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Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons 
in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3β) is implicated in the pathogenesis of PD. Therefore, 
the purpose of the present review was to revise the mechanistic role of GSK-3β in PD neuropathology, and how GSK-3β 
inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation 
of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3β is also intercon-
nected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3β in PD 
neuropathology is not fully clarified. Over-expression of GSK-3β induces the development of PD by triggering mitochondrial 
dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in 
response to dysregulated GSK-3β in PD leading to progressive neuronal injury. Higher expression of GSK-3β in the early 
stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). 
Thus, GSK-3β inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associ-
ated with degeneration of dopaminergic in the SN.
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Introduction

Parkinson’s disease (PD) is a chronic and progressive neuro-
degenerative disease of the brain [1]. PD is characterized by 
motor symptoms including tremors, rigidity, and bradykine-
sia, and non-motor such as dementia, cognitive dysfunction, 
sleep disorders, and depression that may develop by decades 
before motor symptoms [1, 2]. Aging is the main factor that 
predisposes the development of PD and is linked with its 
severity. PD affects 1–3% of the general population aged 
more than 60 years. However, PD that may be developed 
below the age of 50 years is known as an early-onset PD, 
though onset of PD below 21 years is called juvenile PD. PD 
prevalence is more common in men than women that might 
due to higher levels of neuroprotective estrogen [3, 4]. The 

pathogenesis of PD is related to the progressive degeneration 
of dopaminergic neurons in the substantia nigra (SN) and 
the accumulation of Lewy bodies in the survival neurons. 
Lewy bodies are mainly formed by the deposition of α-Syn 
which is also found in other neurological disorders called 
synucleinopathies. Of note, loss of 70% of dopaminergic 
neurons in the SN is developed before the development of 
PD symptoms [3, 4].

The presence and contribution of α-Syn to PD is contro-
versial and might be pathogenic or a compensatory increased 
to reduce dopaminergic neuronal loss. Two types of PD are 
identified, idiopathic (sporadic) PD which form 90% of cases 
whereas familial PD account for 10% only [5, 6]. Mutation 
of α-Syn is associated with the development of familial PD 
[7].

It has been reported that genetic alterations in PD are 
found since early embryonic life that predispose to the devel-
opment of PD after the age of 60 years [7]. Genetic altera-
tion can interrelate with different environmental factors in 
the pathogenesis of PD [8]. It has been hypothesized that 
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three temporal phases including triggers (like environmen-
tal toxins), facilitators (like peripheral inflammation), and 
aggravators (like autophagy dysfunction) are required for 
the pathogenesis of PD [9]. For example, gut dysbiosis and 
alteration of the nasal microbiome promote the deposition 
of α-Syn and the development of non-motor symptoms of 
PD [9]. Systemic inflammation in chronic metabolic disease 
facilitates neuroinflammation and degeneration of dopa-
minergic neurons SN with the accumulation of α-Syn [10]. 
Defective autophagy which acts as an aggravator promotes 
PD neuropathology by reducing the clearance of α-Syn [9]. 
Furthermore, mitochondrial dysfunction, oxidative stress, 
apoptosis, and dysfunction of growth factors contribute to 
the pathogenesis of PD [11] (Fig. 1).

It has been shown that glycogen synthase kinase 3 
beta (GSK-3β) is intricate in the pathogenesis of PD [12]. 
Though, the underlying mechanism of GSK-3β in PD neu-
ropathology is not fully clarified. Therefore, the objective 
of the present review was to revise the mechanistic role of 

GSK-3β in PD neuropathology. In addition, we try to revise 
the potential therapeutic role of GSK-3β inhibitors in PD.

GSK‑3β and Neurodegenerative Disorders

GSK-3 is a conserved threonine/serine kinase protein that 
regulates cellular anabolic and catabolic pathways by modu-
lating glycogen synthase in response to biological stimuli 
[13]. In particular, GSK-3 is involved in neurodevelopment 
and synaptic plasticity, though GSK-3 is implicated in the 
development of neurodegeneration, cognitive dysfunction 
and bipolar disorders [14]. Two isozymes of GSK-3 includ-
ing GSK-3α and GSK-3β are identified; they have 98% simi-
larity with overlapping function [13].

Normally, GSK-3β is expressed in all brain regions; how-
ever, GSK-3α is expressed in specific brain regions such 
as the cerebral cortex, hippocampus, and Purkinje cells 
[15]. Signaling pathways involved with GSK-3β are mainly 

Fig. 1   Pathophysiology of PD: induction formation of misfolded pro-
teins by different causes promote aggregation of misfolded proteins 
and formation of Lewy body which induce neuronal degeneration. In 
addition, development of mitochondrial dysfunction and oxidative by 

different causative factors implicated in the pathogenesis lead to gen-
eration of reactive oxygen species (ROS) which cause direct neuronal 
apoptosis or indirectly through activation of microglia and the devel-
opment of neuroinflammation lead to neuronal degeneration
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phosphoinositol 3 phosphatase kinase (PI3K) and Wnt/β-
catenin [16]. GSK-3β regulates cell cycle signaling, cell 
proliferation, and DNA repair [17]. In addition, GSK-3β 
regulates cellular oxidative stress through modulation of 
the expression of nuclear factor erythroid 2-related factor 2 
(Nrf2) [18]. Findings from preclinical and clinical studies 
illustrated that exaggerated GSK-3β activity is involved in 
progressive neurodegeneration in different neurodegenera-
tive diseases [19–21].

Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease characterized by progressive memory loss 
and cognitive impairment [22]. AD is developed due to pro-
gressive deposition of extracellular amyloid beta (Aβ) pro-
tein and intracellular neurofibrillary tangles (NFTs) which 
are formed by hyperphosphorylation of tau protein [23]. 
Accumulated Aβ in AD induces upregulation of GSK-3β 
which increases the activation of amyloid precursor protein 
(APP) leading to the generation of Aβ in a vicious cycle. 
Therefore, GSK-3β activity is augmented in AD leading to 
synaptic failure and impairment of synaptic plasticity lead-
ing to cognitive decline [19]. Moreover, GSK-3β promotes 
tau protein phosphorylation-induced neurodegeneration and 
increases AD neuropathology.

However, the underlying mechanism for the overactiva-
tion of GSK-3β is remaining unidentified [19, 24]. Normally, 
GSK-3β activity is negatively inhibited by phosphorylation 
on ser9-like protein kinase A (PKA) by insulin and insu-
lin and insulin-like growth factor 1 (IGF-1). Dysregula-
tion of this pathway as in insulin resistance (IR) induces 
overexpression of GSK-3β [19, 25]. Brain IR in diabetes is 
associated with activation of GSK-3β due to failure of insu-
lin and IGF-1 signaling [25]. A cohort study that involved 
AD patients showed that the active form of GSK-3β was 
increased in the frontal cortex neurons in the early stages 
of AD patients before accumulation of NFTs [24]. GSK-3β 
activation is energetic by phosphorylation of tau protein 
which results in disturbance of neuronal synaptic activity 
and the formation of neuronal plaques. Though the accumu-
lation of Aβ plaques and intracellular NFTs has been well 
recognized as neuropathological hallmarks of the disease, 
the molecular mechanism has not been elucidated [24]. It 
has been shown that ginsenoside improves cognitive func-
tion by regulating oxidative stress, apoptosis, and neuroin-
flammation in experimental AD by inhibiting GSK-3β [26]. 
Likewise, tolfenamic acid constrains GSK-3β-mediated tau 
hyperphosphorylation in AD models [27]. This finding sug-
gests that GSK-3β could be a primary event in the develop-
ment of AD (Fig. 2). Therefore, inhibition of exaggerated 
GSK-3β could be effective against AD neuropathology.

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disease of motor neurons, motor cortex, and corticospinal 
tract linked with GSK-3β overactivity [28]. GSK3β activ-
ity shows an increase in various ALS models and patients. 
Furthermore, GSK3β inhibition can suppress the defective 
phenotypes in various ALS models [29]. GSK3β expression 
and cytosolic levels of GSK3β are augmented in the spinal 
cord and frontotemporal cortex of ALS patients [21]. Pre-
clinical findings support that GSK-3β activity is increased 
in ALS animals and patients [29]. In addition, the expres-
sion of GSK-3β and catenin which reflect the activity of 
GSK-3β had been reported to be increased in the frontal 
cortex and hippocampus in ALS patients [30]. Activation of 
GSK-3β in ALS is related to the downregulation of PI3K, 
and PI3K activators may be effective in the management of 
ALS [31]. To identify the therapeutic potential of GSK3β-
targeted drugs in ALS treatment, many studies have shown 
that GSK3β inhibitors can attenuate ALS disease progres-
sion. Valproic acid which is a mood stabilizer can indirectly 
inhibit GSK3β via Akt pathway. Valproic acid acts as a neu-
roprotective for motor neurons, delays disease progression, 
and extends life span in mouse ALS model [21]. A combina-
tion of lithium and valproic acid showed superior effects on 
motor dysfunction and disease progression in mouse ALS 
model by inhibiting GSK3β compared to lithium and valp-
roic acid when used alone [32]. Therefore, GSK3β activity 
is increased in numerous ALS and GSK3β inhibition can 
rescue defective phenotypes of ALS in numerous models.

Multiple Sclerosis

Multiple sclerosis (MS) is the most common demyelinat-
ing neurodegenerative disease of the central nervous system 
(CNS) in young adults [32, 33]. MS is regarded as an auto-
immune disease causing injury of myelin sheath by immune 
cells and inhibiting the production of myelin. Oligodendro-
cytes which involved with the synthesis of the myelin sheath 
are typically affected in MS [33, 34]. In demyelinating diseases 
as in MS and experimental autoimmune encephalomyelitis 
(EAE) , GSK-3β activity is increased [20, 35]. It has been 
shown that the expression of GSK-3β is highly increased in 
MS patients mainly in the cerebral cortex and corpus callosum 
[15]. Higher expression of GSK-3β is increased in MS and 
induces the development of neuroinflammation by activating 
the release of pro-inflammatory cytokines via TLR4-depend-
ent pathway [36, 37]. It has been established that GSK3β is 
intricate in Wnt-beta-catenin signaling, which participates to 
the inhibition of myelination and remyelination processes in 
humans [38]. dGSK3β rs334558 polymorphism is a suscep-
tibility factor for MS, as it is found in the promoter region, a 
possible explanatory mechanism that could be an influence of 
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the variant on the gene transcription rate [39]. Lithium treat-
ment significantly delayed the onset of EAE and improves its 
severity by inhibiting pro-inflammatory TNF-α and inactivated 
GSK-3β [20]. Furthermore, lithium improves stem cell differ-
entiation into oligodendrocytes and enhances re-myelination 
in MS [38]. Thus, exaggeration of GSK-3β is linked with MS 
neuropathology, and GSK-3β inhibitors may be effective in 
the management of MS.

Taken together, over-expression of GSK-3β is linked with 
the development of different neurodegenerative diseases, and 
GSK-3β inhibitors could be a novel therapeutic strategy in 
the management of neurodegenerative diseases.

The Possible Role of GSK‑3β in PD

It has been observed that GSK-3β over-activity is correlated 
with PD neuropathology by inducing neuroinflammation, 
derangement of blood-brain barrier (BBB) permeability, and 

degeneration of dopaminergic neurons in the SN [12]. A 
previous preclinical study found that 6-hydroxydopamine 
(6-OHDA)-induced dopaminergic degeneration is medi-
ated by the expression of GSK-3β [40]. In 6-OHDA-induced 
PD, the activated GSK-3β not only induces degeneration of 
dopaminergic neurons but also blocks the proliferation and 
differentiation of neuron stem cells, thereby blocking neuro-
genesis [41]. Many studies have exposed that the inhibition 
of GSK-3β reduces dopaminergic neuron injury induced by 
MPTP toxicity, indicating the association of GSK-3β with 
the pathogenesis of PD [42]. Khan et al. [43] showed that 
GSK-3β accelerates neuroinflammation in PD by triggering 
the expression of pro-inflammatory cytokines. The harmful 
effect of GSK-3β activation on dopaminergic neuron sur-
vival was further established in transgenic mice expressing 
a constitutively active mutant of GSK-3β [40]. Dysregulation 
of GSK-3β results in aberrant mitochondrial function, which 
is implicated in PD [43]. Considerable evidence suggests 
that GSK-3β mediates glial cell activation and promotes the 

Fig. 2   Role of GSK-3β in Alzheimer disease (AD): GSK-3β has an 
important role in the pathogenesis of AD by inducing amyloid pre-
cursor protein (APP) processing for Aβ and activation of microglia. 
GSK-3β by increasing tau protein phosphorylation causes memory 

impairment and inhibition of long-term potentiation (LTP). GSK-3β 
is inhibited by ser9-like protein kinase A (PKA) and insulin-like 
growth factor 1 (IGF-1)
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release of pro-inflammatory cytokines via regulating several 
transcriptional factors and development of neuroinflamma-
tion [44]. Moreover, GSK-3β is increased in the striatum 
of postmortem brains of PD patients [45]. GSK-3β was 
activated by phosphorylation at its Tyr216 in the striatum 
of PD patients [36]. Increased GSK-3β protein levels have 
also been reported in peripheral blood lymphocytes in PD 
patients [46]. Therefore, GSK-3β overactivity promotes PD 
neuropathology through induction of mitochondrial dysfunc-
tion and neuroinflammation.

Furthermore, GSK-3β may contribute to the formation 
of protein aggregates or intracellular inclusions in PD. 
Deficiency of autophagy-lysosomal pathway, leading to 
dysfunction of protein aggregate clearance, was observed 
in postmortem brains of PD patients [47]. GSK-3β may 
progressively lead to intracellular and axonal deposit in PD 
neuropathology [43, 47]. GSK-3β inhibits autophagy lead-
ing to reduction in the clearance of α-Syn .GSK-3β is known 
to be involved in neuronal development and suppression 
of GSK-3β showed the ability to reduce α-Syn in cellular 
models of PD [48]. It has been observed that exaggerated 
GSK-3β inhibits dopaminergic neurotransmission in the 
SN [12]. The dopamine D2 receptor regulates Akt and may 
also target the Wnt pathway, two signaling cascades that 
inhibit GSK-3β [12, 48]. In addition, abnormal dopamin-
ergic activity is associated with PD due to overactivity of 
GSK‐3β. Inhibition of GSK‐3β has been reported to attenu-
ate D1 receptor agonist‐induced hyperactivity in mice [49]. 
Synaptic loss is correlated with cognitive deficits in PD. 
Synaptic dysfunction leads to impairment of the balance 
between long-term potentiation (LTP) and long-term depres-
sion (LTD). Of note, LTP inhibits GSK-3β activity which 
required for LTD. Though the precise mechanism underlying 
this remains indistinct, it has been established that constitu-
tive GSK-3β activity promotes basal AMPAR endocytosis 
leading to inhibition of synaptic plasticity and development 
of cognitive dysfunction in PD [43, 50]. Thus, exaggerated 
GSK‐3β can induce structural and functional alterations in 
the dopaminergic neurons of SN in PD.

As well, α-Syn activates the expression and forms a heter-
otrimeric complex with GSK-3β. The activation of GSK-3β 
was absolutely dependent on the presence of α-Syn, as 
indexed by the absence of p-GSK-3β in cells lacking α-Syn 
and in α-Syn knockout mice. In turn, GSK-3β promotes 
aggregation of α-Syn [51]. Autopsies from postmortem PD 
brains revealed that levels of phosphorylated GSK-3β were 
higher in PD patients as compared to healthy controls [52]. 
Evidence from preclinical and clinical studies revealed that 
GSK-3β expression is augmented in PD [53]. Of interest, 
GSK-3β polymorphism increases PD risk [54]. In a mouse 
model of tauopathy, GSK-3β expression is co-localized with 
α-Syn in the striatum [55]. Remarkably, a neuroprotective 
protein progranulin which is highly reduced in PD modulates 

the expression of GSK-3β [56, 57]. Mutation of progranulin 
is associated with over-expression of GSK-3β and the devel-
opment of PD [57].

The activation of Nrf2 enhances the expression of ARE 
and hemeoxygenase-1 (HO-1), which decreases excessive 
cellular stress, mitochondrial dysfunction, apoptosis, and 
neuronal degeneration, which is the major cause of motor 
dysfunction including PD [58]. Therefore, there is a link 
between GSK-3β and the Nrf2/HO-1 signaling pathway in 
PD [58]. Over-expression of the GSK-3β and downregula-
tion of the Nrf2/ARE pathway are responsible for a decrease 
in anti-oxidant defense effects. These underline the useful-
ness of dual GSK-3β inhibitors/Nrf2 inducers. Thus, a dual 
modulator, the structures of a curcumin-based analogue, as 
GSK-3β inhibitor, and a diethyl fumarate fragment, as Nrf2 
inducer, could be effective in PD [59]. These preclinical and 
clinical findings proposed that over-expression of GSK-3β 
are linked with the pathogenesis of PD. Though, the mecha-
nisms by which GSK-3β promotes PD neuropathology are 
not well elucidated.

Mechanistic Role of GSK‑3β in PD

Mitochondrial Dysfunction and Oxidative Stress

Reactive oxygen species (ROS) are produced continuously 
by all body tissues that are eliminated by endogenous anti-
oxidant capacity [60–62]. When there is an imbalance 
between ROS generation and anti-oxidant capacity, oxida-
tive stress is developed [63]. The mitochondria are the major 
site for the generation of ROS which affect mitochondrial 
DNA leading to more ROS generation. It has been reported 
that oxidative stress plays a critical role in the degeneration 
of dopaminergic neurons in the SN [64]. Of note, dopamine 
turnover and environmental neurotoxins induce mitochon-
drial dysfunction which promotes the development and 
progression of oxidative stress [65]. Dopamine outside the 
synaptic vesicle undergoes auto-oxidation or is metabolized 
by monoamine oxidase (MAO) to form ROS which induces 
mitochondrial dysfunction [66]. Interestingly, mitochondrial 
dysfunction is highly related to augments ROS generation 
in PD [67]. Importantly, complex I deficiency of the res-
piratory chain is associated with the pathogenesis of PD 
[64]. In the experimental PD model, rotenone or MPTP can 
induce inhibition of mitochondrial complex I and reduce  
ATP formation with subsequent injury and degeneration of 
dopaminergic neurons in the SN [68]. In clinical settings, 
oxidative stress biomarkers were reported to be increased 
in PD patients compared to healthy controls [69]. Overall, 
these findings indicated that mitochondrial dysfunction and 
oxidative stress are closely related to PD neuropathology.
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On the other hand, GSK-3β is intricate in the patho-
genesis of PD through modulation of mitochondrial dys-
function and oxidative stress [70]. In vitro study dem-
onstrated that oxidative stress promotes the expression 
of GSK-3β which inhibits transcription of anti-oxidant 
Nrf2 leading to propagation of oxidative stress-induced 
neuronal injury [70]. Liu et al. [71] observed that inhibi-
tion of GSK-3β attenuates oxidative stress-induced kid-
ney injury in rats by upregulation of the Nrf2 signaling 
pathway. Likewise, insulin and IGF-1 inhibit oxidative 
stress in rat cortical neurons by reducing the expression 
of GSK-3β [72]. In vivo and in vitro studies confirmed 
that inhibition of GSK-3β attenuates the development 
and progression of mitochondrial dysfunction and oxi-
dative stress in mice with muscle dysfunction [73]. These 
verdicts proposed that GSK-3β over-activity induces the 
development of PD by triggering mitochondrial dysfunc-
tion and oxidative stress in the dopaminergic neurons of 
the SN (Fig. 3).

Inflammatory Signaling Pathways

It has been reported that different inflammatory signal-
ing such as nuclear factor kappa B (NF-κB) and nod-like 
receptor pyrin 3 (NLRP3) inflammasome are intricate 
in the pathogenesis of PD [4]. NF-κB is an inflammatory 
signaling protein that promotes the expression and release 
of chemokines and pro-inflammatory cytokines. NF-κB is 
involved in the regulation of cell differentiation, prolifera-
tion, apoptosis, and innate and adaptive immune response 
[74]. It has been reported that NF-κB can induce degenera-
tion of dopaminergic neurons in the SN [75]. Aging-induced 
immune dysregulation promotes NF-κB expression and 
associated degeneration of dopaminergic neurons in the SN 
[75].

Notoriously, released α-Syn from injured neurons trig-
gers NF-κB activation and expression of pro-inflammatory 
cytokines. In injured neuron triggers NF-κB activation, and 
induces further degeneration of dopaminergic neurons in the 

Fig. 3   Role of GSK-3β in PD: oxidative stress is a central mechanism 
intricate in the pathogenesis of PD. Dopamine metabolism and mito-
chondrial dysfunction induce formation of reactive oxygen species 
(ROS) which causes oxidative stress. Beside, impairment of protein 

degradation pathway promotes oxidative stress. Activated microglia 
and GSK-3β accelerate oxidative stress by inhibiting the expression 
of anti-oxidant proteins such as nuclear factor-related erythroid factor 
(Nrf2) with inhibition of anti-oxidant response element (ARE)
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SN [75]. Besides, exaggerated GSK-3β signaling activates 
the expression of NF-κB as confirmed in an in vitro study 
[76]. In an experimental study, inhibition of GSK-3β by 
selective inhibitors decrease NF-κB activation in rats [77].

Furthermore, NLRP3 inflammasome is a multiprotein 
complex involved in the release of IL-1β and IL-18 via 
caspase activation [78]. NLRP3 inflammasome is activated 
by various stimuli in conical and non-conical pathways. 
NLRP3 inflammasome is regarded as a metabolic sensor 
detects inflammatory and oxidative stress injury [78]. Dif-
ferent studies revealed that activated NLRP3 inflammasome 
signaling pathway triggers the release of pro-inflammatory 
cytokines, development of neuroinflammation, and degen-
eration of dopaminergic neurons in the SN [79, 80]. Fur-
thermore, NLRP3 inflammasome-induced pyroptosis could 
be the potential mechanism for the development of PD. 
Indeed, NLRP3 inflammasome interacts with α-Syn lead-
ing to progressive neuronal degeneration. Therefore, NLRP3 
inflammasome level is correlated with α-Syn level in PD 

patients [81]. It has been shown that GSK-3β triggers the 
expression of NLRP3 inflammasome leading to pyroptosis 
[82]. Besides, GSK-3β via inhibition of the Nrf2 signaling 
pathway promotes oxidative stress which enhances activa-
tion of NLRP3 inflammasome [83].

Therefore, NF-κB and NLRP3 inflammasome are acti-
vated in response to over-activated GSK-3β in PD leading 
to progressive neuronal injury (Fig. 4).

Neuroinflammation

Neuroinflammation is an immune response of the CNS to 
exogenous infectious agents or endogenous stress stimuli 
as in many neurological disorders such as neurodegenera-
tive diseases [84]. Microglia and astrocytes are intricate 
in the development of neuroinflammation; nevertheless, 
peripheral immune cells which traverse injured BBB can 
involve the development of neuroinflammation in chronic 
inflammatory disorders [85]. Neuroinflammation in the 

Fig. 4   Inflammatory signaling pathways and GSK-3β in PD: GSK-3β 
triggers the interaction between pathogen‐associated molecular pat-
tern molecules (PAMP) and damage-associated molecular pattern 
(DAMP) with toll-like receptor 4 (TLR4) which promote NF-κB 

which induce the expression of NLRP3 inflammasome leading to 
the release of pro-inflammatory cytokines. GSK-3β via activation of 
TLR2 and p2 × 7 also induce the expression of NLRP3 inflammasome
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acute phase is defended to eradicate the underlying cause; 
however, chronic neuroinflammation may induce neuronal 
injury, synaptic dysfunction, and exacerbation of brain neu-
ropathology [86]. Different genetic and epidemiological 
studies confirmed the potential role of neuroinflammation 
in PD neuropathology [48]. Postmortem study revealed that 
microglia and T cells are highly concentrated in the SN 
of PD brains due to dysregulation of innate and adaptive 
immune responses [87]. Evidence from preclinical studies 
showed that neuroinflammation is correlated with progres-
sive degeneration of dopaminergic neurons in the SN [88]. 
Findings from postmortem analysis illustrated that levels 
of pro-inflammatory cytokines in the CSF were increased 
in PD patients compared to healthy controls [88]. Pro-
inflammatory cytokines activate inflammatory signaling 
pathways leading to oxidative stress injury of dopaminergic 
neurons in the SN [88]. Remarkably, Th1 and Th17 enhance 
MPTP-mediated injury of dopaminergic neurons in the SN 
[89]. As well, neuroinflammatory biomarkers are increased 
in PD patients compared to healthy controls [90]. Besides, 
many studies highlighted that GSK-3β promotes the pro-
gression of neuroinflammation by inducing the expression 
of inflammatory signaling pathways and pro-inflammatory 
cytokines [43, 91]. Furthermore, different preclinical studies 
confirmed that inhibition of GSK-3β leads to attenuation of 
neuroinflammation in different neurodegenerative disorders 
including PD [92, 93]. For example, Lee et al. [94] revealed 
that inhibition of GSK-3β by specific peptide attenuates 
nigrostriatal neurodegeneration in rat PD models. These 
findings proposed that GSK-3β plays a crucial role in the 
development and progression of neuroinflammation in PD.

Brain‑Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) is a member of 
the neurotrophin protein family concerned in the resistance 
toward neuronal injury [95]. BDNF acts on tyrosine kinase 
receptor B (TrkB) and p75NT receptor (p75NTR) [92]. 
BDNF is released from specific brain regions including the 
hypothalamus, hippocampus, and limbic system [96–98]. It 
has been shown that BDNF serum level is reduced in PD 
patients compared to healthy controls [99]. However, in 
advanced stages of PD neuropathology BDNF serum level 
is increased as a compensatory mechanism to mitigate oxi-
dative and inflammatory disorders [99]. Chang et al. [100] 
confirmed that activation of BDNF signaling reduces motor 
deficit and cognitive dysfunction in the mouse PD model. 
Improvement of BDNF signaling by anti-depressants pro-
motes cognitive and motor functions in PD patients [101].

In relation to GSK-3β, BDNF inhibits GSK-3β activity by 
increasing PI3K in neural stem cells [102]. Likewise, BDNF 
attenuates phencyclidine-induced apoptosis via activation of 
PI3K and inhibition of GSK-3β in cultured cortico-striatal 

neurons [103]. Of note, GSK-3β-induced neuropsychiatric 
disorders are mediated by inhibition of BDNF signaling 
[104]. These findings proposed a reciprocal relationship 
between BDNF and GSK-3β. Therefore, higher expression 
of GSK-3β in the early stages of PD neuropathology might 
contribute in the reduction of BDNF leading to progressive 
neuronal injury.

GSK‑3β Inhibitors in PD

GSK-3β is a central point in a number of signaling path-
ways in the pathogenesis of this neurodegenerative dis-
ease, affecting multiple pathological events involved in 
dopaminergic neuron degeneration, thus providing a 
potential target in the therapeutic management by block-
ing the pathogenic pathways involved in PD pathogenesis. 
GSK-3 inhibition has been considered a potential thera-
peutic strategy for PD treatment [12]. In the last decades 
the scientific community has been working to understand 
the role of GSK-3 with the aim in mind of design effi-
cient and selectivity GSK-3 inhibitors. However, so far 
clinical and preclinical GSK-3 inhibitors have been both 
sub-optimal regarding potency, poor GSK-3β selectivity 
over other CNS targets and closely related kinases, low 
CNS exposure, and chronic toxicity. Research into GSK-3β 
inhibitors relay primarily on identification of the new use 
of the known GSK-3β inhibitors and the development of 
them in order to improve selectivity and toxicity. Many 
efforts have been done for using of GSK-3β inhibitors in 
the management of neurodegenerative diseases includ-
ing PD [105]. GSK-3β inhibitors are categorized into 4 
classes according to Ruiz et al. [106]: (I) cationic GSK-3β 
inhibitors including lithium, copper, and zinc; (II) ATP 
blockers which inhibit ATP binding kinase such as syn-
thetic organic molecules; (III) allosteric inhibitors; and 
(IV) substrate competitive inhibitors. However, synthetic 
GSK-3β inhibitors are non-specific that may inhibit other 
kinases. In addition, drug resistance is higher among 
GSK-3β inhibitors due to the mutation of ATP binding 
sites of GSK-3β [107]. Most of the clinical trials for the 
use and safety of GSK-3β inhibitors were conflicting and 
did not reach Phase III [108]. Since GSK-3β has a critical 
role in metabolism, insulin signaling, protein regulation, 
and inflammation, GSK-3β inhibition is regarded as an 
attractive target for therapeutic intervention in metabolic 
and neurodegenerative diseases [105]. Though, the design 
of specific inhibitors of intracellular kinases including 
GSK-3β is very difficult because the kinase families share 
conserved ATP-binding sites, and consequently, currently 
developed kinase inhibitors have mostly off-target effects 
[109]. Since GSK-3β is a constitutively active kinase, 
extreme GSK-3β inhibition could have adverse effects by 
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disrupting its physiological roles. For example, SB216763, 
a well-known GSK-3β inhibitor, was effective in attenu-
ating Aβ-induced neurotoxicity in an AD model, but it 
induced neuronal death, gliosis, and behavioral deficits 
in control animals [110]. Thus, it would be important to 
design a GSK-3β inhibitor to selectively inhibit the activ-
ity of the kinase when it is excessively activated in a path-
ological condition without affecting its physiological roles 
in normal condition.

Additional significant challenge to overcome for a GSK-3β 
inhibitors to be converted in an effective drug for PD treat-
ment is its specific brain distribution. The drug needs to cross 
the BBB to exert its action in the regulation of exacerbated 
GSK-3β brain levels. Usually this is not an easy task for 
GSK-3β inhibitors when oral bioavailability is the preferred 
administration route for chronic PD treatment. It is very dif-
ficult to balance the equilibrium between molecular lipophi-
licity to enter into the brain and molecular hydrophilicity to 
be orally administrated. That reason has ruled out several 
promising GSK-3β inhibitors into the market. Determina-
tion of potential brain penetration should be incorporated in 
the first stages of GSK-3β inhibitor development. Therefore, 
GSK-3β inhibitors which cannot cross BBB have limited effi-
cacy in the management of neurodegenerative diseases [111]. 
Despite these findings, different GSK-3β inhibitors reached 
the market for the treatment of different diseases.

Interestingly, clinical side effects of GSK-3β inhibitors 
are rather scarce since a limited number of GSK-3β inhibi-
tors have reached the clinical phase [112]. GSK-3β may lead 
to hyperglycemia by inhibiting the conversion of glucose to 
glycogen via inhibition of glycogen synthase [113]. This 
function is modulated by insulin which activates glycogen 
synthase and inhibits GSK-3β activity by about 50% [72]. 
Furthermore, GSK-3β inhibitors are of distinct chemical 
structures and thus differ in their bio-clinical and pharma-
cological properties. Thus, it is difficult to decide at this 
point what adverse events will be commonly associated 
with inhibition of GSK-3β inhibitors [112]. Lithium is the 
only GSK-3β inhibitor that has been in clinical use for a 
significant time. Though, lithium lacks target specificity, and 
its adverse side effects and high toxicity do not necessarily 
reflect events linked with inhibition of GSK-3β [114]. AZD-
1080 and NP-12/Tideglusib (Noscria) reached the clinic 
in 2006. AZD-1080 was withdrawn due to nephrotoxicity 
observed in phase I clinical trials [115]. NP-12 in phase IIb 
trials for AD and paralysis supranuclear palsy and no side 
effects/off targets effects have been described at this time 
[116]. Their discrete chemical structures and/or different 
inhibition mode are most likely responsible for the different 
clinical impacts observed with these two compounds [115, 
116]. Results from TAURUS and ARGO studies will dis-
close the safety and efficacy of tideglusib in humans [117]. 
In the meantime, an increasing number of GSK-3β inhibitors 

are being tested in preclinical models, and it is anticipated 
that some will enter clinical trials [118].

Of note, concerns had been raised regarding the potential 
toxicity of GSK-3β inhibitors ranging from hypoglycemia 
to tumorigenesis and neuron deregulation [119]. GSK-3β 
is vital for life, and there is a disquiet that its inhibition 
could prevent cells from functioning normally. However, 
GSK-3β activity is elevated in pathological conditions; 
thus, a smooth inhibition of GSK-3 able to restore down 
levels of activity to physiological ones would be enough to 
produce an important therapeutic effects in diseases, being 
that point crucial for not producing adverse effects. There-
fore, GSK-3β inhibitors increase insulin sensitivity and may 
increase cell proliferation via Wnt signaling-dependent path-
way [119]. In addition, the interaction of Wnt/β-catenin due 
to GSK-3β inhibition promotes oncogene transcription and 
increases the risk of malignancy [120]. Activation of the 
proto-oncogenic molecule β-catenin by inhibition of GSK-3 
is another major concern claiming that long-term inhibition 
of GSK-3β may promote cancer. However, no direct in vivo 
evidence has indicated tumorigenesis upon administration 
of GSK-3β inhibitors. On the contrary, in certain cancers 
GSK-3β inhibitors reduced cell proliferation and enhanced 
cell death upon irradiation treatment [120].

However, GSK-3β inhibitor lithium which was used for 
a long time in the management of bipolar disorders was not 
associated with hypoglycemia and malignancies [121]. Lith-
ium inhibits 25% of GSK-3β without effect on Wnt/β-catenin 
signaling which increases cell proliferation [121].

Therefore, repurposing of other drugs with well-known 
pharmacokinetic/pharmacodynamic profiles that have inhib-
itory effects on GSK-3β seems to be more appropriate in the 
management of PD.

Lithium

Lithium is a chemical element present as pegmatic mineral. 
Lithium salts are widely used in the management of various 
neurological disorders including mania, bipolar disorders, 
AD, and schizophrenia [122]. It was approved by FDA in 
1970 for use in the management of bipolar disorders. Lith-
ium was first used in the nineteenth century for the treatment 
of gout [123]. In 1949, lithium was re-introduced in treating 
mania and other bipolar disorders [123]. The main mecha-
nism of action of lithium is related to increasing serotonin 
synthesis and inhibits the synthesis of norepinephrine [124]. 
The fundamental mechanism of lithium is through inhibition 
of inositol monophosphatase which is required for conver-
sion of inositol monophosphate to inositol which is impli-
cated in the pathogenesis of bipolar disorders [124]. As well, 
lithium blocks GSK-3β directly or indirectly via inhibition 
of the mechanistic target of rapamycin (mTOR) which is a 
necessary downstream signaling of GSK-3β [121]. In mania, 
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GSK-3β activity is augmented by the over-activity of dopa-
mine signaling, leading to inhibition of both cAMP-response 
element binding protein (CREB) and β-catenin. Further-
more, lithium inhibits both NO signaling and NMDA recep-
tors [125]. Different preclinical studies revealed that lithium 
can inhibit GSK-3β and prevents the accumulation of tau 
protein in AD mouse model [126]. As well, lithium attenu-
ates MPTP-induced dopaminergic neuronal injury in PD 
mouse model [127]. The underlying neuroprotective effect 
of lithium, in PD, is related to the inhibition of GSK-3β and 
oxidative and activation of neuroprotective BDNF [127]. In 
virtue of its anti-oxidant and neuroprotective effects, lithium 
seems to be effective in PD. However, due to its relative 
toxicity and wide-spectrum adverse effects, a large dose of 
lithium is not appropriate monotherapy in the management 
of PD. Thus, low non-toxic dose of lithium in combination 
with other anti-PD agents seems more effective. Of note, 
only one ongoing trial using lithium in PD illustrated that 
medium-dose lithium improves disease progression meas-
ured by brain MRI, but it is poorly tolerated by 33% of PD 
patients [128]. Further PD clinical research is merited exam-
ining lithium’s tolerability; effects on biomarkers and poten-
tial disease-modifying effects are recommended.

Famotidine

Famotidine is an H2 blocker used in the management of 
peptic ulcers and gastroesophageal reflux disease. It was pat-
ented in 1979 and become available in the market in 1985. 
Famotidine is a rapid-acting drug with minimal adverse 
effects, though a large therapeutic dose of it may cause sei-
zures [129, 130]. It has been shown that famotidine has a 
neuroprotective effect by inhibiting GSK-3β expression in 
MK-801-induced toxicity in SH-SY5Y cell line [131]. In 
addition, famotidine attenuates ketamine-induced schizo-
phrenic behavior in rats by inhibiting GSK-3β [132]. A pre-
vious pilot study on 7 PD patients revealed that daily intake 
of 80 mg/day of famotidine for 6 weeks improve motor 
[133]. Of interest, famotidine enhances the therapeutic effi-
cacy of levodopa and improves non-motor symptoms in PD 
patients [134]. However, famotidine has no clinical benefit 
against the development of levodopa-induced dyskinesia 
[135].

Naproxen

Naproxen is an analgesic and anti-inflammatory drug 
belonging to the non-steroidal anti-inflammatory drug 
(NSAID). It acts by reversible inhibition of cyclooxygenase 
enzymes (COXs), i.e., non-selective COX inhibitors [136]. 
It has been reported by preclinical investigations that nap-
roxen has anti-diabetic effects by inhibiting GSK-3β activity 
[137]. Furthermore, naproxen attenuates carcinogenesis by 

inhibiting GSK-3β and modulation of Wnt/β-catenin sign-
aling [137]. As well, naproxen has an anti-cancer effect via 
inhibition of GSK-3β [138]. In general, NSAIDs have neu-
roprotective effects against PD neuropathology by inhibit-
ing neuroinflammation and abnormal immune response. In 
addition, non-selective COX inhibitor ibuprofen also has 
a chemo-preventive efficacy against cancer by inhibiting 
GSK-3β and modulating Wnt/β-catenin signaling [139]. 
Notably, ibuprofen was reported to be effective in the man-
agement of PD [140]. Therefore, NSAIDs with inhibitory 
effects on GSK-3β could be effective in the management 
of PD.

Metformin

Metformin is an insulin-sensitizing drug used as first-line 
therapy in the management of type 2 diabetes (T2D) [141]. 
Metformin has pleiotropic effects through modulation of 
inflammation and oxidative stress [141]. A recent study 
conducted by Alrouji et al. [142] suggested that metformin 
has a double-sword effect against PD neuropathology. The 
neuroprotective effect of metformin against PD is through 
inhibition of inflammation and oxidative stress. However, its 
detrimental effect is related to the development of B12 defi-
ciency and hyperhomocysteinemia [142]. Nevertheless, pro-
longed use of metformin seems to be protective rather than 
harmful [143]. On the other hand, metformin has a cyto-
protective effect by inhibiting the expression and activity of 
GSK-3β in non-small-cell lung cancer [144]. Similarly, met-
formin attenuates mitochondrial dysfunction and associated 
oxidative stress by inhibiting GSK-3β in preosteoblast [145]. 
Metformin acts by activating AMPK [146] and AMPK acti-
vators have been observed to protect dopaminergic neurons 
in the SN [147]. It has been shown that AMPK activator 
GSK621 attenuates MPTP mouse PD model. AMPK activa-
tor GSK621 dramatically ameliorated PD by increasing the 
levels of dopamine and rescuing the loss of dopaminergic 
neurons, which is dependent on the mitochondrial pathway. 
Regulation of AMPK/GSK-3β/PP2A pathway-related pro-
teins by GSK621 was partially inhibited the development of 
PD, suggesting that a negative feedback loop exists between 
AMPK action and mitochondrial dysfunction-mediated 
apoptosis. Therefore, mitochondrial dysfunction and apopto-
sis in the pathogenesis of PD might be mediated by AMPK/
GSK-3β/PP2A pathway action, which might be a promising 
new option for future therapy of PD [147]. Moreover, fla-
vonoid dihydromyricetin has a potent anti-oxidative agent 
against MPTP-induced behavioral impairment in mice by 
inhibiting GSK-3β through AMPK-dependent pathway 
[148].

Therefore, the neuroprotective effect of metformin against 
PD may be mediated by inhibiting GSK-3β.
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Tideglusib

Tideglusib is a small molecule that inhibits GSK-3β irre-
versibly. It is regarded as a non-ATP competitive inhibitor 
of GSK-3β used in different neurodegenerative diseases 
[107]. Tideglusib has a neuroprotective effect against MPTP-
induced dopaminergic injury in mice in a dose-dependent 
manner via inhibition of GSK-3β [46]. Likewise, tideglusib 
attenuates 6-OHDA and lipopolysaccharide (LPS) PD 
animal model by inhibiting GSK-3β in the dopaminergic 
neurons of the SN [149]. Furthermore, tideglusib reduces 
oxidative stress in the dopaminergic neurons of the SN by 
inducing the expression of anti-oxidant enzymes [150]. In 
addition, tideglusib can decrease the risk of progressive 
dopaminergic neurodegeneration induced by neuroinflam-
mation which is augmented in response to GSK-3β [151]. 
Therefore, tideglusib seems to be effective in PD. In addi-
tion, tideglusib has also shown acceptable safety and was 
well tolerated in several chronic clinical trials regarding dif-
ferent neurological diseases [152–157]. However, tideglusib 
failed in a Phase II clinical trial of AD due to no clinical 
benefits in cognitive improvement despite its neuroprotec-
tion in preclinical AD models [155]. Therefore, intervention 
at an earlier disease stage, longer duration of treatment, and 
better dosing of tideglusib should be taken into account for 
future clinical trials that should also be considered in clinical 
trials for PD, which may possibly be confronted with similar 
problems.

Taken together, GSK-3β inhibitors could be effective in 
PD by reducing inflammatory and oxidative stress disorders 
which are associated with degeneration of dopaminergic 
neurodegeneration.

Future Research and Perspective

Most of the recently developed GSK-3β inhibitors fall into 
the ATP competitive inhibitors which are characterized 
by good safety and low specificity but tend to induce drug 
resistance. Although their discovery is more challenging, 
compounds that recognize other regions of the kinase are 
considered a favorable choice as the target is more con-
served. Therefore, GSK-3β inhibitors mainly lithium and 
tideglusib could be effective as adjuvant treatments in the 
management of PD by reducing neuroinflammation and 
degeneration of dopaminergic neurons in the SN [106]. A 
combination of lithium plus L-DOPA could be a substantial 
combination in the management of PD. It has been reported 
that lithium in combination with L-DOPA play not only as a 
neuroprotectant, but also for reducing abnormal involuntary 
movements and possibly alleviating potential side effects 
associated with the current treatment for PD [158]. However, 
chronic lithium use is associated with an increased incidence 

of dopaminergic drug use compared with anti-depressants, 
identifying a prescribing cascade related to lithium use in 
the elderly. Whether this reflects inappropriate treatment of 
action tremor or treatment of drug-induced Parkinsonism 
should be evaluated by a close examination of prescribing 
practices [159]. Moreover, lithium has hypoglycemic effect 
and improves the function of pancreatic β cells through inhi-
bition of GSK-3β [160]. Likewise, anti-diabetic metformin 
which has an inhibitory effect on GSK-3β [147] may reduce 
PD neuropathology. Thus, GSK-3β inhibitors could be more 
effective in PD with associated comorbidities such T2D and 
psychiatric disorders.

Therefore, selective use of GSK-3β inhibitors with good 
efficacy and high safety in combination with anti-PD medi-
cations might be a novel therapeutic strategy in the manage-
ment of PD.

Conclusions

PD is a progressive neurodegenerative disease of the brain 
may be linked with over-activation of GSK-3β which is a 
conserved threonine/serine kinase protein involved in the 
regulation of cellular anabolic and catabolic pathways. Over-
expression of GSK-3β is also linked with the development 
of neurodegenerative diseases such as AD, ALS, and MS. 
NF-κB and NLRP3 inflammasome are activated in response 
to dysregulated GSK-3β in PD leading to progressive neu-
ronal injury. Higher expression of GSK-3β in the early stages 
of PD neuropathology might contribute to the reduction of 
neuroprotective BDNF. Thus, GSK-3β inhibitors could be 
effective in PD by reducing inflammatory and oxidative 
stress disorders which are associated with dopaminergic 
neurodegeneration. Furthermore, preclinical and large-scale 
prospective studies are warranted in this regard.
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