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Key Points

• Venetoclax resistance
involves reduced
mitochondrial priming
and changes in BCL-2
family protein
expression.

• Venetoclax-resistant
cells retain sensitivity to
immunotherapeutic
treatments.
To our knowledge, venetoclax is the first example of personalized medicine for multiple

myeloma (MM), with meaningful clinical activity as a monotherapy and in combination in

patients with myeloma harboring the t(11:14) translocation. However, despite the high

response rates and prolonged progression-free survival, a significant proportion of patients

eventually relapse. Here, we aim to study adaptive molecular responses after the

acquisition of venetoclax resistance in sensitive t(11:14) MM cell models. We therefore

generated single-cell venetoclax-resistant t(11:14) MM cell lines and investigated the

mechanisms contributing to resistance as well as the cells’ sensitivity to other treatments.

Our data suggest that acquired resistance to venetoclax is characterized by reduced

mitochondrial priming and changes in B-cell lymphoma-2 (BCL-2) family proteins’

expression in MM cells, conferring broad resistance to standard-of-care antimyeloma

drugs. However, our results show that the resistant cells are still sensitive to

immunotherapeutic treatments, highlighting the need to consider appropriate sequencing

of these treatments after venetoclax-based regimens.

Introduction

The B-cell lymphoma-2 (BCL-2) family of proteins forms the crux of the mitochondrial apoptotic
pathway. The dynamic interplay between antiapoptotic members and proapoptotic ligands is integral to
controlling the apoptotic threshold of cells, and changes in this balance are frequently responsible for
the evasion of apoptosis observed in cancer.1

Venetoclax binds competitively to the BCL2 homology 3 (BH3) domain of BCL2, restricting BCL2 from
sequestering and inactivating proapoptotic proteins, leading to apoptotic cell death.2-4 Venetoclax
paved the way for a biomarker-driven intervention in multiple myeloma (MM) based on its meaningful
clinical activity as a monotherapy or in combination with other agents in patients with t(11;14)-positive
relapsed/refractory MM.5-12 Several studies have attempted to understand the biology underlying this
drug sensitivity, showing that numerous intrinsic and extrinsic factors contribute to the therapeutic
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Figure 1. Development of t(11:14) venetoclax-resistant

clones from single cells. (A) A panel of t(11:14) MM cell

lines were treated with several doses of venetoclax for 72

hours. Cell viability was assessed by CellTiter-Glo (CTG)

and IC50 was calculated using GraphPad prism. (B) Schema

of development of DTEP/resistant clones. (C) Cell viability

was evaluated using CTG after 72 hours of treatment with

venetoclax in parental cells and clones and represented as

percentage of viable cells compared with each untreated

control. IC50 is also shown.
response in t(11:14) MM cells. This subgroup of patients generally
displays upregulated BCL-2 expression and higher BCL2/BCL2L1
and BCL2/myeloid cell leukemia-1 (MCL1) ratios.13,14 Moreover,
other predictive factors, such as a B-cell–like epigenetic signature
and energy metabolism, were identified as potential influencers of
the response to venetoclax, even in the absence of t(11;14).14-16

Nonetheless, venetoclax is not universally effective across all
patients with t(11;14), and resistance may manifest either de novo
or during the progression of the disease, ultimately resulting in
relapse. For instance, the occurrence of resistance to venetoclax in
individuals with t(11;14) MM has been associated with the acqui-
sition of canonical plasma cell transcription factors, along with copy
number gains in MCL1 and BCL2L1, as well as structural
rearrangements.12

In the BELLINI study, despite the significant improvement in
progression-free survival in patients with t(11;14) compared with
patients without the translocation and/or low BCL2 expression, a lack
of improvement in overall survival with venetoclax was observed.7

Ongoing research is therefore crucial to address resistance issues
and refine the optimal treatment timing and strategies. In a retro-
spective analysis by the Emory group, 32 patients who progressed
on venetoclax were treated with the next line of therapy.17 The
analysis suggests the benefits of using venetoclax earlier; however,
the small sample size and the treatment heterogeneity indicate the
need for additional studies to refine optimal treatment strategies.

Here, we aim to study adaptive molecular responses after acqui-
sition of venetoclax resistance in t(11;14) MM cell models and
4026 DENG et al
investigate whether acquired venetoclax resistance could lead to
global resistance to multiple subsequent anti-MM therapies, which
in turn can explain the lack of overall survival benefit observed in the
venetoclax-treated arm. We report that although standard-of-care
agents, regardless of the mechanism of action, demonstrated a
reduced ability to induce cell death in venetoclax-resistant cells,
cytotoxicity was still observed with immunotherapeutic approaches.

Methods

Development of DTEP cells

Resistant clones were developed from the KMS12PE and KMS27
cell lines as previously described,18 with some changes. Briefly, a
total of 1000 cells were plated in 96-well plates (1 cell per well)
and continuously treated with 10× half maximal inhibitory con-
centration (IC50) of venetoclax. After 2 weeks of exposure, drug-
tolerant expanded persister (DTEP) single-cell clones were
selected and expanded. The DTEP clones were maintained in 100
nM venetoclax for 2 months. Parental and resistant clones were
authenticated by Short Tandem Repeat (STR) analysis.

BH3 profiling

Cells were permeabilized with digitonin and exposed to BH3
peptides. Mitochondrial transmembrane potential loss was moni-
tored using the JC-1 dye.

Cell viability assay

Cell viability was assessed using CellTiter-Glo Luminescent Cell
Viability Assay (no. G7572; Promega).
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Figure 2. Increased expression of antiapoptotic proteins characterizes the acquisition of venetoclax resistance. (A-B) Western Blot (WB) analysis of BCL-2, MCL-1,

BCL-XL, and BCL-W in parental cells and clones of KMS12PE model (A) and KMS27 model (B). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading

control. Protein expression densitometry values were calculated using ImageJ. Ratios of BCL-2 vs other antiapoptotic proteins in parental and resistant clones are also illustrated.

Error bars represent the standard deviation (SD) of at least duplicate results. (C) Immunoprecipitation (IP) for BIM in parental cells and clones 12A and 12D of KMS12PE model,

followed by western blot for BIM, BCL2, MCL-1, BCL-W, and BCL-XL. GAPDH was used as a loading control. (D) IP for BIM in parental cells and clone 27B of KMS27 model.

(E-H) BH3 profiling was performed on parental cells and resistant cells using a plate-based BH3 profiling assay and several doses of indicated peptides. Each experiment was

performed in triplicate. The heat map for panels E,G represents mean of % depolarization from 1 experiment performed in triplicate in all indicated cells. The bar graph for panels

F,H represents percentage of depolarization in parental and representative clones (clone 12A in panel F and clone 27B in panel H). Two-way analysis of variance (ANOVA) test

was used to calculate statistical significance. *P ≤ .05; **P ≤ .01; ***P ≤ .001; ****P ≤ .0001. BAD, BCL2 and BCL-XL dependency; HRK, BCL-XL dependency; MS1, MCL1

dependency; PUMA/BIM, promiscuous peptides.
B-cell maturation antigen (BCMA) chimeric antigen

receptor (CAR) T-cell killing

A second-generation anti-BCMA CAR construct containing an
anti-BCMA single-chain variable fragment was custom made at
GenScript. CAR-T cell cytotoxic activity was assessed by lactate
dehydrogenase (LDH) release using an LDH-Glo Cytotoxicity
Assay kit (Promega).
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Antibody-dependent cellular cytotoxicity (ADCC)

MM cells were stained with calcein AM (Invitrogen) and incu-
bated with or without daratumumab (1 μg/mL). NK effector cells
were added at different effector-to-target cell ratios. After a 3-
hour incubation, the calcein released in the supernatant by
dying tumor cells was measured using a fluorescence plate
reader.
OVERCOMING VENETOCLAX RESISTANCE BY IMMUNOTHERAPY 4027
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Figure 3. Dual targeting of BCL2 antiapoptotic members synergistically inhibits cell proliferation of venetoclax-resistant cells. (A) Parental cells and venetoclax-

resistant clones were treated with increasing doses of MCL-1 inhibitors (S63845 and AZD5991) for 48 hours. Cell viability was evaluated using CTG and it is expressed as a

percentage of cell viability from untreated cells. IC50 values are also shown. (B-C) Venetoclax-resistant clones (KMS12PE clone 12A and KMS27 clone 27B) were treated for 24

hours with a combination of venetoclax and MCL1 inhibitor, S63845 (B), or BCL-XL inhibitor, A-1155463 (C). Cell viability was assessed by CTG assay and represented as

percentage of cell viability compared with each untreated control. Two-way ANOVA test was used to calculate statistical significance compared to venetoclax single agent. Data

represent mean ± SD; n = 3. (D) Synergism analysis was performed with the CalcuSyn software. Combination index (CI) is represented in the heat map. CI = 1 additive, CI < 1
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Written informed consent was obtained from the participant
included in the study, in accordance with the Declaration of
Helsinki.

Results

Acquired resistance to venetoclax in t(11;14) MM

models is characterized by reduced mitochondrial

priming and changes in BCL2-family protein

expression

We modeled in vitro the development of an acquired venetoclax-
tolerant/resistant phenotype in MM cells. We exposed t(11;14)
venetoclax-sensitive myeloma cell lines (KMS12PE and KMS27) to
high-dose venetoclax treatment and generated monoclonal DTEP
clones from single cells (4-5 single cell clones for each cell line)
(Figure 1A-B), characterized by threefold to 10-fold increase in
IC50 compared with that in the parental cells (Figure 1C).

To determine whether venetoclax resistance in DTEP clones is
mediated by genomic or transcriptional adaptation, we conducted
whole-genome sequencing and RNA-seq analysis of the clones
and compared them with the parental cell line. Parental and
resistant cells did not show any shared difference in mutational
frequency or copy number variation, including alterations in the
BCL-2 gene, such as the Gly101Val mutation,19 1q21 gain, or 8p
loss (supplemental Figure 1A-B).20 Moreover, each resistant clone
had a unique transcriptomic signature with minimal overlap with the
others’ (supplemental Figure 1C-D). Without any large differences
to explain resistance, we hypothesized that it develops from alter-
ations in the apoptosis pathway.

Antiapoptotic members of the BCL-2 family all perform a similar
function, sequestering proapoptotic ligands. Targeting one can
result in increased expression of other antiapoptotic members as a
compensatory measure.21,22 We therefore evaluated the expres-
sion of proapoptotic (BIM, BID, BAD, PUMA, and NOXA), anti-
apoptotic (BCL2, MCL1, BCL-W, and BCL-XL), or pore-forming
effectors (BAX and BAK) at the RNA and protein level. Although
we did not detect consistent and statistically significant alterations
in gene expression (supplemental Figure 1E-F), at the protein level,
we observed a significant upregulation of antiapoptotic members
across all clones in both cellular models, leading to an overall
reduction in the BCL-2 ratio, particularly significant for MCL1
(Figure 2A-B). Furthermore, we observed increased binding and
sequestration of BIM by MCL-1 in resistant clones than in parental
cells (Figure 2C-D), including in the KMS27 cells, where the
expression of BIM isoforms was detected. Because the down-
regulation of proapoptotic members is associated with the devel-
opment of resistance to venetoclax,12,23,24 we evaluated their
protein expression in our 2 cellular models. Among all proapoptotic
members, PUMA was significantly downregulated in all the clones
tested, suggesting a potential involvement of PUMA loss in the
acquisition of venetoclax resistance (supplemental Figure 2).
Figure 3 (continued) synergistic, and CI > 1 antagonistic. (E-G) Venetoclax-resistant clon

24 hours and apoptosis was measured by flow cytometry after annexin V and propidium iodi

bar graph in panels F-G represents the mean percentage of apoptosis (annexin V-positive c

SV500: S63845 100 nM + venetoclax 500 nM, AV100: A-1155463 100 nM + venetoclax 1

used to calculate statistical significance between combination treatment with venetoclax s
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To investigate how these differences affect apoptotic priming, we
performed baseline BH3 profiling. In both cellular models, resistant
clones exhibited a diminished response to the promiscuous pep-
tides compared with parental cells, suggesting reduced mito-
chondrial priming and impaired apoptotic sensitivity in the resistant
cells (Figure 2E-H).

In the KMS12PE model, comparable apoptotic responses were
observed in the presence of the BCL-XL-peptide HRK; moreover,
some resistant clones displayed heightened mitochondrial sensi-
tivity to the MCL1 peptide MS-1, whereas others predominantly
maintained rather than increased their mitochondrial sensitivity
(Figure 2E-F). In the KMS27 model, although no heightened
sensitivity to the MCL1 peptide was observed, there was a
discernible trend toward increased sensitivity to the BCL-XL pep-
tide, albeit not reaching statistical significance (Figure 2G-H).

Simultaneous inhibition of BCL2 antiapoptotic

members overcomes acquired venetoclax resistance

We explored the impact of heightened MCL1 expression in
fostering venetoclax resistance by using 2 different MCL1 antag-
onists. We noted a divergence in the response to MCL1 inhibition
among different clones, with some maintaining sensitivity and
others displaying increased resistance (Figure 3A). Next, resistant
clones were exposed to increasing concentrations of venetoclax in
the presence or absence of the MCL1 antagonist S63845.
Although single inhibition did not rescue the resistant phenotype,
combination with venetoclax synergistically inhibited MM cell
growth (Figure 3B), inducing apoptosis (Figure 3E-F; supplemental
Figure 3B). The synergistic interaction between the drugs was
determined by calculating combination index values, demonstrating
strong synergism (combination index <0.3) in the resistant cells
(Figure 3D). Interestingly, dual BCL2 and BCL-xL inhibition (ven-
etoclax plus A1155463) also resulted in synergistic activity
(Figure 3C-E,G) compared with single inhibition (supplemental
Figure 3A). Altogether, these data suggest that combined inhibi-
tion of BCL2 family members represents an effective strategy to
overcome venetoclax resistance. However, the detection of sig-
nificant toxicity with combination therapies observed in normal
peripheral blood mononuclear cells (data not shown) suggests an
unfavorable therapeutic index and the need for alternative thera-
peutic options.

Venetoclax-resistant clones displayed cross-

resistance toward standard antimyeloma agents

Triggering apoptosis is a crucial mechanism for numerous anti-
cancer agents. Consequently, we postulate that the diminished
sensitivity to apoptosis in venetoclax-resistant clones could similarly
affect their responsiveness to other chemotherapeutic agents, as
suggested in other studies.23-25 In fact, we observed that,
compared with parental cells, venetoclax-resistant clones displayed
cross-resistance toward most standard-of-care anti-MM agents,
including alkylating agents (melphalan and bendamustine),
e (KMS27 model) were treated with a combination of different BH3 mimetic drugs for

de staining. One representative experiment in resistant clones is shown in panel E. The

ells) from 2 independent experiments. SV100: S63845 100 nM + venetoclax 100 nM,

00 nM, AV500: A-1155463 100 nM + venetoclax 500 nM. Two-way ANOVA test was

ingle agent.
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Figure 5. Antibody-based and cellular immunotherapies are effective against venetoclax-resistant cells. (A) NK cell–mediated ADCC with or without daratumumab

(1 μg/mL) in venetoclax-resistant clones compared with parental cells (KMS12PE model). (B-C) KMS12PE (B) and KMS27 (C) parental and resistant clones were incubated with

either untransduced T cells or BCMA CAR-T cells for 4 hours at the effector-to-target ratio of 2:1 and 5:1. Killing was assessed by LDH release using LDH-Glo Cytotoxicity Assay

kit. The percentage of target cell cytotoxicity was calculated using 10% Triton X-100 as a control. Data represent mean of 3 experiments performed in triplicates. (D) BCMA CAR-

T cells were incubated with CD138+ primary cells isolated from a bone marrow aspirate of a patient with t(11;14) MM progressing on venetoclax. (E) Changes in the difference

between involved and uninvolved serum-free light chains (dFLC) and κ/λ FLC ratio (rFLC) of the patient with venetoclax resistance before and after CAR-T cell therapy.
proteasome inhibitors (bortezomib and carfilzomib), and dexa-
methasone (Figure 4; supplemental Figure 4A-B). We additionally
examined the impact of immunomodulatory drugs (lenalidomide
and pomalidomide) on both parental and resistant clones. Although
the parental cells exhibited intrinsic resistance to lenalidomide, we
demonstrated that, in the resistant clones, the IC50 was achieved at
an even higher dose (Figure 4B-D; supplemental Figure 4A-B).
Moreover, combinations of these agents (eg, bortezomib plus
dexamethasone or bortezomib plus lenalidomide) were also not
effective in the resistant clones (supplemental Figure 4C-D),
implying these therapies will not be as efficacious after the devel-
opment of venetoclax resistance.

Immunotherapeutic strategies successfully overcome

venetoclax resistance

Because immunotherapies do not rely exclusively on traditional
apoptotic signaling to mediate cell death, we further investigated
the efficacy of immunotherapeutic approaches to overcome ven-
etoclax resistance. Anti-CD38 antibody induced a similar extent of
13 AUGUST 2024 • VOLUME 8, NUMBER 15
antibody-mediated cellular cytotoxicity in both parental and resis-
tant clones (Figure 5A). Similarly, we observed comparable
cytotoxicity of BCMA CAR-T cells between parental and
venetoclax-resistant clones (Figure 5B-C). We further investigated
the ability of CAR-T cells to overcome venetoclax resistance ex vivo
in primary MM cells obtained from a patient with t(11;14) MM
progressing on venetoclax, carfilzomib, and dexamethasone com-
bination. We confirmed the ability of BCMA CAR-T cells to induce
significant cytotoxicity in vitro against these primary resistant MM
cells (Figure 5D). Importantly, the patient was subsequently treated
with the commercial cilta-cel product and achieved a complete
response in 2 months (Figure 5E), confirming the efficacy of BCMA
CAR-T cells in overcoming venetoclax resistance.
Discussion

Understanding and addressing the heterogeneity in mechanisms of
resistance is crucial for developing strategies to overcome or
prevent resistance to venetoclax, thereby enhancing the long-term
OVERCOMING VENETOCLAX RESISTANCE BY IMMUNOTHERAPY 4031



effectiveness of this targeted therapy in cancer treatment. Our
research aligns with a growing body of evidence indicating het-
erogeneity in the mechanisms involved in intrinsic and acquired
resistance to venetoclax. These include mutations in BCL2 or BAX,
upregulation of MCL1 due to chromosome 1 amplification or NF-
κB activation, and downregulation of PUMA or NOXA.19,23,26-31

We found that MCL1 and PUMA protein levels were recurrently
affected in all the clones with acquired resistance to venetoclax,
providing a potential molecular explanation for the reduction in
priming after the acquisition of resistance. However, despite its
substantial elevation in all resistant cell lines, MCL1 protein levels
did not serve as a distinguishing factor for responders to the MCL1
inhibitor. Indeed, we noted a divergence in the response to MCL1
inhibition among different clones, with some maintaining sensitivity
and others displaying increased resistance, consistent with recent
findings by Thomalla et al.23

Although the molecular mechanisms driving intrinsic and extrinsic
resistance appear to be distinct, an altered expression of the
antiapoptotic regulators MCL1 and BCL-XL in MM cells was a
common factor contributing to primary resistance to venetoclax in
MM cells, irrespective of the presence of t(11:14).14,32-36 Attacking
this mutual interplay through coinhibition of BCL-2 with MCL-1 or
BCL-XL demonstrated robust synergistic activity in preclinical
studies.22,26,37 In our investigation, we observed a synergistic
effect of venetoclax when combined with MCL1 or BCL-XL
antagonists, effectively impeding growth and inducing apoptosis
in resistant cells.

Importantly, we show that venetoclax resistance displayed cross-
resistance toward DNA-damaging drugs and other agents used in
MM therapy. The diminished effectiveness of most standard anti-
myeloma agents after venetoclax resistance acquisition indicates
that although venetoclax-specific mechanisms may be involved,
broad resistance to anticancer agents results from a general
selection for reduced apoptotic signaling. These data suggest using
venetoclax at a later stage of the disease, after conventional agents
are used. Therefore, further investigation in patients experiencing
progression while on venetoclax is warranted.

Notably, assessing drug sensitivity in resistant clones after ven-
etoclax discontinuation revealed the reacquisition of drug sensitivity
(data not shown). This suggests the possibility of implementing a
limited-duration or intermittent schedule for venetoclax therapy to
prevent the emergence of resistance and achieve remission in
patients.

Because resistance mechanisms to venetoclax involve regulators
of the intrinsic apoptotic pathway, therapeutic approaches not
relying exclusively on traditional apoptotic signaling to mediate cell
death, such as immunotherapies, have the potential to be effective
in the context of acquired resistance to venetoclax. Here, we
demonstrated that resistant cells remain sensitive to both antibody-
based and cellular immunotherapies. This was also confirmed
ex vivo in primary MM cells obtained from a patient with t(11;14)
MM progressing on venetoclax, carfilzomib, and dexamethasone
combination. Our data, implying the use of immunotherapies to
overcome venetoclax resistance, complement the promising early
results observed in patients with relapsed/refractory MM treated
4032 DENG et al
with a combination of daratumumab and venetoclax.9,38 Although
we acknowledge the importance of expanding the patient cohort
for a more exhaustive interpretation, our data still offer crucial
translational insights and may also be applicable to a non-t(11;14)
setting.

In conclusion, our results demonstrate continued sensitivity to
immunotherapeutic treatments despite the acquisition of resis-
tance to venetoclax in myeloma cells and highlight the need to
consider appropriate sequencing of these treatments after
venetoclax-based regimens.
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