequences of the primers used for qRT-PCR 
in this study are listed in Table S1.

Western Blotting

For western blotting, cells were placed on ice and washed 
twice with PBS. Proteins were extracted with RIPA buffer 
(Beyotime, China) plus phenylmethylsulfonyl fluoride and 
phosphatase inhibitor cocktail (Beyotime, China). Samples 
were loaded per well on 4%-15% or 10% SDS-PAGE gels 
and transferred onto PVDF membranes (Millipore, USA) 
activated by methanol. Membranes were washed with 
TBST, blocked with 5% nonfat milk and incubated with 
antibodies against GAPDH (1:2000, Sangon, D190090-
0100, China), CD9 (1:1000, Proteintech, 60,232–1-Ig, 
China), CD63 (1:1000, Proteintech, 67,605–1-Ig, China), 
PIEZO1 (1:2000, Proteintech, 28,511–1-AP, China), FAK 
(1:2000, Proteintech, 66,258–1-Ig, China), p-FAK (1:2000, 
Cell Signaling Technology, 8556 T, USA), Akt (1:2000, 
Proteintech, 10,176–2-AP, China) and p-Akt (1:2000, Cell 
Signaling Technology, 4060S, USA). Secondary antibodies 
(1:5000, goat anti-rabbit IgG-HRP and goat anti-mouse IgG-
HRP, Sangon, China) and the protein bands were visualized 
using a chemiluminescence reagent ECL kit (Thermo Fisher, 
USA).

Cell Viability Assay

Cell viability was assessed by CCK-8 assays (Biosharp, 
China). Cells were seeded in 96-well plates (8 × 103 cells per 
well). The absorbance of each sample was read at a wave-
length of 450 nm on an Infinite M200 (Tecan, Switzerland).

Cell Migration Assay

Cell migration ability was assessed by Transwell assays. 
Cells (1 × 104  cells per well) were seeded in the upper 
chambers (Corning, USA) in serum-free media without the 
Matrigel membrane. Meanwhile, the lower chambers were 
loaded with 10% FBS. After incubation at 37 °C and 5% 
CO2 for 48 h, the upper chamber was cleaned with a cot-
ton swab, and the lower chamber was washed with PBS, 
fixed with 4% paraformaldehyde, stained with 0.1% crystal 
violet (Sangon, China) for 20 min, and washed with PBS. 

The lower chamber was imaged by an inversion microscope 
(Olympus, Japan).

Cell Apoptosis Assay

Cell apoptosis was assessed by flow cytometry. Cells 
(5 × 105 cells/well) were seeded in a six-well plate. After 
treatment, cells were harvested by centrifugation at 
2000 rpm for 5 min, washed with PBS three times, and then 
incubated with 5 μL of FITC-conjugated Annexin V and 
5 μL of PI for 15 min at room temperature in the dark. The 
stained cells were detected by BD FACS flow cytometer (BD 
Biosciences, USA).

Co‑Culture Assay

Glioma stem-like cells were placed in the upper chamber 
and glioblastoma cells in the lower chamber where cells 
were co-cultured at a ratio of 1:1 using a trans-well plate 
(0.4 mm polycarbonate filter, Corning, USA) for 24 h. To 
inhibit extracellular vesicle secretion, glioma stem-like cells 
were pretreated with GW4869 (an inhibitor of neutral sphin-
gomyelinase, 10 μM, Sigma-Aldrich, USA).

RNA FISH

RNA FISH analysis of the GBM cell lines was performed 
using an RNA FISH kit (RiboBio, China) according to the 
manufacturer’s protocols. Briefly, U87 and U251 cells were 
allowed to grow until 70–80% confluency. The cells were 
fixed in 4% formaldehyde for 10 min, washed 3 times with 
PBS for 5 min, permeabilized with 0.5% Triton-X-100 in 
PBS for 15 min at 4 °C, and washed with PBS 3 × 5 min. The 
cells were incubated with a Cy3-labeled circZNF800 probes 
mixture at 37 °C overnight and washed with prewarmed 
2 × saline-sodium citrate (SSC) 5 times for 3 min. DNA was 
stained with DAPI and visualized using an Olympus camera.

Plasmid Construction and Cell Transfection

To construct the circZNF800 overexpression vector, the sec-
ond and third exons of ZNF800 gene and the endogenous 
flanking sequence including the complementary Alu element 
pairs were inserted into the backbone vector of pcDNA3.0, 
whereas the mock vector with no circZNF800 sequence was 
used as a control. Plasmid, siRNA (Ribobio, China), miRNA 
mimic (Hanbio, China) and miRNA inhibitor (Hanbio, 
China) were conducted with Lipofectamine 8000 (Beyotime, 
China) according to the manufacturer's protocol.
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Subcellular Fractionation

Nuclear and cytoplasmic separation was performed using 
the Nuclei Isolation Kit (Keygenbio, China) according to 
the manufacturer's instructions.

RNA Pull‑Down Assay

For RNA pulldown assay, cells were washed with cold PBS 
and then cross-linked in the UV cross-linker (UVP CL-1000, 
USA). The cells were scraped and resuspended in RIPA 
buffer (50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 5 mM 
EDTA, 1% NP-40, 0.1% SDS, 1 mM DTT, complete pro-
tease inhibitor and 0.1 U/µL RNase inhibitor) for 10 min on 
ice and then harvested and sonicated for 15 min. Then, the 
samples were centrifuged at 13,000 rpm for 20 min. Then, 
100 pmol 5'-biotinylated probes were added to the superna-
tant at 4 °C for 2 h. Streptavidin Dynabeads beads (M-280, 
Invitrogen, USA) were washed three times with RIPA buffer 
and supplemented with 1 mg/ml BSA and 0.5 mg/mL yeast 
total RNA rotated for 1 h. The blocked beads were added 
to the supernatant with probes and then rotated for 4 h at 
4 °C. After washing three times with RIPA buffer supple-
mented with 500 mM RIPA buffer, beads were harvested 
with magnets.

RNA Immunoprecipitation

The cell (4 × 106) supernatant was discarded after cen-
trifugation at 1000 × g at 4 °C for 5 min. The cells were 
washed with precooled PBS twice, and the supernatant was 
discarded. The cells were suspended with lysate and gently 
blown away for an ice bath for 10 min. The protein-A/G-
coated magnetic beads were fully suspended, and then 75 
μL beads were added to 1.5 mL EP tubes. After NT-2 buffer 
washing twice, resuspension with 100 μL NT-2 buffer, add 
5 μg AGO2 or IgG antibody, and mix at room temperature 
for 1 h. Centrifuge 5000 × g for 15 s, add magnets to absorb 
magnetic beads, and remove supernatant. The tube was 
removed from the magnets, and 1 mL NT-2 was added. The 
tube was blown and mixed well and centrifuged at 5000 × g 
for 15 s, which was repeated 3 times. Samples were resus-
pended in 900 μL NT-2 buffer. Cell lysates were centrifuged 
at 20,000 × g at 4 °C for 10 min. Then, 100 μL supernatant 
was added to the prepared magnetic beads suspended in 900 
μL NT-2 buffer and incubated with the antibody. A 10 μL 
sample was used as input. Vertical mixing was performed at 
4 °C for more than 3 h or overnight. The sample was briefly 
centrifuged to the bottom of the tube, and the supernatant 
was discarded, which was repeated 3 times. Precipitation is 
the sample obtained in the RIP experiment, and RNA can 
be further extracted after digestion by 0.5 mg/ml Proteinase 
K (Beyotime, China) for subsequent analysis.

Dual Luciferase Reporter Assay

The StarBase (http://​starb​ase.​sysu.​edu.​cn/) or TargetScan 
(http://​www.​targe​tscan.​org) databases were used to predict 
the potential binding site. CircZNF800 or PIEZO1 fragments 
containing predicted wild-type (wt) or mutant (mut) miR-
139-5p binding sites were cloned into pcDNA3.0. 293 T 
cells were cultured in 24-well plates and transfected with 
200 ng luciferase reporter plasmids (containing wild-type 
or mutant) using Lipofectamine 8000 (Beyotime, China). 
Relative luciferase activity was measured 48 h after transfec-
tion using a dual luciferase reporter assay system (Promega, 
USA) according to the manufacturer's instructions. Firefly 
luciferase activity was normalized to the corresponding 
Renilla luciferase.

Fluorescence Imaging of Ca2+ Levels with a Confocal 
Microscope

Ca2+ levels were assessed using a Ca2+ fluorescence indi-
cator fluo-3-AM (absin, China). Cells were incubated with 
4 μM fluo-3-AM at 37 °C 30 min. Fluorescent dye-loaded 
cells were washed with PBS at room temperature. Continu-
ously, cells were staibed with DAPI. Fluo-3-AM loaded cells 
were excited with a confocal microscope at wavelength of 
488 nm and the data were collected for emission intensity at 
a wavelength of 515 nm.

Xenograft Model in Vivo

Four female BALB/c mice (5 weeks) obtained from Gem-
Pharmatech (China) were maintained in pathogen-free con-
ditions. Intracranial tumorigenesis in nude mice with control 
and sh-circZNF800 U251 luciferase cells (5 × 105) (n = 4/per 
group). The bioluminescence was monitored every 6 days. 
The representative bioluminescence imaging of metastases 
was measured by a spectrum luminal imager (IVIS Spec-
trum, USA).

Immunohistochemistry (IHC)

The transplanted tumor model tissues were fixed with 4% 
paraformaldehyde, embedded in paraffin, and cut into 4 μm 
sections. The sections were then treated with xylene and 
ethanol to remove paraffin. After blocking with 5% normal 
goat serum, sections were treated with anti-PIEZO1 (1:200, 
Proteintech, 28,511–1-AP, China), anti-FAK (1:200, Pro-
teintech, 66,258–1-Ig, China), anti-pFAK (1:200, Thermo 
Fisher Scientific, PA5-17,084, USA), anti-Akt (1:200, 
Proteintech, 10,176–2-AP, China), anti-pAkt (1:200, Cell 
Signaling Technology, 4060S, USA), or anti-Ki67 (1:100, 
Abcam, ab15580, UK) antibodies, incubated overnight 
at 4 °C and washed with PBS three times. Subsequently, 

http://starbase.sysu.edu.cn/
http://www.targetscan.org
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sections were incubated with HRP-conjugated secondary 
antibody and streptavidin peroxidase. The average integral 
optical density of each positively stained section was meas-
ured by Image J software. Three random fields were selected 
for each section for measurement.

Statistical Analysis

All experiments were performed in triplicate, and the results 
are presented as the mean value ± standard deviation (SD) 
from at least 3 biological replicates. The statistical sig-
nificance of these data was analyzed by Student's t test or 
one-way ANOVA followed by GraphPad 8. Kaplan–Meier 
survival analysis and the log-rank test were used to analyze 
the overall survival of recurrent patients. Kaplan–Meier 
survival curves were used to assess the overall survival 
of patients and mice xenografts. A value of P < 0.05 was 
considered statistically significant. * indicates P < 0.05; ** 
indicates P < 0.01 and *** indicates P < 0.001.

Results

GSLC‑Derived Exosomes Enhance GBM Cell 
Proliferation and Migration and Inhibit 
Glioblastoma Apoptosis

To explore cell communication in GBM microenvironments, 
we first isolated CD133 positive GSLCs from U87 cells and 
examined CD133 and Nestin levels, two markers for GSLCs, 
by Immunofluorescence assays (Supplementary Fig. 1A). To 
identify exosomes, we isolated exosomes from HEB cells 
and GSLCs, which were observed under transmission elec-
tron microscopy (Supplementary Fig. 1B). The nanoparti-
cle size of HEB and GSLC exosomes was further meas-
ured by a nanoparticle analyzer (Supplementary Fig. 1C). 
Western blotting revealed the markers (CD9 and CD63) of 
exosomes, indicating the successful isolation of exosomes 
(Supplementary Fig.  1D). Subsequently, we examined 
whether these GSLC-derived exosomes (GSLC-exos) were 
taken up by GBM cells. These GSLC-exos were labeled 
with PKH26 (lipophilic fluorescent dye) and then added to 
GBM cells for co-culture (Fig. 1A). To investigate whether 
GSLCs affect GBM cells by secreting exosomes, GW4869 
was applied for exosome inhibition in our work [27]. CCK-8 
assay proved that GBM cell co-cultivation with GSLCs or 
GSLC-exos could enhance cell growth compared to that in 
the negative control groups (Supplementary Fig. 1E-F and 
Fig. 1B-C). Transwell assays revealed that U87 and U251 
co-incubating GSLCs or GSLC-exos facilitated cell migra-
tory capacity (Supplementary Fig. 1G-H and Fig. 1D-E). 
Flow cytometry validated that GBM cells co-cultured with 
GSLCs or GSLC-exos had a lower rate of apoptosis than 

negative control cells (Supplementary Fig. 1I-J and Fig. 1F-
G). Taken together, these data might indicate that GSLCs 
regulate the tumorigenesis of GBM cells through exosomes.

CircZNF800 is Highly Expressed in GSLC‑exos 
and is Associated with Poor Prognosis in GBM 
Patients

Then, we asked how GSLC-derived exosomes regulate 
GBM tumorigenesis. Given that circRNAs are abundant 
in exosomes, we performed circRNA profiles from GSLC-
exosomes and HEB-exosomes. We identified 49 differ-
entially expressed circRNAs (fold change > 2 or < 0.5, P 
value < 0.05) in our dataset, among which 5 were upregu-
lated and 44 were downregulated (Fig. 1H-I and Supple-
mentary Fig. 1K).

We focused on hsa_circ_0082096, which is most sig-
nificantly upregulated in GSLC-exos (Supplementary 
Fig. 1K). Hsa_circ_0082096, arising from the ZNF800 gene 
(we termed circZNF800) has a length of 1837 nt, which is 
located at chromosome 7 and consists of the head-to-tail 
splicing of exon 2 and exon 3. The putative back-splicing 
junction was confirmed by Sanger sequencing (Fig. 1J). The 
circular structure of circZNF800 was corroborated by the 
observed enrichment of circRNAs after RNase R treatment 
(Fig. 1K). QRT-PCR results revealed that circZNF800 was 
highly expressed in exosomes derived from GSLC compared 
with HEB exosomes (Fig. 1L). In addition, circZNF800 was 
higher in U251 and U87 cells than in HEB cells (Fig. 1M). 
RT-qPCR analysis of nuclear and cytoplasmic RNAs and 
fluorescence in situ hybridization with a probe against the 
back-spliced junction of circZNF800 were conducted, dem-
onstrating that circZNF800 was preferentially localized 
within the cytoplasm in both U251 and U87 cells (Fig. 1N-
O). Moreover, we detected the expression levels of circ-
ZNF800 in 31 GBM tissues (Table 1) and 15 normal tis-
sues by qRT-PCR (Fig. 1P). In addition, we assessed the 
association between circZNF800 expression and prognosis 
in patients with GBM. Kaplan–Meier survival analysis 
revealed that patients with higher circZNF800 levels had a 
lower survival rate (Fig. 1Q). To summarize, circZNF800 
was confirmed to be a circular RNA and was associated with 
poor prognosis in GBM patients.

GLSC‑exos CircZNF800 Promotes Malignant 
Progression of GBM Cells

To investigate the regulatory roles of circZNF800 in GBM 
cells, we performed loss-of-function analyses. Two inde-
pendent siRNAs targeting the junction site of circZNF800 
were used to knock down circZNF800 (Fig.  2A). The 
knockdown efficiency was validated by qRT-PCR, which 
showed that both siRNAs led to the significantly decreased 
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expression level of circZNF800 (Fig. 2B and Supplementary 
Fig. 2A), but the level of ZNF800 mRNA was not affected 
(Fig. 2C and Supplementary Fig. 2B). Meanwhile, the qRT-
PCR assay showed that circZNF800 could be upregulated 
when transfected with the overexpression of circZNF800 
plasmid, but the level of ZNF800 mRNA was not affected 
(Fig.  2D-E and Supplementary Fig.  2C-D). Moreover, 
CCK-8 assay revealed that circZNF800 knockdown inhib-
ited GBM cell proliferation, while circZNF800 overex-
pression facilitated GBM cell proliferation (Fig. 2F-G and 
Supplementary Fig. 2E-F). Transwell assays demonstrated 
that knockdown of circZNF800 could suppress GBM cell 
migration viability and overexpression of circZNF800 could 
promote GBM cell migration viability (Fig. 2H-I and Sup-
plementary Fig. 2G-H). Flow cytometry revealed that knock-
down and overexpression of circZNF800 could regulate cell 
apoptosis (Fig. 2J-K and Supplementary Fig. 2I-J). To fur-
ther illustrate the functions of GLSC-exos circZNF800, we 
isolated exosomes from GSLCs transfected with two siR-
NAs against circZNF800 and overexpression of circZNF800 
plasmids, (namely, GSLC-Si-exos and GSLC-OE-exos). We 

performed qRT-PCR to verify the expression of circZNF800 
in these exos (Fig. 2L and Supplementary Fig. 2 K) and 
then added these exos to U251 and U87 cells for the next 
investigation. The CCK-8 assay indicated that GSLC-OE-
exos could significantly promote the proliferation of GBM 
cells, but GSLC-Si-exos had the opposite effect (Fig. 2M and 
Supplementary Fig. 2L). The migration ability of the U251 
and U87 cells was prominently increased by GSLC-OE-exos 
and decreased by GSLC-Si-exos which were confirmed by 
the transwell assay (Fig. 2N and Supplementary Fig. 2 M). 
Furthermore, the decline in apoptosis ratio was caused by 
GSLC-OE-exos compared with the control group. Instead, 
the increased ratio of apoptosis was due to GSLC-Si-exos 
(Fig. 2O and Supplementary Fig. 2N). Emerging studies 
revealed that circRNA/PI3K/Akt axis positively or nega-
tively regulated the expression of tumor-relative genes and 
tumor progression, such as endometrial cancer and breast 
cancer [28–30]. Moreover, we then employed GSE153692 
database [23, 25] to analyze the PI3K-Akt-related signal-
ing in GBM. We found that PI3K-Akt-related mRNAs were 
activated in GBM patients. Thereby, we detected the rela-
tionship between circZNF800 and the activation of p-Akt by 
western blotting after GBM cells treated with si-circZNF800 
or circZNF800. Western blotting revealed that circZNF800 
silencing decreased AKT phosphorylation (p-Akt) in GBM 
cells (Fig. 2P and Supplementary Fig. 2O), whereas over-
expressing circZNF800 increased AKT phosphorylation 
(Fig. 2Q and Supplementary Fig. 2P). To investigate whether 
GLSC-exos circZNF800 regulated activated AKT phospho-
rylation in GBM cells, we co-cultured GSLC-Si-exos and 
GSLC-OE-exos with GBM cells. Western blotting assays 
indicated that GSLC-OE-exos increased p-Akt, but GSLC-
Si-exos had the opposite effects (Fig. 2R and Supplementary 
Fig. 2Q). Altogether, these results suggested that exosomal 
circZNF800 behaves as an oncogene in glioblastoma cells.

CircZNF800 Serves as a miRNA Sponge 
of miR‑139‑5p

Many researchers have reported that circRNA assumes 
the role of a miRNA sponge in tumor development regula-
tion [12, 16, 31]. To elucidate the molecular mechanism of 
circZNF800, we first predicted the targets of circZNF800 
according to three databases circbank, circinteractome, and 
StarBase, and the results showed that 2 candidate miRNAs 
bond to circZNF800 (Fig. 3A and Table S2). Next, circ-
ZNF800 and miR-139-5p were captured and enriched by 
the biotin-labeled circZNF800 probe. On the other hand, 
miR-543 was not pulled down by circZNF800 probe, which 
showed that circZNF800 couldn't sponge miR-543 (Fig. 3B 
and Supplementary Fig.  3A). In addition, miR-139-5p 
and circZNF800 were pulled down by the biotin-coupled 
miR-139-5p probe in both GBM cell lines (Fig. 3C and 

Fig. 1   CircZNF800 was overexpressed in GSLC-derived exosomes 
and correlated with poor patient prognosis. (A) Exosomes from 
GSLCs were labeled with PKH26 and then added to U251 and 
U87 cell cultures (PKH26-red, DAPI-blue). Scale bar, 1  mm. (B-
C) CCK-8 assay was used to evaluate the viability of U251 and 
U87 cells treated with GSLC-exos. GW4869 is applied to inhibit 
exosomes. (D-E) Transwell experiments measured the migration of 
U251 and U87 cells treated with GSLC-exos. GW4869 is applied 
to inhibit exosomes. (F-G) Flow cytometry assays measured the 
apoptosis ratio of U251 and U87 cells co-cultured with GSLC-exos. 
GW4869 is applied to inhibit exosomes. (H) Heatmap showing the 
differential expression of circZNF800 in the HEB-exos and GSLC-
exos. (I) Volcano plots illustrating differential changes of circRNAs 
in HEB-exos versus GSLC-exos samples. Blue and red dots represent 
significantly down-regulated and up-regulated circRNAs, respectively 
(J) Schematic illustration indicating the generation of circZNF800 
from its host gene and junction site validation by Sanger sequenc-
ing. (K) QRT-PCR analysis of circZNF800 and ZNF800 mRNA 
after treatment with or without RNase R in U251 and U87 cells. (L) 
QRT-PCR analysis of the expression of circZNF800 in HEB-exos and 
GSLC-exos. (M) The expression level of circZNF800 in HEB cells 
and glioblastoma cells (U87 and U251) was measured by qRT-PCR. 
(N) Cytoplasm and nuclear fractions were used to detect the loca-
tion of circZNF800. GAPDH was used as a cytoplasmic negative 
control. U6 was used as a nuclear negative control. (O) The locali-
zation of circZNF800 was detected by RNA FISH in U87 and U251 
cells. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). 
CircZNF800 was labeled with Cyanine 3 (Cyy3) dye. Scale bar, 
50  μm (P) QRT-PCR assay detected the expression of circZNF800 
in glioblastoma tissues (n = 31) compared to normal tissues (n = 15). 
GAPDH was used as a control. (Q) The 31 glioblastoma samples 
were divided into high and low groups based on circZNF800 expres-
sion. Kaplan–Meier survival curve analysis showed the relationship 
between the expression circZNF800 and glioblastoma patient sur-
vival. Data are presented as the mean ± S.D. The P value was deter-
mined by Student's t test or Kaplan–Meier survival curve analysis. 
Significant results are presented as NS nonsignificant, *P < 0.05, 
**P < 0.01, or ***P < 0.001
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Supplementary Fig. 3B). The binding sites (circZNF800-
WT) and corresponding mutation sites (circZNF800-Mut) 
between circZNF800 and miR-139-5p are shown in Fig. 3D. 
To confirm that miR-139-5p bond to circZNF800 directly, a 
dual-luciferase reporter assay was performed. The luciferase 
activity of circZNF800-WT was reduced after co-transfec-
tion of the miR-139-5p mimic, but the luciferase activity of 

circZNF800-Mut did not change, which suggested that miR-
139-5p was a target of circZNF800 in a sequence-specific 
manner (Fig. 3E). RNA immunoprecipitation (RIP) assays 
with an anti-AGO2 antibody were conducted in U251 and 
U87 cells to confirm whether circZNF800 acted as a miR-
139-5p sponge in these cells, and the results showed that 
circZNF800 and miR-139-5p were enriched (Fig. 3F and 
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Supplementary Fig. 3C). These findings indicated that circ-
ZNF800 acted as a miR-139-5p sponge. In addition, we con-
firmed that miR-139-5p was significantly reduced in GBM 
tissues compared to normal brain tissues (Fig. 3G). Moreo-
ver, miR-139-5p expression was negatively correlated with 
the expression of circZNF800 (Fig. 3H). QRT-PCR analysis 
showed that the expression of miR-139-5p was obviously 
increased after transfection with circZNF800 siRNAs in 
GBM cells while the overexpression of circZNF800 had 
the opposite effect, which further verified the interaction 
between circZNF800 and miR-139-5p (Fig. 3I and Supple-
mentary Fig. 3D). We found that the miR-139-5p inhibi-
tor suppressed the expression of miR-139-5p, but the effect 
of the miR-139-5p inhibitor could be rescued by knocking 
down circZNF800 (Fig. 3J and Supplementary Fig. 3E). 
To further investigate the roles of circZNF800 and miR-
139-5p in GBM progression, we performed rescue assays to 
evaluate the effects of the circZNF800/miR-139-5p axis on 
the proliferation, migration and apoptosis abilities of GBM 
cells. CCK-8 results showed that the miR-139-5p inhibitor 
promoting cell growth was blocked by knocking down circ-
ZNF800 in GBM cells (Fig. 3K and Supplementary Fig. 3F). 
Similarly, transwell assay showed that the miR-139-5p 
inhibitor significantly boosted the invasion of U251 and U87 
cells. However, the knockdown of circZNF800 eliminated 
these effects (Fig. 3L and Supplementary Fig. 3G). Flow 

cytometry showed that the miR-139-5p inhibitor markedly 
inhibited apoptosis of GBM cells, while knockdown of circ-
ZNF800 eliminated this effect (Fig. 3M and Supplementary 
Fig. 3H). As shown in Fig. 3N, p-Akt protein was remarka-
bly promoted by the miR-139-5p inhibitor, whereas the level 
of p-Akt was retarded by si-circZNF800 (Fig. 3N and Sup-
plementary Fig. 3I). In the same way, the high expression of 
miR-139-5p induced by miR-139-5p mimic was reversed by 
overexpression of circZNF800 (Fig. 3O and Supplementary 
Fig. 3J). The CCK-8 assay showed that the inhibition of 
cell proliferation by miR-139-5p mimic was alleviated by 
overexpression of circZNF800 (Fig. 3P and Supplementary 
Fig. 3K). The promotion of apoptosis by miR-139-5p mimic 
was moderated by overexpression of circZNF800 (Fig. 3R 
and Supplementary Fig. 3M). We found that the expression 
of p-Akt was markedly downregulated in the miR-139-5p 
mimic group, while after transfecting circZNF800, the 
expression of these proteins was upregulated (Fig. 3S and 
Supplementary Fig. 3N). These results suggested that circ-
ZNF800 regulates the proliferation, migration and apoptosis 
of GBM cells by sponging miR-139-5p.

PIEZO1 is a Direct Target of miR‑139‑5p 
and is Regulated by CircZNF800

The potential target genes of miR-139-5p were predicted 
by five miRNA target gene databases TargetScan, miRDB, 
mirDI, microT-CDS, miRpathDB (Fig. 4A and Table S3). 
The overlap of five miRNA target gene databases showed 32 
alternative mRNAs, but according to the GEPIA and CGGA 
databases, only 13 candidate mRNAs were upregulated in 
GBM patients. To determine whether miR-139-5p could 
regulate the expression of downstream targets, we examined 
the expression of these mRNAs by qRT-PCR after knock-
ing down or overexpressing miR-139-5p. PIEZO1 mRNA 
expression was most significantly increased by miR-139-5p 
inhibition, while PIEZO1 mRNA expression was signifi-
cantly decreased by the miR-139-5p mimic in GBM cells 
(Fig. 4B and Supplementary Fig. 4A). Compared with the 
control group, overexpression of circZNF800 significantly 
increased the mRNA expression of PIEZO1 (Fig. 4C and 
Supplementary Fig. 4B). Previous study has suggested that 
PIEZO1 is overexpressed in cell membrane, and its expres-
sion is negatively correlated with human aggressive glioma 
patients survival [32]. To confirm the interaction of miR-
139-5p and PIEZO1 mRNA, we performed an RNA pull-
down assay of miR-139-5p and found that miR-139-5p was 
able to pulldown PIEZO1 mRNA (Fig. 4D and Supplemen-
tary Fig. 4C). To further elucidate the molecular mecha-
nism by which miR-139-5p regulated PIEZO1 expression, 
we discovered that the PIEZO1 mRNA 3'UTR contains a 
potential miR-139-5p binding site (Fig. 4E). The results 
of the dual-luciferase reporter assay demonstrated that the 

Fig. 2   CircZNF800 promotes glioblastoma proliferation and migra-
tion and inhibits glioblastoma apoptosis in vitro. (A) Schematic dia-
gram of the siRNA sequences specifically targeting the circZNF800 
junction. (B) The expression of circZNF800 analyzed by qRT-PCR in 
Si-circZNF800 U251 cells. GAPDH was used as a control. (C) The 
expression of ZNF800 mRNA in U251 cells treated with two inde-
pendent siRNAs. GAPDH was used as a control. (D-E) QRT-PCR 
verified the expression of circZNF800 and ZNF800 mRNA after 
transduction of OE-circZNF800 plasmids in U251 cells. GAPDH 
was used as a control. (F-G) CCK-8 assay analysis the effect of circ-
ZNF800 knockdown and overexpression on U251 proliferation. (H-
I) Transwell assay tested the effect of circZNF800 knockdown and 
overexpression on U251 cell migration. (J-K) Annexin‐V FITC/PI 
staining detected the effect of circZNF800 knockdown and overex-
pression on U251 apoptosis. (L) QRT-PCR analysis of circZNF800 
expression in U251 cells after treatment with exosomes derived from 
circZNF800-overexpressing GSLC (GSLC-OE-exo) or knockdown 
GSLC (GSLC-Si(1)-exo and GSLC-Si(2)-exo) cells. (M) The prolif-
eration of U251 cells treated with various exosomes (GSLC-OE-exo, 
GSLC-Si(1)-exo and GSLC-Si(2)-exo) or control were detected by 
CCK-8 assay. (N) Transwell assays were used to detect the migration 
ability of U251 cells treated with various exosomes (GSLC-OE-exo, 
GSLC-Si(1)-exo and GSLC-Si(2)-exo) or control. (O) Flow cytom-
etry detected the apoptosis of U251 cells treated with GSLC-exos, 
GSLC-OE-exos, GSLC-Si(1)-exos or GSLC-Si(2)-exos. (P-R) West-
ern blotting analysis revealed that p-Akt activation was regulated 
by circZNF800. U251 cells transfecting with (P) si-circZNF800(1) 
or si-circZNF800(2), (Q) overexpression circZNF800, (R) GSLC-
OE-exos, GSLC-Si(1)-exos or GSLC-Si(2)-exos. Data are presented 
as the mean ± S.D. The P value was determined by Student's t test. 
Significant results are presented as NS nonsignificant, *P < 0.05, 
**P < 0.01, or ***P < 0.001
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relative luciferase activity of the PIEZO1 wild-type signifi-
cantly decreased, suggesting that PIEZO1 was a target of 
miR-139-5p (Fig. 4F). In the RIP assay, PIEZO1 mRNA was 
enriched in the miRNA ribonucleoprotein complex contain-
ing AGO2 compared with control IgG (Fig. 4G and Supple-
mentary Fig. 4D). Additionally, the expression of PIEZO1 
mRNA was higher in GBM tissues than in normal tissues 
(Fig. 4H). Correlation analysis showed that the expression 
levels of circZNF800 and PIEZO1 mRNA were positively 
correlated (Fig. 4I), and the expression levels of miR-139-5p 
and PIEZO1 mRNA were negatively correlated in GBM tis-
sues from clinical patients (Fig. 4J). To evaluate the function 
of PIEZO1 in GBM, we designed a siRNA-targeted PIEZO1 
mRNA coding sequence. CircZNF800 or miR-139-5p sig-
nificantly attenuated the effects of PIEZO1 siRNA (Fig. 4K 
and Supplementary Fig. 4E). We analyzed cell proliferation, 
migration and apoptosis and found that PIEZO1 deletion 
reduced proliferation (Fig. 4L and Supplementary Fig. 4F) 
and migration (Fig. 4M and Supplementary Fig. 4G) and 

promoted apoptosis (Fig. 4N and Supplementary Fig. 4H) 
in U251 and U87 cells, but these effects were rescued by 
circZNF800 or miR-139-5p inhibitor (Fig. 4L-N, Supple-
mentary Fig. 4F-H). A study revealed that PIEZO1 could 
upregulate the expression of p-Akt by activating focal adhe-
sion kinase (FAK) [33]. As a non-receptor tyrosine kinase, 
FAK is an important signaling component that is activated 
by a variety of stimuli and acts as a biosensor to control 
cell movements, including proliferation and migration. 
FAK autophosphorylates at Y397 could additionally recruit 
members of the Src-family of kinases (SFKs). The proxim-
ity of SFKs to FAK is thought to lead to the activation of 
downstream effectors, including Akt. Previous reports have 
highlighted phosphorylation of FAK at Y397 as an impor-
tant regulator of the angiogenic response in vitro [34–36]. 
Our western blotting results demonstrated the ascending 
protein expression of PIEZO1, the activated FAK and acti-
vated Akt transfected siPIEZO1 alone or co-transfected with 
circZNF800 or miR-139-5p inhibitor (Fig. 4O and Supple-
mentary Fig. 4I). In order to illustrate circZNF800 could 
regulates the progression of GBM by affecting PIEZO1 
and increasing intracellular Ca2 + signaling, we conducted 
calcium imaging experiments and found that decreasing 
Ca2 + signaling when silencing circZNF800 (Supplemen-
tary Fig. 4J). Taken together, these results revealed that circ-
ZNF800 regulates GBM cell proliferation, migration and 
apoptosis via the miR-139-5p/PIEZO1/Akt axis.

Silencing CircZNF800 can Inhibit Glioblastoma 
Growth and Metastasis in Vivo

To evaluate the function of circZNF800 in vivo, we estab-
lished U251 stable cell line with lentivirus to knockdown 
circZNF800. The procedure of in vivo xenografts assay 
was showed in Fig. 5A. Bioluminescence imaging revealed 
that knockdown of circZNF800 reduced the malignant 
GBM xenografts to the negative control group (Fig. 5B). 
We found that when circZNF800 was knocked down, the 
luciferase activity of the tumor was dramatically increased 
(Fig. 5C), while overall survival was decreased compared 
with that of the control group (Fig. 5D). Moreover, our 
qRT-PCR analysis suggested that circZNF800 was down-
regulated in GBM xenograft models (Fig. 5E). In addi-
tion, immunohistochemistry (IHC) of resected tumor 
sections showed the expression of Ki67, PIEZO1, FAK, 
p-FAK, Akt and p-Akt in tumor tissues with or without 
circZNF800 knockdown (Fig. 5F). Finally, we determined 
knocking down circZNF800 could decrease the expres-
sions of PIEZO1, Ki67, p-FAK and p-Akt in tumor tis-
sues (Fig. 5G). Taken together, our data suggested that 
circZNF800 played an important role in regulating GBM 
progression and tumorigenesis.

Fig. 3   CircZNF800 functions as a sponge of miR-139-5p. (A) Venn 
diagram showing targets of circZNF800 predicted from circbank, 
circinteractome and StarBase. (B) Relative levels of circZNF800, 
miR-139-5p and miR-543 in U251 lysates were captured by the bioti-
nylated probe circZNF800. GAPDH and U6 were used as controls. 
(C) Relative levels of circZNF800 and miR-139-5p in U251 lysates 
captured by the biotinylated probe of miR-139-5p. (D) Schematic of 
circZNF800 wild-type (WT) and mutant (Mut) luciferase reporter 
vectors. (E) Luciferase reporter gene assay to detect the interaction 
between circZNF800 and miR-139-5p. (F) RIP experiments were 
carried out in U251 cell extracts using an anti-AGO2 antibody. (G) 
The expression of miR-139-5p in GBM tissues and normal tissues 
by using qRT-PCR. U6 was used as a control. (H) Pearson correla-
tion analysis of circZNF800 and miR-139-5p expression in GBM 
tissues (n = 12). (I) Expression level of miR-139-5p in U251 cells 
after transfection with si-circZNF800(1), si-circZNF800(2), or OE-
circZNF800. (J) QRT-PCR was used to verify the efficiency of the 
miR-139-5p inhibitor was rescued by Si-circZNF800(1) and Si-circ-
ZNF800(2). (K-M) Detecting cell proliferation, migration and ratio 
of apoptosis of U251 treated miR-139-5p inhibitor alone or Si-circ-
ZNF800(1) and Si-circZNF800(2) respectively. (K) CCK-8 assays 
measured the migration ability of transfected U251 cells. (L) Tran-
swell assays measured the migration ability of transfected U251 cells. 
(M) The apoptosis of treated U251 cells was detected by flow cytom-
etry. (N) Western blotting was used to verify the activation level of 
p-Akt. (O) miR-139-5p expression in U251 cells transfected with 
miR-139-5p mimic alone or co-transfected with the OE-circZNF800 
plasmid. (P) CCK-8 assay measured U251 cells transfected with 
miR-139-5p mimic alone or co-transfected with OE-circZNF800. (Q) 
The migration analysis of U251 cells transfected with miR-139-5p 
mimic alone or co-transfected with the OE-circZNF800 plasmid. 
(R) Annexin‐V FITC/PI staining was used to assess the apoptotic 
rates of U251 cells transfected with miR-139-5p mimic alone or co-
transfected with the OE-circZNF800 plasmid. (S) The activation level 
of p-Akt was verified by western blotting. U251 cells transfected 
with miR-139-5p mimic or co-transfecting with the OE-circZNF800 
plasmid. GAPDH was used as a control. Data are presented as the 
mean ± S.D. The P value was determined by Student's t test. Signifi-
cant results are presented as NS nonsignificant, *P < 0.05, **P < 0.01, 
or ***P < 0.001
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Discussion

Previous studies have shown that glioblastoma (GBM) is 
challenging for neurosurgeons because of its rapid pro-
liferation and invasive growth, which can invade normal 
brain tissue and lead to incomplete resection and recur-
rence [37]. Glioma stem-like cells (GSLCs) exhibit 
stem-like properties and are thought to be responsible 
for the high recurrence rate of GBM [38–40]. GSLCs are 
small populations of cells in glioma tumor samples with 

stem-cell associated characteristics, such as self-renewal 
ability, expression of stem-cell markers, and differenti-
ate into multiple nervous system lineages (neurons, astro-
cytes, and oligodendrocytes) [41, 42]. Related researches 
reported that GSLCs promoted GBM tumorigenic pheno-
type by regulating molecular networks, for example, the 
cytokine receptor for oncostatin Moncostatin M (OSMR) 
improves glioblastoma response to ionizing radiation [5]. 
Another example of GSLCs in a hypoxic environment 
regulated glioblastoma chemoresistance by upregulating 
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JAG1 and DLL4 [43]. Therefore, a therapeutic strategy 
to target GSLCs has become an choice to suppress GBM 
development [44].

Studies of extracellular vesicles can help identify 
unknown cellular and molecular mechanisms involved in 
intercellular communications and diseases [10]. Exosomes 
are a subset of EVs with an average diameter of ~ 100 nm. 
Nucleic acids, proteins, and lipids are selectively bound to 
intraluminal vesicles, which are located in multivesicular 
endosomes and are precursors of exosomes [45]. Exosomes 
have been proven to be important information exchange 
carriers between cells, including GSLCs and GBM [46, 
47]. Evidence from Xiong et al. suggested that linc01060 
gene derived from hypoxic glioma stem cell exosomes can 
directly interact with the transcription factor myeloid zinc 
finger 1 (MZF1) to promote MZF1-mediated c-Myc tran-
scriptional activity, thereby leading to glioma progression 
[47]. Our previous research revealed that glioma stem-like 
cells derived exosomal miR-155-5p may regulate mesenchy-
mal transition by directly targeting ACOT12 and enhance 
the invasiveness of glioma [7]. In a word, exosomes provide 
a window into the altered state of glioma cells or tissues, and 
their detection in biological fluids may provide a multicom-
ponent diagnostic reference.

Circular RNAs (circRNAs) are a class of non-coding 
RNAs, with a covalently closed circular structure [14]. 
With the rapid development of high-throughput sequencing, 
emerging studies have shown that circRNAs in exosomes 
derived from tumor cells play an important role in tumor 
formation, angiogenesis, invasion, metabolic reprogram, 
and chemotherapy resistance[13, 48–50]. For example, cir-
cRNA_104797 was upregulated in sorafenib resistant hepa-
tocellular carcinoma and was essential for the maintenance 
and spread of sorafenib resistance in HCC. Mechanically, 
circRNA_104797 which was propagated via exosomes, inter-
acteed with YBX1 in the cytoplasm to prevent PRP19-medi-
ated YBX1 ubiquitination and degradation in the nucleus 
[13]. In addition, circCARM1 served breast cancer stem cell 
exosomes as vectors to regulate breast cancer cell metabolic 
reprogramming through the miR-1252-5p/PFKFB2 pathway 
[50]. However, studies on glioma stem-like cell derived exo-
somal circRNAs regulating the malignant phenotype and 
mechanism of glioblastoma have not been clearly reported.

MicroRNAs (miRNAs), with an average nucleotide 
of ~ 21 nt, are evolutionarily conserved and are encoded in 
the genomes of almost all eukaryotes. MiRNAs participate 
in post-translation biological progress, especially in ani-
mals, by base pairing to partially complementary sequences 
in the 3'untranslated regions (UTRs) of target mRNA [51]. 
Researches demonstrated that miR-139-5p served as a tumor 
suppressor by regulating tumor-related proteins in colorec-
tal cancer, gastric cancer and glioblastoma [52–54]. In our 
research, we verified that miR-139-5p was downregulated in 
glioblastoma tissues and suppressed glioblastoma cell lines 
deterioration, which was consistent with previous research 
results.

PIEZO1 is known as an ion channel that allows the per-
meation of cations, including sodium, potassium, and cal-
cium, which is reported to function as a homeostatic role 
in heart health, innate immunity and vascular development 
[55–57]. A recent study reported that PIEZO promoted 
glioma tissue stiffening and tumor cell proliferation, which 
provided a strategy for targeting PIEZO1 to break the dis-
ease-aggravating feedforward circuit [32].

Our present study revealed that exosomes from GSLCs 
could enhance the migration of GBM cells, suggest-
ing that exosomes played a regulatory role in the GBM 
malignant phenotype. In this study, we identified a novel 
circRNA (hsa_circ_0082096) from GSLC-exos, namely, 
circZNF800. The expression of circZNF800 was positively 
correlated with GBM patient survival. Using a loss/gain 
of function methods, we demonstrated that exosomal circ-
ZNF800 regulated proliferation, migration and apoptosis 
in GBM. Moreover, our results indicated that circZNF800 
was distributed predominantly in the cytoplasm and served 
as a microRNA sponge. Mechanistically, we found that 
GSLC-derived exosomal circZNF800 regulated PIEZO1/

Fig. 4   PIEZO1 is a direct target of miR-139-5p and is regulated by 
circZNF800. (A) The target genes of miR-139-5p predicted by Tar-
getScan, miRDB, miRpathBD, microT-CDS, and miRDIP. (B-C) 
The mRNA expression levels of downstream genes targeted by miR-
139-5p were measured by qRT-PCR in U251 cells treated with (B) 
miR-139-5p mimic or miR-139-5p inhibitor, (C) OE-circZNF800. 
(D) The RNA pulldown assay was performed with relative levels of 
PIEZO1 in U251 lysates captured by the biotinylated probe of miR-
139-5p. (E) The schematic diagram shows the binding site of miR-
139-5p and the PIEZO1 3'UTR. (F) Luciferase reporter gene assay 
to detect the interaction between circZNF800 and miR-139-5p. (G) 
The RIP assay detected the expression of PIEZO1 mRNA in U251 
cell lysates using an anti-AGO2  antibody. IgG antibody was used 
as a control. (H) The expression of PIEZO1 mRNA in glioblastoma 
(n = 31) tissues and normal tissues (n = 15) was measured by qRT-
PCR. (I) Pearson correlation analysis of PIEZO1 mRNA and circ-
ZNF800 expression in glioblastoma tissues (n = 12). (J) Pearson cor-
relation analysis of PIEZO1 mRNA and miR-139-5p expression in 
glioblastoma tissues (n = 12). (K) The qRT-PCR assay detected the 
expression of PIEZO1 mRNA in U251 cells after transfection with 
Si-PIEZO1 alone or co-transfection with OE-circZNF800 or miR-
139-5p inhibitor. (L) CCK-8 assay was performed to assess U251 cell 
growth ability after transfection with Si-PIEZO1 alone or co-trans-
fection with OE-circZNF800 or miR-139-5p inhibitor. (M) Transwell 
assays were performed to assess the migration ability of U251 cells 
after transfection with Si-PIEZO1 alone or co-transfection with OE-
circZNF800 or miR-139-5p inhibitor. (N) Flow cytometry analysis 
showed the apoptosis of U251 cells after transfection with Si-PIEZO1 
alone or co-transfected with OE-circZNF800 or miR-139-5p inhibi-
tor. (O) Western blotting analysis of the protein levels of PIEZO1, 
FAK, p-FAK, Akt and p-Akt in U251 cells. Data are presented as the 
mean ± S.D. The P value was determined by Student's t test. Signifi-
cant results are presented as NS nonsignificant, *P < 0.05, **P < 0.01, 
or ***P < 0.001
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FAK/Akt signaling by sponging to miR-139-5p (Fig. 5H). 
Most importantly, we confirmed that knockdown of circ-
ZNF800 significantly inhibited GBM proliferation and 
migration in xenograft mouse models. Our study iden-
tified that circZNF800 and miR-139-5p are upstream of 

PIEZO1, which might provide genetic targets for the treat-
ment of glioblastoma. In a word, our study may provide 
novel insights into the mechanisms involved in GBM pro-
gression. We found circZNF800 from GSLC exosomes and 
revealed that exosomal circZNF800 plays an important 

A B

C

E F

D
BALB/c Nude

LV-sh-scr/Luci

LV-sh-circZNF800/Luci

tissue
BLI image

every 6 days qRT-PCR,
IHC

implant 5x105 LV-sh-scr/luci or 
LV-sh-circZNF800/luci cells stereotactically

0

1x104

2x104

3x104

4x104

5x104

Pe
rc

en
t s

ur
vi

va
l

days

LV-sh-scr
LV-sh-circZNF800

da
y 

6
da

y 
12

LV-sh-scr LV-sh-circZNF800

0

50

100

0 10 20 30 40

LV
-s

h-
sc

r
LV

-s
h-

ci
rc

ZN
F8

00

ki67 PIEZO1 FAK p-FAK Akt p-Akt

p=0.0067

LV
-sh

-sc
r

LV
-sh

-ci
rcZ

NF80
0

0

0.5

1.0

1.5

R
el

at
iv

e 
ci

rc
ZN

F8
00

 le
ve

l

***

2x10⁵

4x10⁵

6x10⁵

6 day 12 day
0

LV-sh-scr
LV-sh-circZNF800

daysR
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

**

G H

ki6
7

PIEZO1
FAK

p-F
AK Akt

p-A
kt

0

0.5

1.0

1.5

R
el

at
iv

e 
pr

ot
ei

n 
po

si
tiv

e 
ce

lls
   

   
   

   
   

  (
Pe

r f
ie

ld
)

LV-sh-scr
LV-sh-circZNF800

*** *** ns *** ***ns

Fig. 5   Silencing circZNF800 can inhibit glioblastoma growth and 
metastasis  in vivo. (A) The schematic diagram shows LV-sh-scr/luci 
and LV-sh-circZNF800/luci U251 cells (5 × 105 cells) orthotopic 
xenotransplantation in nude mice. (B) Bioluminescent images of 
nude mice. (C) Quantitative study of bioluminescence imaging sig-
nal intensity in nude mice. (D) Kaplan–Meier curve analysis showed 
the survival of xenograft models between LV-sh-scr and LV-sh-circ-
ZNF800 group. (E) The expression of circZNF800 was measured by 
qRT-PCR assay in xenograft tumors. (F) The expression of Ki-67, 
PIEZO1, FAK, p-FAK, Akt and p-Akt was examined by immunohis-

tochemistry in xenograft tumors (400 ×). (G) Relative proteins (Ki-
67, PIEZO1, FAK, p-FAK, Akt and p-Akt) positive cells in LV-sh-scr 
or LV-sh-circZNF800 cell-derived tissues were analyzed by IHC. (H) 
The schematic diagram shows how circZNF800 derived from GSLCs 
could promote tumorigenesis of GBM through circZNF800/PIEZO1/
Akt axis. Data are presented as the mean ± S.D. The P value was 
determined by Student's t test or Kaplan–Meier survival curve analy-
sis. Significant results are presented as NS nonsignificant, **P < 0.01, 
or ***P < 0.001
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role in regulating the miR-139-5p/PIEZO1/FAK/Akt sign-
aling axis.
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