Skip to main content
. 2024 Jul 24;111(8):1736–1749. doi: 10.1016/j.ajhg.2024.06.012

Table 2.

Simulation results evaluating the performance of mintMR and competing methods in different scenarios

Number of IVs Probability of QTL effect being consistent across QTL and GWAS sample Number of tissues for each exposure
15 25 100 0.8 0.5 0.2 5 10 15

Power

mintMR 0.734 0.822 0.932 0.867 0.789 0.660 0.553 0.713 0.739
mintMRoracle 0.764 0.861 0.964 0.898 0.852 0.746 0.586 0.810 0.900
mintMRsingle-gene 0.547 0.789 0.963 0.751 0.712 0.527 0.497 0.538 0.583
IVW+metaIV 0.351 0.352 0.530 0.299 0.388 0.399 0.321 0.286 0.281
Egger 0.236 0.254 0.220 0.367 0.289 0.264 0.240 0.180 0.192
MVMR-IVW 0.444 0.774 0.969 0.682 0.572 0.436 0.316 0.302 0.487
MVMR-Egger 0.383 0.729 0.898 0.562 0.495 0.407 0.266 0.326 0.404
MVMR-Lasso 0.631 0.783 0.969 0.793 0.679 0.443 0.612 0.364 0.493
MVMR-Median 0.526 0.745 0.920 0.723 0.671 0.500 0.418 0.225 0.480
MVMR-Robust 0.276 0.730 0.961 0.513 0.432 0.324 0.175 0.190 0.407

Type I error rate

mintMR 0.049 0.055 0.041 0.053 0.066 0.060 0.052 0.037 0.062
mintMRoracle 0.049 0.051 0.056 0.049 0.054 0.050 0.048 0.050 0.048
mintMRsingle-gene 0.115 0.109 0.059 0.236 0.152 0.194 0.174 0.235 0.126
IVW+metaIV 0.145 0.144 0.093 0.148 0.156 0.168 0.146 0.157 0.125
Egger 0.134 0.112 0.074 0.109 0.110 0.127 0.138 0.124 0.105
MVMR-IVW 0.122 0.064 0.055 0.122 0.106 0.067 0.126 0.122 0.081
MVMR-Egger 0.122 0.063 0.055 0.120 0.098 0.064 0.126 0.153 0.084
MVMR-Lasso 0.194 0.068 0.057 0.188 0.129 0.069 0.303 0.145 0.081
MVMR-Median 0.114 0.116 0.100 0.172 0.112 0.069 0.135 0.076 0.103
MVMR-Robust 0.066 0.047 0.051 0.067 0.052 0.036 0.072 0.062 0.060

When varying the number of IVs, the proportion of variation in outcome explained by UHP effect is 0.1. The causal effects are generated from N(0,0.01). The probability of QTL effect being consistent across QTL and GWAS samples is 0.8. Five tissues are generated for each exposure. When decreasing the probability of QTL effect being consistent, the causal effects are generated from N(0,0.02). We simulated 15 IVs across 5 tissues for each exposure. When the number of tissues for each exposure increased from 5, 10, to 20, we simulated 15, 25, and 45 IVs, respectively. The probability of consistency is 0.8. Causal effects are generated from N(0,0.01). Results are asterisked () for methods unable to control type I error rates (≥0.1).