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The perceived beauty of art 
is not strongly calibrated 
to the statistical regularities 
of real‑world scenes
Alexander Swartz 1*, Alice E. Skelton 2, George Mather 3, Jenny M. Bosten 4, John Maule 5 & 
Anna Franklin 1*

Aesthetic judgements are partly predicted by image statistics, although the extent to which they are 
calibrated to the statistics of real-world scenes and the ‘visual diet’ of daily life is unclear. Here, we 
investigated the extent to which the beauty ratings of Western oil paintings from the JenAesthetics 
dataset can be accounted for by real-world scene statistics. We computed spatial and chromatic image 
statistics for the paintings and a set of real-world scenes captured by a head-mounted camera as 
participants went about daily lives. Partial least squares regression (PLSR) indicated that 6–15% of the 
variance in beauty ratings of the art can be accounted for by the art’s image statistics. The luminance 
contrast of paintings made an important contribution to the PLSR models: paintings were perceived 
as more beautiful the greater the variation in luminance. PLSR models which expressed the art’s 
image statistics relative to real-world scene statistics explained a similar amount of variance to models 
using the art’s image statistics. The importance of an image statistic to perceived beauty was not 
related to how closely art reproduces the value from the real world. The findings suggest that beauty 
judgements of art are not strongly calibrated to the scene statistics of the real world.

Why some photographs, artworks or landscapes are aesthetically preferred is a question that continues to chal-
lenge cognitive science. The foundation for investigating the relationship between aesthetic experiences and 
measurable properties of visual stimuli was laid with the nineteenth century work of Gustav Fechner1. Since then, 
computational aesthetics has achieved some success at modelling aesthetic preferences using image properties2, 
and visual properties such as edge density, luminance, and saturation contrast have been found to be related to 
aesthetic appreciation of scenes, faces, objects and art3–6.

Related to the notion that aesthetics can be partially accounted for by visual properties, vision scientists have 
also suggested that there is a relationship between aesthetics and the statistical regularities of real-world scenes, 
known as ‘natural scene statistics’7–9. One natural scene statistic, fractal dimension, is a measure of the extent 
to which self-repeating patterns across scales fill a space10. Natural scenes generally have a mid-range fractal 
dimension11, and aesthetic ratings of computer-generated fractal patterns suggest that, on average, patterns 
with a mid-range fractal dimension are most aesthetically pleasing (e.g.,10). Another natural scene statistic is 
that of spectral slope which describes the Fourier amplitude of spatial information over different spatial scales, 
with natural scenes having a characteristic spectral slope function of 1/f α where f is spatial frequency and α is 
approximately 1.00–1.25 (e.g.,12). Judgements of artistic merit have been found to peak, and visual discomfort has 
been found to be lowest, for abstract noise patterns that have the spectral slope typical of natural scenes13. In the 
color domain, the chromaticities of natural scenes tend to form a distribution that stretches along the blue-yellow 
color appearance dimension (the negative diagonal axis in the cone-opponent MacLeod-Boynton14 chromaticity 
diagram)15,16. As with spectral slope, it has also been shown that artistic merit peaks, and visual discomfort is 
lowest, for colored ‘Mondrians’ approximately of 1/f spectral slope, composed of overlapping colored rectangles 
which conform to the blue-yellow chromatic distribution of natural scenes13.
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These converging lines of evidence that aesthetic judgments such as artistic merit are related to natural scene 
statistics could suggest that the sensory component of aesthetic experience17 is broadly calibrated to natural 
scenes8,9. This idea links to the theory of biophilia, which suggests that humans like nature, and that it benefits 
them, because humans have evolved and are adapted to operate in natural environments18. The idea that aesthetics 
is calibrated to natural scene statistics also relates to the efficient coding hypothesis which proposes that human 
visual systems have evolved to efficiently represent natural scenes9,19. Efficient coding could mean that images 
with natural scene statistics are more fluently processed and therefore are aesthetically preferred to images with 
visual properties that are not typical of natural scenes20,21. Another potential mechanism, that is possibly related 
to efficient coding, is that adaptation to the real-world scenes typically encountered in daily life could reduce 
sensory sensitivity to the statistical regularities of those scenes, making images with those scene statistics more 
comfortable to view and thus more liked13. Note that this proposal could apply to many different types of real-
world scene and not just scenes of nature.

As outlined above, vision science has pointed to a relationship between aesthetic judgements and natural 
scene statistics, with preferences peaking for abstract patterns with statistical regularities typical of real-world 
scenes10. This proposal has led to consideration of whether natural scene statistics more broadly have a role in the 
aesthetics of art. Several studies have shown that art often has spatial properties that mimic the statistics of natural 
scenes, even for abstract art21–23. Jackson Pollock’s abstract drip paintings, for instance, have a fractal dimension 
similar to that of natural scenes24. There is also evidence that spatial natural scene statistics predict aesthetic 
experience for some types of art. For example, departure from the 1/f spectral slope typical of real-world scenes 
also predicts visual discomfort for non-representational art25,26. However, other studies which have modelled 
aesthetic judgements of art with a broader range of image statistics potentially question the role of natural scenes. 
For example, one study used the JenAesthetics dataset27–29 to analyze the contribution of a set of image statistics 
to ratings of artistic value and beauty for 1614 Western oil paintings from 11 major art periods30. Image statistics 
such as self-similarity and anisotropy predicted artistic value and beauty, although which image statistics were 
significant also varied across different art periods. These findings potentially suggest that the aesthetics of art 
may be too variable to be universally accounted for by one set of statistical properties characteristic of natural 
scenes. Mather5 further analyzed the beauty ratings of the JenAesthetics data set as well as the MART database 
of emotion ratings for a set of abstract art31 and analyzed the contributions of spectral slope, fractal dimension 
and entropy for chromatic and luminance channels. Mather found that these image statistics predicted aesthetic 
judgements, but he also found that the predictive image statistics varied across genres of art. For example, steeper 
spectral slopes were preferred for portraits whereas shallower spectral slopes were preferred for nude artworks. 
This variation across genres again questions the notion that aesthetic judgements of art are broadly calibrated to 
the statistical properties of natural scenes.

For the case of color, the blue–yellow variation characteristic of natural scenes is also present in some types 
of artworks, albeit slightly biased towards red hues32–34. Multiple studies have also shown that people also tend 
to prefer art, even abstract art, in its original color composition (e.g.,35–38), and people also seem to prefer images 
with chromatic distributions that appear natural39. A recent study by Nakauchi and Tamura40 explored whether 
the color statistics that predict aesthetic ratings of art are similar to those of natural scenes. A set of 1200 paint-
ings from WikiArt were shown in their original color composition alongside three versions where the painting’s 
hues had been manipulated to varying degrees, and 31,353 participants were asked to select their preferred 
painting from each set of four in an online task. The contributions of the mean, variance and skew of the dimen-
sions of the CIE L*a*b* perceptual color space41 and the correlations between these dimensions and preference 
judgments were evaluated with multiple regressions. Nakauchi and Tamura40 also analyzed the color statistics 
of a set of 1200 outdoor natural scenes from the SUN database. Certain color statistics such as the skewness of 
a* (a* quantifies the redness-greenness of a color) predicted preferences for the paintings. However, there were 
also significant differences between the color statistics of the paintings and those of the outdoor natural scenes, 
and the preferred color composition of paintings was not that which was typical of natural scenes. Whilst these 
findings appear to suggest that preferences for paintings are not calibrated to the color statistics of natural scenes, 
the extent to which the color statistics characteristic of the outdoor scenes predict preferences for the paintings 
was not directly quantified.

The current study further investigates the relationship between aesthetic judgements of art and natural scene 
statistics. The study specifically aims to directly quantify the extent to which statistical regularities of real-world 
scenes predict beauty judgements of art. As in Refs.5,30, we analyze the beauty ratings of the JenAesthetics dataset 
rather than other measures such as artistic merit. We chose to analyze perceived beauty as we felt that perceived 
beauty is a clearer and more intuitive concept for participants to rate, and is also easier to interpret than artistic 
merit. We make the data and scripts of the current study available for those who wish to apply our approach to the 
other measures of the JenAesthetics dataset. We selected a subset of 785 oil paintings for analysis including art-
works across multiple genres as well as two further subsets of 276 landscape artworks and 519 portrait artworks. 
Like Mather5 we analyze fractal dimension, spectral slope and entropy of the images of the paintings (although 
only for the luminance channel), and we also analyze the lacunarity (heterogeneity of spatial patterns compris-
ing an image)42; and edge density43 as these are also important spatial image statistics predictive of aesthetics6. 
We also include a set of chromatic statistics defined in a biologically plausible color space14, which enables us 
to define colors in terms of their activation of the two cardinal neural subsystems underpinning color vision. 
Much prior work on aesthetics (e.g.4,30) uses color spaces (e.g., HSV) that are suitable for computer graphics but 
that do not accurately represent human color vision (linear analyses of hue are also problematic as it is a circular 
quantity). Perceptual color spaces (e.g., CIELAB and CIELUV, as in refs.5,40.) are more appropriate than HSV. 
We use the MacLeod-Boynton14 chromaticity diagram, as this enables us to understand the contributions of the 
biological components of color vision to aesthetic judgements of art, as well as the contributions of the dimen-
sions of saturation and luminance. We compute the standard deviation of saturation and luminance as these 
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have proved important in predicting the pleasantness of van Gogh’s landscapes6. We also include two chromatic 
statistics which quantify the elongation and angle of the chromatic distribution, and which provide an efficient 
way of characterizing the extent to which the chromatic distribution is blue-yellow biased as in natural scenes16,44. 
We use partial least squares regressions (PLSRs) to investigate whether the chromatic and spatial image statis-
tics of the paintings predict participants’ beauty judgements of the art. We also conduct permutation analyses 
on random iterations of the preference data to confirm that the variance explained by the PLSRs is significant.

Given the findings in prior studies that predictive image statistics vary for different types of art, we analyze 
across all categories of the JenAesthetics dataset but also conduct separate analyses for landscapes and portraits, 
as these categories both had sufficient numbers of images for separate analysis. Different relationships between 
beauty judgements and real-world scene statistics might be expected for the two genres since they differ in their 
spatial scales, and may also differ in the extent to which they recruit higher-order processes for judgements of 
aesthetics.

Importantly, we directly test the hypothesis that aesthetic judgements of art are calibrated to natural scene 
statistics by analyzing the extent to which the chromatic and spatial image statistics predict the beauty ratings of 
the paintings when expressed relative to the values of image statistics for a set of real-world scenes. We analyze 
a set of egocentric real-world scenes captured by head-mounted cameras45,46 to provide the normative data. 
The image set captures real-world scenes as people go about their daily lives, in different kinds of real-world 
environments both urban and rural, indoors and outdoors. Whilst Nakauchi and Tamura40 considered the sta-
tistics of photographs of outdoor nature scenes, if aesthetic judgements are calibrated to natural scene statistics 
through adaptation to the statistics of scenes that people are immersed in, then the distinction between indoor 
and outdoor scene types should not be important—what would be important would be the scene statistics of the 
observer’s ‘visual diet’. The image set aimed to capture scenes that approximate the viewpoints of people when 
going about daily lives, rather than composed photographs of nature. We therefore consider the head-mounted 
camera real-world scene set that we use to be more ecologically valid than other natural scene image sets for 
addressing the question of the extent to which beauty calibrates to the real-world scene statistics of one’s visual 
diet. We compute the chromatic and spatial image statistics of the paintings and express these relative to the 
mean and standard deviation of the real-world image data set, providing a measure of similarity to the real-world 
scenes (smaller z-scores indicate greater similarity to real-world scenes). We then repeat the PLSRs on the beauty 
ratings using the scene statistics expressed relative to those of real-world scenes to quantify the extent to which 
similarity to real-world scene statistics predicts the perceived beauty of art. If the beauty of art is calibrated to 
real-world scenes, we expect that the PLSRs will explain more variance in beauty judgements when the art’s image 
statistics are expressed relative to the distribution of image statistics of real-world scenes.

Results
The PLSR analysis on the raw image statistics of all paintings (i.e., without expressing relative to the statistics 
of images from the real world) found that chromatic and spatial image statistics of the art predicted 14.69% of 
the variance in the JenAesthetics beauty ratings (with 3 components). The PLSR on landscapes alone accounted 
for 12.20% of the variance (with 2 components), while the PLSR on portraits alone accounted for 5.79% of the 
variance (with 3 components). The standard deviation of luminance was an important contributor to all three 
models as indicated by high ‘variable importance in projection’ (VIP) scores (see Methods for definition and 
Supplementary Table S1 for values of VIP scores). The variance explained in these PLSRs was greater than the 
95th percentile of variance explained in a set of 10,000 permuted PLSRs with random permutations of the beauty 
ratings: all genres (2.80%), landscapes (7.85%) and portrait images (4.28%, see Fig. 1). A further set of PLSRs 
using image statistics expressed relative to typical values from the real world found that the similarity of the art’s 
image statistics to real-world scenes explained 9.00% of the variance in the beauty ratings of all genres of art (3 
component model), 13.24% for landscapes (2 component model) and 4.18% for portraits (2 component model). 
The variance explained by these PLSRs was greater than the 95th percentile of variance explained in a set of 
10,000 permuted PLSRs with random permutations of the beauty ratings for all genres (2.87%) and landscapes 
(8.05%) but not for portraits (4.27%, see Fig. 1).

Table S1 gives the PLSR VIP scores which identify the contributions of the art’s raw image statistics and the 
art’s image statistics expressed relative to real-world values, to beauty ratings of art for all-genre and landscape 
analyses. As the real-world model of the beauty ratings of portraits did not explain more variance than the 95th 
percentile of the variance explained by the model under the null hypothesis using permuted data, we do not 
interpret the VIP scores of the PLSR for portraits. As the table shows, some image statistics make an important 
contribution to the model (VIP > 1.25). For the PLSRs that use the art’s raw image statistics, standard deviation 
of luminance makes an important contribution to the models for all genres, for portraits and for landscapes. For 
landscapes, curved edge density additionally makes and important contribution, and for portraits spectral slope 
and straight edge density also make important contributions. For PLSRs that use image statistics expressed rela-
tive to the real world, the mean S/(L + M), angle of maximum color variance and spectral slope make important 
contributions for all genres, and straight and curved edge density and standard deviation of S/(L + M) make 
important contributions for landscapes. Figure S1 gives further information to aid the interpretation of the VIP 
scores for the image statistics by showing the distributions of the art’s raw image statistics and the mean statistics 
from the real-world images used to calculate the art’s image statistics expressed relative to real-world values.

Because the mean image statistic from the real-world scenes was often not centrally located in the distribution 
of the art image statistic (Fig. S1), the image statistics expressed relative to real-world values were not independent 
of the raw image statistics. It is possible that the better than chance performance for image statistics expressed 
relative to the real world (Fig. 1) could be accounted for by the fact that these statistics are correlated with the 
raw statistics, if the latter themselves explain variance in ratings of beauty (left column of Fig. 1). We therefore 
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conducted two additional analyses to further test the hypothesis that perceived beauty is calibrated to real-world 
image statistics and to investigate whether the two sets of predictors (raw image statistics vs. image statistics 
relative to real-world values) perform differently from one another. First, we correlated the VIP scores from the 
PLSR on the raw image statistics with the corresponding absolute differences between the mean real-world image 
statistics and the mean art statistic, expressed as a z-score. If perceived beauty is calibrated to real-world scene 
statistics, then the art image statistics which are most similar to the real-world values should have the higher 
VIP scores in the PLSRs (in other words, there should be a negative correlation between VIP score and z-score). 
There was no significant correlation between the size of the differences between the real-world scene and art 
means (expressed as z-scores) and VIP scores across the image statistics for all genres (rho = − 0.12, p = 0.68) 
or for landscapes only (rho = − 0.24, p = 0.39), although both were negative as predicted. Therefore, we did not 

Figure 1.   Histograms show the variance explained by a set of 10,000 permuted PLSRs with random 
permutations of the beauty ratings, with the 95th percentile of variance explained in the set of permuted PLSRs 
indicated with the red dashed line. The variance explained by the non-permuted PLSR is indicated with a solid 
black line. Variance explained is given for PLSRs using the art’s raw image statistics (left hand column) and the 
art’s image statistics expressed relative to the real-world (right hand column), for all genres of paintings (top 
row), landscapes (middle row) and portraits (bottom row).
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find that the VIP scores that contribute more to the models were for image statistics where the values for art are 
closer to those of the real world.

Second, we compared the variance explained in perceived beauty by the art’s image statistics and by the image 
statistics expressed relative to the real world, with the variance explained by the image statistics expressed rela-
tive to arbitrary reference values. If perceived beauty is strongly calibrated to the real world, then the variance 
explained by the real-world PLSR should outperform the majority of models calibrated to arbitrary values. We 
expressed image statistics relative to arbitrary reference values from the art’s image statistic distributions rather 
than the average value from the real-world scenes. We conducted 10,000 iterative PLSRs each time with different 
randomly selected arbitrary reference values for each image statistic. Figure 2 gives the distribution of variance 
explained by the 10,000 iterations of the PLSR conducted using the art’s image statistics expressed relative to 
randomly selected arbitrary reference values from the art’s image statistic distribution. As can be seen from the 
figure, for both all genres and for landscapes, the percentage of variance explained by art’s image statistics when 
expressed relative to real-world scenes is not greater than the 95th percentile of variance from the iterated PLSRs 
which express the art’s image statistics relative to arbitrary values randomly selected from the art’s distributions 
of image statistic values. In other words, expressing art image statistics relative to real-world scenes does not 
explain more variance than expressing art image statistics relative to randomly selected values. For the analysis 
of all genres of art, the image statistics expressed relative to the real world explain about the average amount of 
variance explained by arbitrary values, whereas the raw image statistics explain more variance than the 95th 
percentile of PLSR iterations. For the landscapes, both the raw image statistics and the image statistics expressed 
relative to the real world explain about the same amount of variance as the 95th percentile of PLSR iterations 
for the arbitrary values.

Discussion
We aimed to further understand the role of scene statistics in aesthetics and to establish the extent to which 
the perceived beauty of art is calibrated to the statistical regularities of real-world scenes. We found that a set 
of spatial and chromatic image statistics could predict about 6–15% of the variance in ratings of the beauty of a 
large set of Western oil paintings spanning 11 art periods. The amount of luminance contrast in the paintings 
strongly contributed to the models when all genres of art were analyzed as well as for landscapes and portraits 
separately—suggesting that people find Western oil paintings more beautiful the greater the variation in lumi-
nance. When the image statistics were expressed relative to the statistics of a set of real-world scenes captured 
with calibrated head-mounted cameras, the relative scene statistics predicted a similar amount of variance in the 
ratings of beauty of the art (4–13%) to that predicted by the raw image statistics. The variance in perceived beauty 
ratings accounted for by relative image statistics was somewhat less than that of the art’s raw image statistics for 
the all-genre analysis and for portraits, but was slightly more for landscapes. Image statistics expressed relative 
to typical values for real-world images also predicted the beauty of art better than permuted data for the whole 
set of art and for landscapes, but not for portraits. However, further analysis showed that the importance of an 
image statistic to the model of perceived beauty was not related to how closely art reproduces the value from 
the real world. Additionally, a model based on image statistics expressed relative to the average statistics of the 
real-world scenes did not outperform models based on image statistics expressed relative to randomly selected 
arbitrary values from the distributions of the art’s image statistics: the variance explained was not greater than 
the 95th percentile of the variance explained by PLSRs using the arbitrary image statistic values.

For PLSRs based on raw image statistics, standard deviation of luminance was a strong contributor to the 
model for all genres of art, and for portraits and landscapes separately (see also6). For PLSRs based on image 

Figure 2.   Distributions of variance explained with 10,000 iterations of the PLSR analysis where the art’s image 
statistics are each expressed relative to random values selected from the art’s distribution of that image statistic, 
rather than relative to the real-world values. The dashed red line gives the 95th percentile of the variance 
explained by the 10,000 iterated PLSRs that express the image statistics relative to randomly selected values. 
The dotted black line gives the variance explained by the PLSR using the art’s raw image statistics and the solid 
black line gives the variance explained by the PLSR using image statistics expressed relative to real-world values. 
Panel A shows results for all artwork genres and panel B shows results for landscape artworks only.
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statistics expressed relative to real-world values, six statistics (curved edge density, straight edge density, the 
mean and standard deviation of S/(L + M), spectral slope and the angle of the maximum color variance) made 
important contributions to the model (VIP > 1.25). However, this can not necessarily be interpreted as in support 
of the hypothesis that perceived beauty is calibrated to real-world values for these image statistics: for four of these 
statistics, the mean real-world statistic lay at one extreme of the distribution of art statistics so that the statistics 
when expressed relative to the real-world statistic only had minor differences from the original raw statistics. Such 
systematic differences between mean statistics of art and mean statistics of real-world images could themselves 
be interpreted as evidence against a ‘real-world calibration’ hypothesis. To the extent that art is intended to be 
aesthetically pleasing, the distributions of art statistics might be expected to be close to the real-world means if 
aesthetic judgements occur for image statistics well matched to real-world scenes.

There has been much research attempting to model aesthetic judgements using a wide range of visual prop-
erties and image statistics3–6,30,47. The amount of variance explained here with our set of spatial and chromatic 
image statistics is similar to that of other studies (e.g., 8% in Ref.48 for a set of 15 image features, see also Refs.4,6). 
The main contribution of the current study is that we targeted analyses to assess the extent to which beauty is 
calibrated to the spatial and chromatic image statistics of real-world scenes. Our finding that the image statistics 
when expressed relative to typical values of real-world scenes accounts for a similar amount of variance in beauty 
ratings to raw values of those image statistics, challenges the hypothesis that types of aesthetic judgements are 
strongly calibrated to the statistical regularities of real-world scenes8,21. We make no claim here that our finding 
applies to all types of aesthetic judgement. Here, we chose to analyze the beauty ratings of the JenAesthetics 
dataset as we felt that beauty was a more intuitive concept than the dataset’s aesthetic quality measure. Although 
both measures are correlated (rho = 0.78), subtle differences in the relationships of these measures with real-world 
scene statistics may well be found. Relationships with other measures of the JenAesthetics dataset could also be 
analyzed, such as the extent to which image color preference is calibrated to real-world chromatic statistics, and 
we make our image analysis and analysis scripts available to facilitate this.

Prior studies have found that abstract patterns with a spectral slope or fractal dimension typical of natural 
scenes are preferred10. Here, spectral slope expressed relative to the real-world statistics makes an important 
contribution to the all-genre and landscape models (see VIP scores Table S1). However, further inspection of 
this result reveals a positive relationship between spectral slope expressed relative to the real world and perceived 
beauty, suggesting that, in fact, perceived beauty increases the greater the deviation of the art’s spectral slope 
from real-world scenes. As shown in Fig. S1, for spectral slope, the values for the real-world scenes tended to 
be lower than those of the art’s image statistics, and so one interpretation of the increase in beauty with greater 
deviation in the image statistics from real-world scenes is that art judged as beautiful accentuates some of the 
visual properties typical of real-world scenes49. Further research using the approach of the current study, but 
where the range of art includes works with image statistics spanning both sides of the real-world distributions 
more evenly, could help determine whether or not this interpretation is valid.

Consistent with prior research, we also found that the contribution of image statistics to a type of aesthetic 
judgement (in this case perceived beauty) varies with the genre of art5. Most notably, image statistics expressed 
relative to those of the real world predict more variance in beauty judgements than the art’s raw image statistics, 
and more variance than the permuted image statistics under the null hypothesis, for landscapes but not for 
portraits. One possibility is that the real-world scenes of daily life, as captured by a head mounted camera, are 
more relevant to the perceived beauty of landscapes than for other art genres. The perceived beauty of other art 
genres such as portraits might also be more strongly influenced by higher-order processes than that of landscapes. 
Further research which analyzes other art databases for a broader range of art and which considers other art 
genres separately is needed to clarify the conditions under which real-world scene statistics are predictive of 
perceived beauty.

To address the hypothesis that perceived beauty is calibrated to real-world scenes, we chose to extract ‘real-
world’ statistics from images randomly sampled using calibrated head-mounted cameras. We chose to define 
‘real-world scenes’ as images of the daily visual environments that participants experience, as this is compatible 
with ideas of visual calibration via adaptation50,51, where the visual system adapts to efficiently represent to the 
range of image statistics it encounters or, alternatively, via ‘self-referential’ processing48,52, where people may 
make aesthetic judgements with reference to their own identities and experiences. A different strategy would 
have been to extract the statistics of a set of images from ‘natural’ environments, defined as the ancestral envi-
ronments in which humans evolved. Any modern dataset could, of course, only approximately meet this aim. 
Further work including cross-environmental studies on aesthetics which investigate whether environmental 
differences in visual diet (e.g., across locations or seasons) correspond with differences in aesthetic judgements, 
and which examine whether calibration is stronger to more naturalistic environments, would be valuable to 
further understand whether any aspects of aesthetics are calibrated to real-world scenes within a lifetime or 
through evolution45.

In sum, we found that perceived beauty is not strongly calibrated to the statistics of real-world scenes. Statistics 
expressed relative to typical statistics of real-world images account for a somewhat smaller percentage of variance 
in judgements of the perceived beauty of art across all genres than statistics expressed in their original scales. 
For landscapes, beauty perception may be better related to real-world scene statistics: here, statistics expressed 
relative to real-world values accounted for slightly more variance in beauty judgements than statistics expressed 
in their original forms. However, the importance of an image statistic to the model of perceived beauty was not 
significantly related to how closely art reproduces the value from the real-world. Rather than the findings point-
ing to a strong calibration of perceived beauty to real-world scenes, the results suggest that people find Western 
oil paintings more beautiful the greater the painting’s variation in luminance. The relatively low variance in the 
ratings explained by image statistics overall suggests that other factors, such as meaning and semantic content, 
play a crucial role in aesthetic judgements of beauty.
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Methods
JenAesthetics art images and beauty ratings
We used the art images and subjective aesthetic ratings from the JenAesthetics dataset27–29, which includes 
images of artworks by various artists, from various time periods and from various genres of art, and includes 16 
different subject matters including abstract, landscape, still life, portraits, nude, urban scene, animal and scenes 
with people (see Fig. 3). Of the 1628 total images of paintings from 410 artists, we identified a subset of 785 
images for our analysis. Our selection process for this subset of the images sought to address overrepresentation 
of any artist by randomly selecting 3 images for a given artist where more than 3 artworks were included in the 
dataset for that artist (following Mather5). The JenAesthetics dataset includes several different types of subjec-
tive ratings gathered from 134 mostly student participants (19–24 years old, all studying fields unrelated to art 
and all providing written informed consent to participate) living in the city of Jena in central Germany27. Each 
participant rated a unique subset of 163 images, and across the dataset each image was rated by 19–21 different 
individuals. Here we analyze the ‘beauty’ ratings of the JenAesthetics artworks, where participants were asked 
‘how beautiful is the image?’ on a 1–100 scale with ‘not beautiful’ on the left side of the scale and ‘beautiful’ on 
the right, in order to operationalize a measure of aesthetic preference. We analyzed the beauty ratings, rather 
than the JenAesthetics aesthetic quality measure, as we felt beauty is a more understandable and clearer concept 
to rate and interpret. We analyzed the relationship between real-world scene statistics and perceived beauty for 
the full set of selected art images which included the following ‘genres’ of art: abstracts, landscapes, people, still 
lifes, portraits, nudes, animals and built environments. We also examined this relationship for two further subsets 
of all of the landscape artworks (n = 276) and all of the portrait artworks (n = 519) included in the JenAesthetics 
set, as categorized in Ref.5. For these subset analyses, we did not constrain the number of works that each artist 
contributed to the landscape and portrait image sets to ensure that there were sufficient numbers of art images 
and ratings to analyze.

Real‑world scene set
Our real-world scene set consisted of images collected in and around the city of Brighton and Hove in Southern 
England and were gathered as part of a project which aimed to capture the chromatic scene statistics and ‘visual 
diets’ of daily life in different environments45,46. The images were collected by 8 participants (5 female, 3 male) 
with a mean age of 34.7 (SD = 4.0) who wore color-calibrated head-mounted GoPro cameras as they went about 
their normal daily lives. The head-mounted cameras were set to ‘time-lapse’ mode and took an image every 30 s, 
with images stored in RAW format (with no internal white balance correction). The color calibration of the GoPro 
cameras allowed for accurate estimation of the colorimetric properties of the environment from the RAW image 
files. Participants wore the cameras for morning, afternoon and evening sessions which lasted until the battery 
ran out (for approximately 2–2.5 h), generating approximately 200–300 images per session. Participants were 
asked to wear the cameras as they went about their daily lives, but to remove the camera if there were concerns 
over safety or privacy. After any duplicate images were removed there was a total of 5406 RAW image files and 
all were analyzed. The contents of the images included indoor settings such as home and office environments 
as well as outdoor environments of the urban cityscape, the South Downs national park and coastal scenes (see 
Fig. 3A). All participants gave informed consent to take part and ethical approval was granted by the Sciences and 
Technology Cross-Schools Research Ethics Committee of the University of Sussex. Data collection and analysis 
was performed in accordance with the relevant guidelines and regulations including the Declaration of Helsinki.

Figure 3.   Montages of a random selection of the images used in the study. (A) A selection of images from 
the real-world scenes set45,46. (B) A selection of the public domain subset of art images from the JenAesthetics 
database27–29.
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We chose the JenAesthetics dataset and the Real-World Scenes set as Jena and Brighton have similar geo-
graphical features and properties. Both locations have a similar overall size and population density, lie on approxi-
mately the same latitude (Jena 50.9° N, Brighton 50.8° N), the surrounding area of both includes hilly countryside 
and natural water features, and both are within the temperate broadleaf forest biome. Both locations are cities 
within developed, Western European countries where lifestyles and ‘visual diets’ are likely to be similar, including 
exposure to both natural environments and modern building materials, architecture and interiors. Therefore, 
the similarities of culture, lifestyles, local environment and ecology, and seasonal daylight exposure make the 
real-world scenes a reasonable approximation of the natural statistics of the visual diets of the participants who 
provided the aesthetic ratings.

Image analysis
Analysis of the images was carried out in Matlab (Version R2023a). Images of the JenAesthetics set were rescaled 
such that the longest side was 800 pixels via bicubic interpolation to analyze them as they were presented in the 
JenAesthetics experiments27,53. Both the JenAesthetics images and real-world scenes were converted from RGB to 
LMS tristimulus values using the Stockman, MacLeod and Johnson54 cone fundamentals. For the JenAesthetics 
images, we approximated the viewing conditions under which the ratings were obtained by converting to LMS 
space based on RGB spectra and gamma values of a comparable display to which they were presented experimen-
tally. The JenAesthetics images were displayed on a BenQ T221W monitor. Without available measurements of 
the primary spectral power distributions of the particular display used in the JenAesthetics ratings experiment 
we approximated the viewing conditions with a Dell model E228WFPC LCD panel with CCFL backlight which 
is a similar low-to-mid-range general purpose display panel similar in age and screen technology to the BenQ 
T221W. For the real-world scenes, we used camera-specific RGB sensitivity functions for each GoPro camera to 
convert from the RAW image files to LMS tristimulus values.

For image analysis of the art images and the real-world scenes, the LMS tristimulus values were transformed 
to a cone-opponent color space representing the pixelwise activations of two chromatic cone-opponent channels 
(S/(L + M) and L/(L + M)) as well as luminance (L + M) as described by the MacLeod-Boynton14 chromaticity 
diagram. To allow for comparison between the two image sets, the luminance values for the JenAesthetics images 
and the real-world scenes were expressed as a proportion of the maximum possible value for that image set. The 
maximum luminance values were calculated by converting a theoretical maximum RGB white value to luminance 
(L + M). When calculating the chromatic statistics, we filtered out pixels with a corresponding relative luminance 
value of below 0.25% of the maximum luminance, as these dark pixels are too dark to be perceptible as a color 
but still may skew the chromatic image statistics as they may produce strong chromatic noise.

Chromatic statistics
We computed a set of chromatic image statistics using the MacLeod-Boynton chromaticity14 diagram (see 
Fig. 4A), including the mean and standard deviation of the pixel values for the two cone-opponent axes of the 
chromaticity diagram (S/(L + M) and L/(L + M)) and the saturation of image pixels in this chromaticity diagram. 

Figure 4.   Chromatic image statistics. (A) the MacLeod-Boynton chromaticity diagram with the two cone-
opponent axes plotted against one another and the negative diagonal that corresponds to colors that appear blue 
and yellow shown with the yellow dashed line. (B) A representative image from each of the two image sets as a 
thumbnail and with each pixel value plotted in the MacLeod-Boynton14 chromaticity diagram. A public domain 
image from the JenAesthetics art set is shown with a red border and plotted with red data points and an image 
from the real-world scenes set is shown with a blue border and plotted with blue data points. Standard deviation 
ellipses are shown in black fitted to each of the chromaticity distributions. The ellipse fitted to the artwork 
image shows lines in black indicating the ellipse axes used to calculate the ‘natural chromatic elongation’ of the 
chromaticity distribution.
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To compute saturation we converted from the Cartesian cone-opponent L/(L + M) and S/(L + M) values by 
subtracting the white point value from each of the values, scaling the L/(L + M) values to the same range as the 
S/(L + M) values, and extracting polar coordinates. We also calculated the standard deviation of the pixelwise 
luminance values to quantify how the luminance varied over the whole image. Images with a high standard 
deviation in luminance have a broader range of differences between lighter and darker pixels whereas those with 
a low standard deviation in luminance have a narrower range of differences between lighter and darker pixels.

We also computed two chromatic image statistics that aimed to capture the distribution of pixel chromatici-
ties: the natural chromatic elongation and the angle of maximum color variance (as in Ref.6, see Fig. 4). We fit a 
standard deviation ellipse to the distribution of S/(L + M) and L/(L + M) chromaticities in the MacLeod-Boynton14 
chromaticity diagram. Our ‘angle of maximum color variance’ variable (‘ellipse angle’ in Ref.16), was calculated 
as the angle of the major axis of this standard deviation ellipse and represents the chromatic axis along which 
the pixels of an image are biased. We then normalized the variances of S/(L + M) and L/(L + M) values in a scaled 
version of the MacLeod-Boynton14 chromaticity diagram and fitted a standard deviation ellipse to the Carte-
sian coordinates of pixels in this scaled chromaticity diagram. We calculated the ‘natural chromatic elongation’ 
(termed ‘axis ratio’ in Ref.16), as the log of the ratio of the ellipse axis oriented along the negative diagonal and the 
length of the orthogonal axis. Values greater than zero for the natural chromatic elongation describe distributions 
of chromaticities that are spread more widely along the negative diagonal associated with colors that appear blue 
and yellow, as is characteristic of natural scenes15,16.

Spatial image statistics
We computed a set of spatial image statistics that have been related to aesthetics in prior research: fractal dimen-
sion, lacunarity, spectral slope, straight and curved edge density and luminance entropy. Fractal dimension rep-
resents the extent to which self-repeating patterns across scales fill a space10. We measured 2-D fractal dimension 
which measures how a 2-D plane pattern fills a 3D space, with values ranging from 2 to 3 (as described in Ref.55). 
As the methods for calculating the fractal dimension of an image and the spectral slope (as described below) 
require images to be square, we cropped the images so that the longest sides were trimmed to the same length as 
the shorter sides for these two image statistics, keeping the largest possible central square of the image. Lacunarity 
characterizes how heterogeneous the spatial patterns comprising an image are and captures the rotational invari-
ance of an image42. For example, images with more gaps between patterns generally have higher lacunarity. We 
computed lacunarity using a gliding box counting algorithm and calculated the mean lacunarity across different 
box sizes56. The spectral slope of an image describes how Fourier amplitude varies at different spatial scales. The 
spectral slope in natural scenes of 1/f α where f is the spatial frequency and α is approximately 1 (e.g.,12) repre-
sents a characteristic pattern where amplitude decreases as spatial scales become finer. Straight and curved edge 
density describe the proportion of pixels in an image that made up edges, separately for curved and for straight 
edges. We used the gradient-based connected component algorithm (adapted from the method described in 
Ref.43) to calculate this. Entropy refers to the degree of disorderliness or predictability of the information in an 
image. An image with a low level of entropy has a simple texture made up of highly predictable spatial patterns 
whereas an image with high entropy has a disordered spatial arrangement with little uniformity in composition. 
We calculated the Shannon entropy using the ‘entropy’ function in Matlab (R2023a).

Analysis strategy
As in Mather’s5 analysis of the JenAesthetics Dataset, we used partial least squares regression (PLSR) to model the 
subjective ratings of beauty based on the image statistics of the artworks. Some of the image statistics used in our 
analyses are significantly correlated, which is incompatible with standard multiple regression analysis approaches. 
To allow our analyses to include variables that are correlated but that have critical differences, we used the PLSR 
method (as in Ref.5). The PLSR method overcomes the requirement for no multicollinearity among predictor 
variables by transforming the predictors into components (linear combinations of the original predictor variables) 
which can then be used in a regression to model the dependent variable57, in this case the beauty ratings of the 
artworks. To decide on the number of components to include in our PLSR models, we examined the amount of 
variance explained when including only the first component, then repeated this step adding in each additional 
component until all were included in the model. We then found the asymptote for variance explained where 
adding in another component did not explain more variance and chose the number of components for the final 
model based the lowest number of components that explained 85% of the asymptotic value for variance (after 
Mather5). To interpret the final model in all analyses, we relied both on the variance explained and we assessed 
the role of each predictor through their variable importance in projection (VIP) scores. The VIP score represents 
the contribution that a variable makes to the model and is calculated as the sum of squared correlations between 
the PLS components and the original variable (see “plsregress” function in MATLAB)57. Components with a VIP 
score greater than 1 are more important than average. To identify important VIPs we used a threshold VIP score 
of > 1.25 as this is recommended in the case of high correlations among predictors5. In order to assess whether 
the variance explained by PLSR was statistically significant, we used a permutation approach by repeating the 
PLSR analysis 10,000 times with random permutations of the beauty ratings for the artworks. Where the variance 
explained by the main analysis was greater than the 95th percentile of the variance explained in the permutation 
analyses, we accepted the model and proceeded with interpretation. All analyses were applied to our subset of 
JenAesthetics artworks across genres, as well as separately for the landscape and portrait images.

We first conducted PLSRs on the original linear versions of the image statistics of the art. However, in order 
to address our main hypothesis that aesthetic appreciation of art is calibrated to the image statistics of real-world 
scenes, we also conducted PLSRs with the image statistics of the artworks expressed relative to those of the real-
world scenes. For each artwork we took the value of the image statistic calculated from the image and subtracted 
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the mean value for the corresponding image statistic in the real-world scene set. We next divided those values 
by the standard deviation of the set of image statistics from real-world scenes producing a z-score value. The 
z-score represents the degree to which an image statistic for a given artwork deviates from the average value for 
that image statistic in real-world scenes, in units of standard deviation (see58). We analyze the absolute value 
of the z-score which represents the extent to which the image statistic of the artwork deviates from real-world 
scenes, regardless of whether it is above or below the mean.

Before entering the predictors (either as raw image statistics or expressed relative to real-world values) into 
PLSRs we rank-inverse normal transformed. This produces perfectly normal distributions of predictors (except 
in the case of tied ranks), and avoids any statistical artefacts arising from non-normal predictors. This was an 
important consideration, especially for image statistics expressed relative to real-world values, where the distri-
butions of absolute z-scores could be highly skewed.

Data availability
The datasets generated during and/or analyzed during the current study are available in the OSF repository 
[https://​osf.​io/​72xuq/]. We provide the values for our analysis of the raw image statistics of the JenAesthetics 
art stimuli, the raw image statistics of the real-world scenes, and the image statistics of the Jen Aesthetics art 
stimuli expressed relative to the real-world scene set. The JenAesthetics dataset is available with the permission 
of Christoph Redies et al. on reasonable request (see27). The real-world scene set is not publicly available due to 
containing images where participants can be identified or containing personal information such as inside people’s 
homes and family lives. We therefore provide the raw image statistics of the stimuli rather than the stimuli and 
image analysis code. We make our data analysis code available, and provide the links to any open access code 
made available by others, in the same OSF repository.
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