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Fast prediction of personalized 
abdominal organ doses from CT 
examinations by radiomics 
feature‑based machine learning 
models
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The X-rays emitted during CT scans can increase solid cancer risks by damaging DNA, with the risk tied 
to patient-specific organ doses. This study aims to establish a new method to predict patient specific 
abdominal organ doses from CT examinations using minimized computational resources at a fast 
speed. The CT data of 247 abdominal patients were selected and exported to the auto-segmentation 
software named DeepViewer to generate abdominal regions of interest (ROIs). Radiomics feature 
were extracted based on the selected CT data and ROIs. Reference organ doses were obtained by 
GPU-based Monte Carlo simulations. The support vector regression (SVR) model was trained based 
on the radiomics features and reference organ doses to predict abdominal organ doses from CT 
examinations. The prediction performance of the SVR model was tested and verified by changing 
the abdominal patients of the train and test sets randomly. For the abdominal organs, the maximal 
difference between the reference and the predicted dose was less than 1 mGy. For the body and 
bowel, the organ doses were predicted with a percentage error of less than 5.2%, and the coefficient of 
determination (R2) reached up to 0.9. For the left kidney, right kidney, liver, and spinal cord, the mean 
absolute percentage error ranged from 5.1 to 8.9%, and the R2 values were more than 0.74. The SVR 
model could be trained to achieve accurate prediction of personalized abdominal organ doses in less 
than one second using a single CPU core.

Keywords  Abdominal CT scanning, Patient-specific modeling, Radiation dosage, Radiomics, Support vector 
regression

Abdominal diseases are hazards to people worldwide because they cause symptoms and complications in abdomi-
nal organs and tissues. According to the WHO’s Global Health Estimates liver diseases caused 1,312,480 (4.6%) 
of 28,444,814 deaths in the Asia-Pacific region1 Irritable bowel syndrome (IBS), gastroesophageal reflux disease 
(GERD), and functional dyspepsia account for 14% to 45% of the prevalence of functional gastrointestinal 
disorders, depending on diagnosis criteria or region2,3.  About 20% of people suffer from infectious intestinal 
diseases in the United Kingdom each year, and serious complications (i.e., dehydration, malabsorption, sepsis, 
etc.) could also happen for those people4. Besides, stomach tumors have a relatively high incidence and may cause 
deadly complications or even deaths. In 2020, the estimated new stomach cancer cases and deaths respectively 
were 1.03 million and 782,6855. Thus, it is necessary to diagnose abdominal diseases as early as possible to make 
treatments more effective and enhance patients’ quality of life.

Computed tomography (CT) is widely applied in diagnosing abdominal diseases because of its ability to 
provide slice-wise anatomical images of abdominal organs and tissues. CT imaging could detect various abdomi-
nal diseases including infections, traumas, inflammations, hemorrhages, etc. For general surgery, CT imaging 
almost detects 95% of ordinary abdominal disease cases6. In the emergency department, 50% to 60% of patients 
with abdominal pain get examined by CT7. The radiation exposure from such a huge amount of abdominal CT 
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imaging could be a risk factor that leads to secondary cancers in the long term. The data from the American 
Cancer Society (ACS) indicates a CT scan of the abdomen and pelvis makes a patient get as much as 10 mSv 
X-ray radiation8. This amount of radiation dose is almost equivalent to 3 years of natural background exposure. 
Australian retrospective research concluded that a 24% increase in overall cancer incidence was observed among 
those individuals who get exposed to CT radiation9. Thus, it is urgent to investigate the personalized organ dose 
from abdominal CT imaging so that the radiation-induced risk and potential complications can be accurately 
evaluated and controlled.

To date, size-specific dose estimate (SSDE) and Monte Carlo (MC) dose calculation, are the main methods 
for estimating personalized organ dose from CT diagnosis10–19. SSDE just considers size information but neglects 
the information regarding anatomy, tissue, and geometric shape, which may cause higher errors. MC simulation 
could calculate personalized organ dose directly from the patient’s CT and segmented regions of interest (ROIs) 
accurately, but it requires intensive computational resources of the central processing unit (CPU), graphics 
processing unit (GPU), or even in computing time depending on the MC software used. Until now, there were 
almost no previous studies that predicted personalized abdominal organ doses by training SVR models. Thus, it 
is necessary to explore new methods to accurately predict personalized abdominal organ doses from CT exami-
nations within a short time using fewer computational resources.

In this study, the robust SVR model20 was trained based on the abdominal radiomics features and GPU 
MC-calculated organ doses to predict personalized abdominal organ dose within a short time, with relatively 
better robustness, using fewer abdominal patient cases and minimized computational resources. The abdomi-
nal radiomics features were extracted from auto-segmented organ contours to consider much more intensity, 
anatomical, and tissue properties beyond the water-equivalent diameter (Dw) or patient size used by the SSDE 
prediction strategy. Abdominal organ contours were generated by auto-segmentation which was approved to be 
effective to accurately delineate internal organ contours21.

The SVR model trained based on radiomics features sufficiently reflected the correlation between complex 
abdominal patient features and organ doses, thus precisely predicting personalized abdominal organ doses. The 
performance of the organ dose estimation method was evaluated by calculating the relative root mean squared 
error (RRMSE), mean absolute percentage error (MAPE), and coefficient of determination (R2) on the test sets. 
The robustness of the SVR model was verified by randomly allocating patient samples to the train set and test 
set 20 times when keeping the proportion between the two sets as 0.8 versus 0.2.

Ethics
The study was conducted following the Declaration of Helsinki. Informed consents was obtained from patients 
who underwent abdominal CT scans for diagnosing purpose. We used the existing CT data in our hospital to 
achieve retro research. The research was approved by the Ethics Committee of Shanghai Zhongye Hospital to 
access the CT data for research purposes. The study followed the ethical guidelines of the hospital. The CT data 
were anonymized, and no personal information was disclosed.

Results
Predicted organ doses
In this section, the mean values of reference and predicted abdominal organ doses and their corresponding 
standard deviation (SD) were computed on the test sets. As shown in Table 1, in terms of the mean organ doses 
on the test sets, the predicted organ doses fitted very well with the reference organ doses, the maximal differ-
ence between predicted and reference doses was smaller than 1 mGy. This indicated that the SVR model trained 
based on the abdominal radiomics features could achieve a relatively small deviation between the predicted and 
reference dose values.

Regression metrics for organ dose prediction
The RRMSE, MAPE, and R2 were calculated for the patient samples on the test sets. As exhibited in Table 2, the 
SVR prediction achieved the best performance as the RRMSE, MAPE, and R2 of 4.54%, 2.24%, and 0.96 for the 
body. For the abdominal organs except the body, the RRMSE values ranged from 7.34% to 12.78%, while the 
MAPE values were smaller than 8.89%. For all the investigated organs, the R2 values were more than 0.74 and 
reached up to the maximal value of 0.96 for the body.

Table 1.   Mean reference and predicted abdominal organ doses on the test sets. In Table 1, the “KidneyL” and 
“KidneyR” respectively denote the left kidney and right kidney.

Organ Mean reference dose (mGy) SD of reference dose (mGy) Mean predicted dose (mGy) SD of predicted dose (mGy)

Body 31.06 10.01 30.83 9.45

Bowel 25.52 11.39 25.16 10.56

Kidney_L 26.73 9.73 26.27 8.62

Kidney_R 25.68 10.29 26.02 8.34

Liver 29.54 13.34 29.69 9.73

Spinal cord 16.84 7.78 17.06 5.56
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Robustness of the SVR dose prediction model
In this section, the patient samples on the training and test sets were randomly allocated 20 times keeping the 
proportion of the two sets as 0.8 versus 0.2. The regression metrics of the 20 patient allocation strategies were 
shown in Fig. 1. As seen in Fig. 1a, the interquartile range of RRMSE was from 1 to 2.5% for the abdominal 
organs, indicating that the performance of the SVR model remained stable when the patient samples were ran-
domly rearranged. As illustrated in Fig. 1b, the interquartile range of MAPE was smaller than 2.2%. As shown 
in Fig. 1c, the interquartile range of R2 was less than 0.07%, which suggested that the performance of the SVR 
model remained stable against the variations in patient sample allocation strategies.

Discussion
Abdominal CT imaging plays an essential role in detecting abdominal diseases, monitoring abdominal disease 
progression, and monitoring treatment outcomes. However, the ionization radiation from abdominal CT scans 
could cause radiation complications or even secondary cancers. This study aimed to explore a novel method 
to predict accurate and robust personalized abdominal organ doses when the resources for prediction were 
minimized, even minimized down to a single CPU core. Previous studies merely considered the patient size 
and some other simple features. Unlike existing studies, this study adopted the radiomics features to consider 
the characteristics of patient tissue, anatomy, and geometric shape, and train the SVR model for predicting 
personalized abdominal organ doses. The MAPE and R2 of the SVR regression model were about 0.08 and 0.7, 
respectively, which suggested that radiomics features could reflect the abdominal organ features (e.g. geometric 
shape, size, tissue, and anatomy) as much as possible.

There were already previous studies investigating personalized organ doses for different diagnosed sites (i.e. 
head, chest). However, studies using the SVR prediction model dedicated to abdominal CT examinations were 
very rare. For the previous studies that adopted SSDE, neural networks, convolutional networks, etc., the robust-
ness of those models had not been validated by randomly assigning patient samples to the train and test sets. 
For the previous MC simulation studies, a massive amount of computing resources of multiple CPUs or GPUs 
were required, even professional computer science was one of the prerequisites to use MC simulation to calculate 
personalized organ doses. The trained SVR model just needs a simple Python script to predict organ doses in one 
second, with minimized computing resources, even with a single CPU. In practical abdominal CT examinations, 
the proposed method can be applied in two main ways. First, the method can be utilized immediately after CT 
reconstruction through three steps: importing the CT images into segmentation software (e.g., 3D Slicer) for 
abdominal organ delineation, extracting radiomics features quickly, and performing fast SVR-based prediction of 
abdominal organ doses for clinical organ dose evaluation. Second, the method can be applied to a large amount 
of retrospective abdominal CT data to enable fast batch prediction of abdominal doses for research purposes. 
The predictive performance in MAPE for previous studies with deep learning is from 2 to 10%, which is in the 
similar range with the performance of SVR-based abdominal organ dose prediction models. This indicates the 
proposed SVR-based models could achieve accurate and fast predict using much less computation resources 
compared with deep learning models. This valuable advancement could significantly reduce computational 
costs in terms of time, hardware, and electrical energy when predicting organ doses from ionizing radiation 
examinations on extremely large datasets for research purposes. We also compared the performance of SVR and 
fully connected neural networks (FCNN) in predicting chest organ doses from CT scans. For the right lung, left 
lung, overall lungs, esophagus, heart, and trachea, the trained SVR model achieved a MAPE between 0.10 and 
0.18, with R-squared values ranging from 0.75 to 0.89 on the test sets. In comparison, the trained FCNN model 
had a MAPE ranging from 0.11 to 0.15 and R-squared values from 0.74 to 0.86 on both the training and test sets.

This study has several defects as well. First, we just trained the SVR prediction model from the abdominal 
radiomics features of the patients diagnosed in our institution. The accuracy and robustness of the model could 
vary among institutions. In the future, the collaboration of multiple institutions is still necessary to verify the 
cross-institution effectiveness of the proposed method. Second, the GPU-calculated reference organ doses were 
merely validated by CTDIvol of the CT device in our institution. It is still necessary to train the SVR model for 
multiple CT device types. Although we investigated most of the abdominal organs, we did not include the 
stomach. The gastric contents varied severely among abdominal patients, causing PyRadiomics to be pretty 
hard to extract effective radiomic features. This variation hindered the ability to distinguish patient-specific 
characteristics between different patients. In the future, it is necessary to investigate the prediction model that 
has the potential to obtain more detailed image information inside the stomach. This study adopted resampling 

Table 2.   Calculated regression metrics on the test sets. In Table 2, the “KidneyL” and “KidneyR” respectively 
denote the left kidney and right kidney.

Organ RRMSE (%) MAPE (%) R2

Body 4.54 2.24 0.96

Bowel 7.34 5.15 0.90

Kidney_L 10.12 5.94 0.79

Kidney_R 10.90 7.35 0.77

Liver 12.78 8.89 0.74

Spinal cord 9.17 8.63 0.75
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in Pyradiomics module to decrease the impact of voxel size discrepancy among different patients on standardized 
feature extraction. However, resampling also could impact feature extraction as well. Thus, the impacts of voxel 
size discrepancy and resampling still need to be assessed and compared in the future.

Figure 1.   Box charts for RRMSE (a), MAPE (b), and R2 (c) for 20 random patient allocation strategies. In 
Fig. 2, the “KidneyL” and “KidneyR” respectively denote the left kidney and right kidney.
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Methods
Data collection
In this study, we randomly selected 247 abdominal patients who got abdominal CT examinations at Shanghai 
Zhongye Hospital. The CT images of the selected patients were exported to an auto-segmentation system named 
DeepViewer22 to segment abdominal ROIs. The segmented ROIs respectively were liver, bowel, left kidney, right 
kidney, and spinal cord. The abdominal CT images and ROIs of each patient were converted from DICOM to 
Nifti using dcmstruct2nii23 so as to generate the CT and mask data for radiomics feature extraction. The scan 
voltage was set as 100 kV, and tube current modulation was used.

Radiomics feature extraction
The Pyradiomics module24 was applied to extract radiomics features from each patient’s CT and ROIs. The main 
procedures included image preprocessing, feature calculation, and feature selection. In the first step, the spatial 
resolution of the CT and masks for each patient were resampled to (1, 1, 5) to standardize radiomics feature 
calculation via the Pyradiomics parameter “resamplePixelSpacing”. Data augmentation25–27 was performed to 
enhance the robustness of the SVR model. Data augmentation involved slight shifts and rotations. Zooming 
was excluded as it could potentially alter the patients’ dosimetric properties. In the second step, 107 radiomics 
features were extracted for each organ of the patient without using filters.

The radiomics features could be divided into 7 types including Gray Level Co-occurrence Matrix, First Order 
Statistics, Neighboring Gray Tone Difference Matrix, Gray Level Dependence Matrix, Gray Level Run Length 
Matrix, Shape-based, and Gray Level Size Zone Matrix. Those features reveal the ROIs’ correlation, homogene-
ity, contrast, intensity distribution, etc., and were used as input data for training the SVR model. In the third 
step, the f-regression function the scikit-learn module was used to select the relevant features to avoid overfit28 
and to enhance the robustness of the SVR model. The main hypotheses of the F-test—including independence, 
linearity, homoscedasticity, and normality of errors—should ideally be respected for all radiomic features to 
ensure the validity of the test. A p-value threshold was not explicitly used to select the relevant features; instead, 
the top 30 features were selected based on their ranking by the F-statistic. The feature extraction and selection 
were performed with double AMD EPYC 7551 CPUs in the Anaconda 329 environment.

Reference organ dose calculation
Based on the CT image and masks of each patient, the reference organ doses were calculated by GGEMS, a 
GPU-based MC particle transport code that can address complex geometries, heterogeneous materials, and 
multiple radiation sources (photons and electrons)30. GGEMS could process MC simulation much faster than 
CPU-based MC simulation code almost without sacrificing organ dose calculation accuracy. For each patient, the 
GPU-calculated organ doses were used as the reference organ doses when training the SVR model to predict the 
organ doses of the liver, stomach, bowel, left kidney, right kidney, and spinal cord. The GPU-based MC simula-
tions were performed with two Nvidia RTX4090 graphics cards to obtain the slice-wise dose distribution of each 
patient with less than 2% error in each voxel. Auto-tube current was taken into account for MC dose calculation.

SVR prediction model
This study adopted the trained SVR regression model to reflect the relationship between the input radiomics fea-
tures and reference organ doses, and predict personalized abdominal organ doses accurately. SVR is a supervised 
learning algorithm that is used to predict continuous values31–33. SVR uses the same principle as support vector 
machine (SVM), which are classifiers that find the optimal hyperplane that separates two classes of data. Instead 
of finding a hyperplane that maximizes the margin between the classes, SVR finds a hyperplane that minimizes 
the error between the predicted and actual values, while allowing some tolerance for deviation.

The performance of the model was assessed by RRMSE, APE, MAPE, and R2 on the test set for the ROIs 
including the liver, stomach, bowel, left kidney, right kidney, and spinal cord. The robustness of the model was 
verified by randomly assigning patient samples to the train and test sets while keeping the proportion of the two 
sets as 0.8:0.2 and comparing the regression metrics of different patient sample assigning strategies. The SVR was 
trained and tested using two Nvidia GeForce RTX4090 GPUs and two Nvidia GeForce RTX3080ti GPUs in the 
Anaconda environment. Figure 1 shows the General flowchart of training and testing the SVR-based abdominal 
organ dose prediction model.

Regression metrics for the dose prediction
For assessing the performance of abdominal organ dose prediction, we adopted the regression metrics of RMSE, 
MAPE, and R2. RMSE is the root mean squared error. It measures how large the root mean squared error. A lower 
RMSE indicates a better fit. RMSE can be calculated as:

where n is the number of patients, yi is the reference organ dose, and ŷi ​ is the predicted organ dose. MAPE is the 
average of the absolute percentage differences between the actual and predicted values. It measures how close 
the predictions are to the actual values in terms of percentage, without considering the direction of the error. 
The formula can be expressed as:

(1)RRMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)
2 × 100%
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R2 is the proportion of the variance in the output variable that is explained by the input variables. It measures 
how well the regression model fits the data. A higher R2 indicates a better fit. The formula is:

Data availability
Data availability Data sets generated during the current study are available from the corresponding author on 
reasonable request.
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2

∑n
i=1

(yi − y)2

Figure 2.   General flowchart of preparing input data plus training and testing the SVR-based abdominal organ 
dose prediction model.

https://doi.org/10.1016/S2468-1253(19)30342-5
https://doi.org/10.20524/aog.2018.0314
https://doi.org/10.1159/000212077
https://doi.org/10.1136/gut.2011.238386
https://doi.org/10.3322/caac.21660
https://doi.org/10.1155/2022/5732357
https://doi.org/10.1155/2022/5732357
https://www.cancer.org/cancer/diagnosis-staging/tests/imaging-tests/understanding-radiation-risk-from-imaging-tests.html
https://www.cancer.org/cancer/diagnosis-staging/tests/imaging-tests/understanding-radiation-risk-from-imaging-tests.html


7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19393  | https://doi.org/10.1038/s41598-024-70316-7

www.nature.com/scientificreports/

	 9.	 Mathews, J. D. et al. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: Data 
linkage study of 11 million Australians. BMJ. 346, f2360. https://​doi.​org/​10.​1136/​bmj.​f2360 (2013).

	10.	 Rajaraman, V., Ponnusamy, M. & Halanaik, D. Size specific dose estimate (SSDE) for estimating patient dose from CT used in 
myocardial perfusion SPECT/CT. Asia Ocean J. Nucl. Med. Biol. 8, 58–63. https://​doi.​org/​10.​22038/​aojnmb.​2019.​40863.​1276 (2020).

	11.	 Wang, J. et al. Personalized organ dose estimation for chest CT based on deep learning segmentation techniques. Phys. Med. Biol. 
68, 035006. https://​doi.​org/​10.​1088/​1361-​6560/​ac0e7a (2023).

	12.	 Cagni, E. et al. Personalized Monte Carlo-based organ dose estimates in spiral CT examinations using a portable optical scanner. 
Phys. Med. Biol. 68, 045003. https://​doi.​org/​10.​1088/​1361-​6560/​ac0f5a (2023).

	13.	 Myronakis, M., Stratakis, J. & Damilakis, J. Rapid estimation of personalized organ doses using a deep learning network. Med. 
Phys. 50(11), 7236–7244. https://​doi.​org/​10.​1002/​mp.​16356 (2023).

	14.	 Salimi, Y., Akhavanallaf, A., Mansouri, Z., Shiri, I. & Zaidi, H. Real-time, acquisition parameter-free voxel-wise patient-specific 
Monte Carlo dose reconstruction in whole-body CT scanning using deep neural networks. Eur Radiol. 33(12), 9411–9424. https://​
doi.​org/​10.​1007/​s00330-​023-​09839-y (2023).

	15.	 Tzanis, E. & Damilakis, J. A novel methodology to train and deploy a machine learning model for personalized dose assessment 
in head CT. Eur Radiol 32(9), 6418–6426. https://​doi.​org/​10.​1007/​s00330-​022-​08756-w (2022).

	16.	 Maier, J., Klein, L., Eulig, E., Sawall, S. & Kachelrieß, M. Real-time estimation of patient-specific dose distributions for medical 
CT using the deep dose estimation. Med. Phys. 49(4), 2259–2269. https://​doi.​org/​10.​1002/​mp.​15488 (2022).

	17.	 Myronakis, M., Stratakis, J. & Damilakis, J. Rapid estimation of patient-specific organ doses using a deep learning network. Med. 
Phys. 50(11), 7236–7244. https://​doi.​org/​10.​1002/​mp.​16356 (2023).

	18.	 Tzanis, E., Stratakis, J., Myronakis, M. & Damilakis, J. A fully automated machine learning-based methodology for personalized 
radiation dose assessment in thoracic and abdomen CT. Phys Med. 117, 103195. https://​doi.​org/​10.​1016/j.​ejmp.​2023.​103195 (2023).

	19.	 Principi, S. et al. Deterministic linear Boltzmann transport equation solver for patient-specific CT dose estimation: Comparison 
against a Monte Carlo benchmark for realistic scanner configurations and patient models. Med. Phys. 47, 6470–6483 (2020).

	20.	 Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining 785–794 (2016). https://​doi.​org/​10.​1145/​29396​72.​29397​85

	21.	 Maffei, N. et al. Radiomics classifier to quantify automatic segmentation quality of cardiac sub-structures for radiotherapy treat-
ment planning. Phys. Med. 83, 278–286. https://​doi.​org/​10.​1016/j.​ejmp.​2021.​05.​009 (2021).

	22.	 Peng, Z., et al. Validation and clinical application of DL-based automatic target and OAR segmentation software, DeepViewer. In 
Proceedings of the American Association of Physicists in Medicine Annual Meeting (Vancouver, BC, July 12–16) 123–124 (2020).

	23.	 Li, X. et al. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56. https://​
doi.​org/​10.​1016/j.​jneum​eth.​2016.​03.​001 (2016).

	24.	 van Griethuysen, J. J. M. et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107. 
https://​doi.​org/​10.​1158/​0008-​5472.​CAN-​17-​0339 (2017).

	25.	 Rebuffi, S. A., et al. Data augmentation can improve robustness. In Advances in Neural Information Processing Systems 34 (NeurIPS 
2021) (Neural Information Processing Systems Foundation).

	26.	 Dwibedi, D., Misra, I. & Hebert, M. Cut, paste and learn: Surprisingly easy synthesis for instance detection. In Proceedings of the 
IEEE International Conference on Computer Vision 1301–1310 (2017). https://​doi.​org/​10.​1109/​ICCV.​2017.​144

	27.	 Zhang, Z., et al. A Robustness-oriented data augmentation method for DNN. In 2021 IEEE 21st International Conference on Software 
Quality, Reliability and Security Companion (QRS-C) 1–6 (2021).

	28.	 Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).
	29.	 Anaconda. The World’s Most Popular Data Science Platform. https://​www.​anaco​nda.​com. Accessed 28 Jan 2024.
	30.	 Bert, J., et al. GGEMS: GPU GEant4-based Monte Carlo Simulation platform. In 2016 IEEE Nuclear Science Symposium, Medical 

Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) 1–4 (2016). https://​doi.​org/​10.​
1109/​NSSMIC.​2016.​80695​08

	31.	 Smola, A. J. & Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004).
	32.	 Vapnik, V. N. The Nature of Statistical Learning Theory 2nd edn. (Springer, New York, 2000).
	33.	 Drucker, H. et al. Support vector regression. In Advances in Neural Information Processing Systems 9 (NIPS 1996) (eds Mozer, M. 

C. et al.) 155–161 (MIT Press, Cambridge, 1997).

Acknowledgements
The authors have no conflicts of interest. The authors would like to thank Professor George X.Xu and his group 
for their technical support regarding the auto-segmentation of ROIs using DeepViewer.

Author contributions
Wencheng Shao contributed to concept design, data calculation, data analysis, writing, and revising the manu-
script; Xin Lin, Wentao Zhao, and Ying Huang to GPU-accelerated dose calculation; Wentao Zhao and Liangyong 
Qu to data collection, Weihai Zhuo to concept design; Haikuan Liu to concept design and revising the manuscript.

Funding
This study was supported by the National Natural Science Foundation of China (12075064), and the National 
Key R&D Program of China (2019YFC0117304).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.Z. or H.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1136/bmj.f2360
https://doi.org/10.22038/aojnmb.2019.40863.1276
https://doi.org/10.1088/1361-6560/ac0e7a
https://doi.org/10.1088/1361-6560/ac0f5a
https://doi.org/10.1002/mp.16356
https://doi.org/10.1007/s00330-023-09839-y
https://doi.org/10.1007/s00330-023-09839-y
https://doi.org/10.1007/s00330-022-08756-w
https://doi.org/10.1002/mp.15488
https://doi.org/10.1002/mp.16356
https://doi.org/10.1016/j.ejmp.2023.103195
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.ejmp.2021.05.009
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1109/ICCV.2017.144
https://www.anaconda.com
https://doi.org/10.1109/NSSMIC.2016.8069508
https://doi.org/10.1109/NSSMIC.2016.8069508
www.nature.com/reprints


8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19393  | https://doi.org/10.1038/s41598-024-70316-7

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Fast prediction of personalized abdominal organ doses from CT examinations by radiomics feature-based machine learning models
	Ethics
	Results
	Predicted organ doses
	Regression metrics for organ dose prediction
	Robustness of the SVR dose prediction model

	Discussion
	Methods
	Data collection
	Radiomics feature extraction
	Reference organ dose calculation
	SVR prediction model
	Regression metrics for the dose prediction

	References
	Acknowledgements


