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Introduction
Renal cell carcinoma (RCC) represents around 
5% of newly diagnosed cancer cases in men and 
3% in women, ranking the sixth most common 
malignancy in males and tenth in females with a 
more than doubled incidence over the past half-
century in the developed world. Three main his-
tological subtypes can be distinguished, with the 
most common being clear cell RCC (ccRCC), 
followed by papillary RCC (pRCC) and chromo-
phobe RCC (chRCC).1 Most cases are discov-
ered incidentally during imaging, leading to a 
survival rate being dependent on the stage at 
diagnosis. General risk and modifiable risk factors 
include obesity, smoking, poorly controlled 
hypertension and renal failure.

Underlying genetic predispositions significantly 
contribute to tumour development, further course 
of the disease and even therapy response. An 
example that has fundamentally changed the 
therapy approach in RCC is the finding of muta-
tions in the gene. The VHL gene mutations are 
associated with the Hypoxia-inducible factor 
(HIF)/vascular endothelial growth factor (VEGF) 

signalling pathway, which results in the overex-
pression of VEGF and platelet-derived growth 
factor (PDGF) receptors.2,3 This finding leads to 
the notably angiogenic characteristic of RCC and 
to the development of targeted therapies for 
metastasized disease, such as tyrosine kinase 
inhibitors (TKIs), mammalian target of rapamy-
cin (mTOR) inhibitors and recombinant human-
ized monoclonal IgG1 antibodies that oppose 
VEGF.4–11

The highly immunogenic nature is a further char-
acteristic of RCC,12 being the basis for already 
outdated therapeutic approaches with interleukin 
(IL)-2 and interferon-α (IFN-α) as well as the to 
date cutting-edge RCC treatment with immune 
checkpoint inhibitors (ICIs).10,13–20

In addition to characteristics such as vasculariza-
tion and immunogenicity, emerging evidence 
highlights the importance of sex hormone (SH) 
signalling in various solid tumours. Previous  
pan-cancer analyses have identified sex-specific 
characteristics in the tumour microenvironment 
(TME), impacting tumour mutation burden 
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(TMB), immune cell counts, immune checkpoint 
genes and related functional pathways in the 
TME.21 SH and their corresponding receptors, 
including the androgen receptor (AR), oestrogen 
receptor (ER) and progesterone receptor (PR), act 
as ligand-dependent transcription factors and play 
critical roles in cellular growth and differentiation, 
both in neoplastic and non-neoplastic states.22 
Moreover, there is increasing evidence that these 
receptors can also stimulate gene expression 
through pathways that are independent of ligand 
interactions.23 This role is well documented in hor-
mone-dependent organs such as breast, prostate 
and gynaecologic cancers24–26 and the significance 
of these pathways is evident in the efficacy of  
hormone withdrawal treatments using specific 
inhibitors.26–28 Furthermore, exposure to diethyl-
stilbestrol (DES), a synthetic oestrogen or environ-
mental chemicals mimicking androgens, increases 
the risk of clear cell adenocarcinoma of the cervix 
or vagina in women and promotes the proliferation 
of prostate cancer in men, respectively.29–31

However, there is increasing attention to intrigu-
ing sex-based disparities in cancer incidence, par-
ticularly the higher rates observed in men 
compared to women, affecting nonreproductive 
organs.32–36 AR activation mediated by testoster-
one and its derivatives has been described as a 
stimulator of tumour cell proliferation and migra-
tion, which may contribute to the higher inci-
dence of many cancers in men.37–42 Conversely, 
female SHs oestrogen (E2) and PR may inhibit 
tumour cell proliferation and migration, primarily 
by inducing apoptosis, thereby reducing the risk 
of tumour development in certain contexts. 
Notably, the effects of E2 may vary or even 
oppose each other depending on the forms of ER 
(ER-α vs ER-β), its genetic variations (ERα36) 
and, finally, the target organ.43–47

As with many neoplasms, RCC is more common 
in men, suggesting that underlying sex-specific 
pathophysiology and pathways may underlie the 
epidemiological differences in tumour develop-
ment.48,49 Initial findings indicate that hormones 
also play a role in the development and progres-
sion of RCC.50 The implication of the role of ster-
oid receptor signalling pathways has been 
described similarly, as regression of metastatic 
RCC during the administration of progestin or 
androgen was reported.51 Other sex-related hor-
monal factors, like age at first childbirth, parity, 
oral contraceptive use and the condition after 
hysterectomy, have even more interestingly 

shown to affect the risk of RCC.52–54 However, 
these epidemiological studies present a challenge 
in differentiating between sex, which pertains to 
biological and physiological attributes, and  
gender, which refers to socially constructed 
attributes.55–57

Nevertheless, it has shown to be crucial to eluci-
date and gain a more detailed understanding of 
the hormonal-molecular pathway mechanisms 
involved in RCC development and progression to 
further promote individualized tumour prevention 
and treatment strategies. Furthermore, although 
the role of ICI in the primary therapy setting will 
not as quickly be displaced, potential as well as 
supportive or alternative treatments will be dis-
cussed. As sex therefore entails both individual 
genetic and pathophysiological attributes, we aim 
to describe, understand and analyse the role of sex 
itself and SH in kidney cancer formation.

Methods
Literature research was conducted between 
January 2023 and September 2023 to identify 
studies reporting on the association between SH 
and RCC development. The search was per-
formed using commonly used databases, includ-
ing PubMed, Medline and Google Scholar. The 
study language was limited to English. The fol-
lowing medical subject heading terms were used 
to identify relevant results: ‘kidney cancer’, ‘renal 
cell cancer’, ‘metastatic RCC’, ‘tumour microen-
vironment’, ‘sex hormones’, ‘steroid receptors’, 
‘oestrogen’, ‘testosterone’, ‘progesterone’, ‘andro-
gen’, ‘oestrogen receptor’, ‘androgen receptor’, 
‘progesterone receptors’, ‘RNA’, ‘tyrosine kinase 
inhibitor’, ‘immunotherapy’ and ‘checkpoint 
inhibitor’. Thereafter, 38 on general topics and 
151 studies that investigate specific aspects of the 
research area were included in this review.

SHs and signal transduction pathways in 
renal cell cancer
Signal transduction pathway-mediated processes 
refer to the series of molecular events that trans-
mit signals from the cell surface to the nucleus, 
leading to specific cellular responses. These  
processes play a fundamental role in various bio-
logical functions, including cell growth, differen-
tiation, proliferation and survival. Interaction 
with this mechanism by different signal molecules 
like AR, ER, PR and their ligands causes activa-
tion or inactivation of downstream signalling 
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components.58,59 Here, we present evidence 
strongly suggesting that the interplay between the 
SH axis and signalling pathways implicated in 
oncogenesis, observed in other cancer types, may 
also have relevance in the development of RCC 
(Table 1).

Androgens
The androgen signalling axis is described as a key 
player in the development and progression of 
prostate cancer,26 which is recognizably already 
influenced by sex in its primary development. 
Yet, an increasing number of studies suggest a 
potential contribution in RCC as well, which is 

gender-independent at first glance. For instance, 
a varying AR expression (15%–55%) in RCC 
with mixed correlations to outcomes was 
revealed.70–74 A noteworthy correlation between 
AR expression and lower pathological stage  
and grading at diagnosis, as well as subsequent 
better outcomes, has been described.70,71,75,76 
Controversially, studies have indicated worse 
oncological prognosis and overall outcome in cor-
relation to AR expression72,73,77 as well.

In this context, the AR has been identified as a 
potential co-regulator of the HIF2a/VEGF sig-
nalling pathway.78 Its activation induces HIF2α/
VEGF expression in RCC tumour tissue, 

Table 1. Studies characterizing sex hormone interactions with signalling pathways during cross-talk in renal 
cell cancer.

Sex hormone 
axis

Receptor Regulation Pathway Effect Reference

Androgen AR ↑ HIF2α/VEGF/VHL •  Tumour progression
•  Cell migration and 

invasion

(60)

AR ↑ PI3K/AKT/NF-κB/
CXCL5

•  Tumour progression
•  Vascular endothelial 

cell proliferation and 
recruitment

(61)

AR ↑ Neutrophil/c-Myc •  Tumour cell 
proliferation

(62)

AR ↑ STAT5 
phosphorylation

•  Tumour cell 
proliferation

(63)

Oestrogen ER-α ↑ VHL/HIF-1α/p53 •  Tumour cell 
proliferation

(64)

ER-α ↑ VEGFa/HIF-2α •  Tumour cell 
proliferation

(65)

GPER ↑ PI3K/AKT/MMP-9 •  Tumour progression
• Cell migration

(66)

ER-β ↓ AKT/ERK/JAK/Bid
→ Caspase-3, -8, 
-9

•  Enhancement of 
tumour apoptosis

(67)

ER-β ↑ TGF-β1/SMAD3 •  Tumour progression
• Cell migration

(68)

ER-β ↑ Angiopoietin-2/
Tie-2

•  Vascular endothelial 
cell proliferation and 
recruitment

(69)

AR, androgen receptor; Bid, BH3 interacting-domain death agonist; ER, oestrogen receptor; ERK, extracellular signal-
regulated kinase; GPER, G-protein coupled oestrogen receptor; HIF-2α, hypoxia-inducible factor-2α; JAK, janus kinase; 
MMP-9, matrix metalloproteinase-2; NF-κB, nuclear factor-κB; PI3K, phosphoinositide 3-kinases; pVHL, von Hippel-
Lindau protein; RCC, renal cell carcinoma; TGF-β1, transforming growth factor beta 1; VEGF, vascular endothelial growth 
factor; ↑, promoting effect; ↓, inhibiting effect.
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subsequently promoting RCC progression. In a 
preclinical mouse model, targeting AR with AR 
degradation enhancers showed an effectively sup-
pressed RCC progression, indicating a promising 
therapeutic approach.60 Guan et  al. described a 
further pro-angiogenic effect of AR by demon-
strating its function as a regulator of the PI3K/
AKT → NF-κB → CXCL5 signalling pathway, 
which is known to influence RCC progression 
and endothelial cell recruitment. The group high-
lighted the involvement of NF-κB, a chemokine 
responsible for tumourigenesis and inflammation 
in cancer cells. NF-κB has been suggested to be 
an additional potential mediator in the PI3K/
AKT signalling pathway, contributing to RCC 
progression.61

RCC is widely recognized as a typical ‘hot 
tumour’, characterized by an abundant infiltra-
tion of CD8+ T cells in the TME.79–81 While a 
higher infiltration of CD8+ T cells predicts a bet-
ter prognosis in many cancers due to their cyto-
toxic function,82–84 this correlation does not apply 
to RCC patients.85 However, CD8+ T cells have 
distinct subtypes, with conventional cytotoxic 
CD8+ T cells having an anticancer role, whereas 
exhausted CD8+ T cells become dysfunctional. 
Studies investigating sex bias have identified the 
exhausted and dysfunctional state of CD8+ 
T-cells in various cancers, including bladder, 
prostate and liver cancers. In these contexts, the 
AR has been implicated both as a transcription 
factor promoting exhausted CD8+ T-cell forma-
tion and as an inhibitor of CD8+ T-cell function, 
activity and stemness.86–88 Investigations into the 
differences in the TME of RCC between male 
and female patients have revealed that male RCC 
TME exhibits higher infiltration and exhaustion 
of CD8+ T cells compared to females. 
Additionally, the crucial role of the androgen-AR 
axis in inducing CD8+ T-cell exhaustion in RCC 
could be shown.89 The presence of intratumoural 
neutrophils in RCC has been associated with a 
negative prognosis in RCC as well. High-grade 
RCC patients exhibited a higher degree of neu-
trophil infiltration in tumour tissue compared to 
low grade, indicating the potential role of cancer-
induced immunosuppression in promoting can-
cer progression through the modulation of 
neutrophils.90 Focusing on N2 neutrophils, which 
are known to be involved in carcinogenesis, angi-
ogenesis and immunosuppression, Song et  al.62 
described their ability to promote RCC prolifera-
tion by upregulating AR expression via the AR-c-
Myc signalling pathway.

Moreover, high levels of dihydrotestosterone 
(DHT) receptors were found more often in higher 
staged RCC tumours.91 In this context, He et al. 
conducted an experimental model demonstrating 
that transfected normal human kidney cells with 
AR with a subsequent exposure to a carcinogen, 
resulted in a higher incidence of larger cell colo-
nies and growth. Furthermore, inoculating func-
tional AR into stable RCC cell lines resulted in 
increased tumour proliferation.60 Pak et  al. 
observed that treatment with DHT led to an 
increase in cell proliferation in both AR-positive 
and AR-negative RCC cells, depending on the 
concentration of DHT. The study also showed a 
dose-dependent rise of STAT5 in RCC cells fol-
lowing DHT treatment. Yet, as AR was knocked 
down with small interfering ribonucleic acid 
(siRNA), there was a reduction in cell prolifera-
tion specifically in AR-positive cells. Interestingly, 
the decrease in phosphorylated STAT5 levels 
after AR knockdown mirrored these findings, 
implicating STAT5 activation as a potential 
mechanism behind DHT-induced RCC cell 
growth.63 These observations provide evidence 
that the androgen axis affects cell proliferation and 
migration and therefore must be relevant in the 
context of RCC development.92–95

Oestrogens
The E2 signalling axis has been shown to influence 
the development of RCC significantly as well. Two 
distinct forms of ER, ER-α and ER-β, are present 
in normal renal tissue.96 ERs have furthermore 
already been detected in stromal tumours, cystic 
nephromas and angiomyolipoma.97–102 ERs in 
RCC seem to be highly variable in their expression 
with controversial data. Earlier studies indicate a 
high ER presence (30%)100 followed by more 
recent observations, describing a low ER distribu-
tion (1.1%). E2 is suggested to affect RCC cell 
viability, DNA damage, oxidative stress, nuclear 
factor phosphorylation, clearly influencing tumour 
growth and additionally may affect the balance 
between autophagy and apoptosis in RCC.67,103

Oestrogen receptor-α. Genetic variations within 
the ER-α gene have a notable role in RCC devel-
opment. An exploratory analysis of 113 RCC 
cases revealed differences in genotype distribu-
tion at codon 10 on exon-1 of the ER-α gene 
compared to healthy individuals.104,105 ERα36 is 
known to be another splice variant, found in the 
cytoplasm and plasma membrane. Elevated 
ERα36 levels in these locations are linked to 
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adverse prognostic factors in RCC, including 
poor disease-free survival, larger tumour size and 
advanced clinical stages.46,106

A complex underlying interaction in the RCC for-
mation involves the interplay between ER-α, 
VHL, HIF-1α and p53. ER-α is assumed to be a 
target for proteasomal degradation by the tumour 
suppressor von Hippel-Lindau protein (pVHL) 
E3 ligase. Overexpression of pVHL suppresses 
ER-α in RCC, while pVHL downregulation 
increases ER-α expression.64 Elevated ER-α 
expression has been found to enhance the activity 
of the HIF-1α transcription factor. In VHL-
deficient cells, the expression of both ER-α and 
HIF-1α persists, and blocking ER-α using its 
inhibitor can effectively inhibit the proliferation of 
VHL-deficient cells. Notably, the anti-prolifera-
tive effect of faslodex, an ER-α inhibitor, in VHL-
deficient cells by inducing the expression of p53 
could be demonstrated.64 ER-α furthermore pro-
motes the transcription of growth-related factors, 
driving gene expression, mitosis, proliferation, 
cancer development and tumour progression.54

The G-protein-coupled oestrogen receptor 
(GPER), distinct from nuclear ER, also plays a 
role in oestrogen-dependent development and 
progression of cancers, including RCC.107–110 
RCC cell lines express GPER abundantly and its 
activation promotes RCC cell migration and 
invasion by upregulating matrix metalloprotein-
ase-2 (MMP-2) and MMP-9, as well as activating 
downstream signalling pathways, particularly 
MAPK and PI3K/AKT, promoting cell migra-
tion via the PI3K/AKT/MMP-9 pathway.66

Oestrogen receptor-β. The role of ERβ remains 
controversial. While some studies show an inhibi-
tory effect on cell proliferation, others suggest 
that ERβ expression may promote cancer devel-
opment.111–113 However, initial investigations sug-
gest that ER-β signalling appears to have a 
tumour-suppressive role in RCC114 characterized 
by anti-proliferative functions, inhibition of 
migration, suppression of invasion and enhance-
ment of apoptosis.54,67,103

The inhibitory effects of oestrogen via ER-β acti-
vation in RCC involve dampening downstream 
hormone signalling, including AKT, extracellular 
signal-regulated kinase (ERK) and janus kinase 
(JAK) activation, while increasing the expression 
of apoptotic genes such as BH3 interacting-
domain death agonist (Bid), Caspase-3, Caspase-8 

and Caspase-9.54,67 Conversely, subsequent inves-
tigations revealed the contrary role of ER-β in 
RCC. Clinical data showed increased ER-β 
expression in advanced-stage or high-grade 
tumours, correlating with unfavourable survival 
outcomes and reduced disease-free survival for 
RCC patients.68,69,115,116 ER-β has been identified 
as a promoter of RCC cell invasion through the 
augmentation of the TGF-β1/SMAD3 signalling 
axis. Targeting this pathway with anti-oestrogens 
or TGF-β receptor inhibitors effectively reduced 
RCC tumour growth and invasion.68 ER-β was 
also found to regulate Angiopoietin-2 (ANGPT-2)
in RCC cells through oestrogen response elements 
(EREs) on the ANGPT-2 promoter. The esca-
lated ANGPT-2 levels in RCC cells exert a stimu-
latory influence on angiogenesis by engaging and 
phosphorylating the Tie-2 receptor, leading to the 
formation of HUVEC tubes. Targeting the ER-β/
ANGPT-2/Tie-2 pathway with faslodex-enhanced 
RCC sensitivity to the TKI sunitinib treatment 
emerges as a promising therapy strategy.69 ER-β 
signalling has been implicated in inducing the 
VEGFa/HIF2α pathway as well.65 Infiltrating 
immune cells, particularly T cells, can modify 
ER-β expression and can promote RCC invasion. 
T-cell co-cultures with RCC cells resulted in ele-
vated levels of T-cell-attracting factors, including 
IFN-γ, C-C motif chemokine ligand (CCL) 3 and 
CCL5, suggesting the establishment of a positive 
regulatory feedback mechanism. Simultaneously, 
infiltrating T cells appears to contribute to RCC 
cell invasion by influencing ER-β expression and 
concurrently suppressing the expression of 
DAB2IP. Intriguingly, the suppression of DAB2IP 
could subsequently reverse the T-cell-mediated 
promotion of RCC cell invasion.117 The interac-
tion in this course concerning immunotherapy 
treatment with the checkpoint inhibitor nivolumab 
in RCC patients has been recently described. This 
therapeutic approach, which elicits immunomod-
ulatory effects on neutrophils, has been found to 
induce alterations in the expression of sex SH, 
particularly oestrogen, during the treatment in 
patients with mRCC.118 Notably, an intriguing 
observation emerged with the administration of 
TKIs sunitinib and axitinib, leading to increased 
expression and stability of ER-β in RCC cell 
lines.119,120

Progesterone
Progesterone signalling axis has also been shown 
to potentially influence the development of RCC. 
PR expression is observed in normal and 
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carcinomatous kidney tissue, with varying levels 
in different histological RCC subtypes.51,121,122 
PR presence is reported in benign renal tumours 
and metaplastic nodules,121 at a high rate than in 
malignant tumours of the kidney. Higher levels of 
expression were notably observed in cases of renal 
oncocytoma (RO).60 Literature also suggests that 
PR demonstrates nuclear reactivity in a range of 
10%–50% of tumour cells across all RO cases. 
Interestingly, up to 20% higher PR expression has 
been described in chRCC. In comparison, non-
neoplastic renal tissue displays scattered stromal 
cells and tubular cells that show reactivity  
for both ER and PR, as in comparison fewer than 
1% of RCC cases show reactivity for these 
receptors.123

Progestin and adipoQ receptor 5 (PAQR5), a 
membrane-bound PR, can activate downstream 
signalling pathways affecting various cellular pro-
cesses, including cell proliferation, migration and 
invasion. In RCC, decreased expression of 
PAQR5 is linked to tumour stage, cancer grade, 
lymph node invasion and distal metastasis, all in 
all suggesting a role in RCC progression. While 
the precise mechanisms underlying PAQR5s reg-
ulation of downstream signalling pathways remain 
unclear, its functions are thought to align with 
pathways related to ribosome function, focal adhe-
sion and intracellular signal transduction path-
ways such as PI3K-AKT, MAPK and mTOR.124 
Progesterone Receptor Membrane Component 1 
(PGRMC1) is another member of the membrane-
associated PR protein family, which has been 
shown to distribute key functions in various can-
cer types, including RCC.125 Elevated PGRMC1 
levels in RCC tissues are correlated with higher 
tumour stage and are more common in poorly dif-
ferentiated tumours. High expression of PGRMC1 
in RCC tissue compared to adjacent non-cancer-
ous tissues evinces its potential utility as a diag-
nostic and prognostic biomarker for RCC, as it 
has already demonstrated the ability to influence 
cancer cell susceptibility to chemotherapy, further 
emphasizing its correlation with tumour malig-
nancy and progression.125

SHs and RNA-mediated processes in RCC
Noncoding RNA (ncRNA) and their influence on 
regulatory processes open up a further field of 
interest concerning hormone-dependent modula-
tion of RCC initiation and progression at a molec-
ular level. NcRNA encompasses approximately 
90% of the human transcriptome and does not 

encode proteins. Its involvement in tumour initia-
tion and progression has gained significant atten-
tion in recent years.

MicroRNA (miRNA) consists of a small RNA 
molecule that is capable of binding to the 
3′-untranslated region (3′-UTR) of target gene 
transcripts, leading to translational repression or 
mRNA destabilization. Long noncoding RNA 
(lncRNA) exceeding 200 nucleotides in length 
has also been shown to play a regulatory role in 
cancer biology.126 These types of RNA can either 
act as oncogenes or tumour suppressor genes, 
exerting influence by modulating diverse signal-
ling pathways.127 Another category of ncRNA, 
referred to as pseudogenes which are non-func-
tional duplicates of genes, has been identified as a 
significant contributor to cancer128 and may act as 
competitive endogenous RNAs (ceRNA).129 
Finally, circular RNAs (circRNA) constitute a 
newly discovered group of ncRNAs, primarily 
formed as loop structures at the exons due to 
non-canonical splicing. Recent data suggest that 
aberrant circRNA expression is linked to the 
onset and progression of diseases, particularly 
various types of human malignancies.130,131 The 
following chapters will present current findings 
on the connection between ncRNA and the sig-
nalling pathways of SH, analysing their potential 
involvement in the progression of RCC (Table 2 
and Figure 1).

Androgens
Argininosuccinate synthase 1 (ASS1) expression 
showed a negative correlation to tumour staging, 
indicating a reduced ASS1 expression during 
tumour progression. Recent studies have addi-
tionally highlighted the significance of decreased 
ASS1 activity in promoting tumour growth. 
Immunohistochemical staining of 40 each pri-
mary RCC and adjacent normal renal tissue sam-
ples demonstrated a lower ASS1 expression in 
RCC tissue. Following this, one could implicate 
that decreased ASS1 expression is associated with 
a poorer prognosis in RCC, highlighting the pos-
sible role of ASS1. Increasing AR expression in 
vitro led to decreased ASS1 expression, promot-
ing cell proliferation. Conversely, AR knockdown 
resulted in increased ASS1 expression. In this 
context, miRNA-34a-5p has been identified as a 
regulator of ASS1, capable of negatively modulat-
ing its expression. Notably, ASS1P3 has been 
indicated as a pseudogene, which could function 
as a ceRNA, to modulate the expression of its 
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Table 2. Studies characterizing sex hormone interactions with ncRNA during cross-talk in renal cell cancer.

Sex hormone 
axis

HR/ncRNA 
interaction

ncRNA effect Pathway Regulation Effect on RCC Reference

Androgen AR/ASS1P3 ↓ ASS1P3 miRNA-34a-5p/
ASS1

↑ •  Tumour proliferation
• Tumour progression

(132)

AR/HOTAIR ↑ HOTAIR GLI2/
VEGFA + PDGFA/
CSC (SOX2, 
OCT4, NANOG, 
SLUG)

↑ •  Tumour 
angiogenesis

• Cancer stemness

(133)

lncRNA-
SARCC/AR/
miRNA-143-
3p

AR ↓ miRNA-143-3p
lncRNA-SARCC ↓ AR

AKT; MMP-13; 
K-RAS; P-ERK

↑ •  Tumour cell 
migration

•  Tumour proliferation
• Tumour progression

(134)

lncRNA-
SARCC/AR

lncRNA-SARCC 
modulates the AR 
under different 
oxygen conditions

HIF-2α/C-MYC ↑↓ •  Suppresses tumour 
progression under 
hypoxia

•  Induces tumour 
progression under 
normoxia

(135)

AR/miRNA-
185-5p

AR ↑ miRNA-185-5p 
expression
miRNA-185-5p ↓ 
VEGF-c
and ↑ HIF-2α/VEGFA 
expression

VEGF-c
HIF-2α/VEGFA

↑↓ •  Increases 
haematogenous 
metastasis

•  Decreases lymphatic 
metastasis

(136)

AR/
circHIAT1

AR ↓ circHIAT1 
resulting in 
deregulating miR-
195-5p/29a-3p/29c-
3p expressions, which 
↑ CDC42 expression

miRNA-195-5p, 
miRNA-29-3p,
miRNA-29-3p/
CDC42

↑ •  Tumour cell 
migration

•  Tumour cell invasion

(137)

AR /
miRNA-145

AR ↓ miRNA-145 HIF-2α/VEGFA, 
MMP-9, CCND1

↑ •  Tumour cell invasion
•  Tumour cell 

proliferation

(138)

Oestrogen ER-β/
circATP2B1

ER-β ↓ the 
expression of 
circATP2B1
CircATP2B1 ↓ 
miRNA-204-3p, 
which caused the ↑ 
expression of FN1

miRNA-204-3p/
FN1

↑ •  Tumour cell 
migration

• Tumour progression

(116)

ER-β/
HOTAIR

ER-β ↑ HOTAIR 
expression
HOTAIR ↓ various 
miRNA and their 
suppressive effect on 
different oncogenes

miRNA-138/
ADAM9
miRNA-204/
CCND2
miRNA-217/
VEGFA, VIM, 
ZEB1, ZEB2
miRNA-200c/
ZEB1, ZEB2

↑ •  Tumour cell 
migration

•  Tumour proliferation
•  Tumour cell invasion

(115)

(Continued)
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corresponding gene, ASS1, by competing with 
miRNA-34a-5p. Reduced ASS1P3 expression 
inhibited ASS1 by miRNA-34a-5p, resulting in 
increased cell proliferation. Although a direct cor-
relation between AR and ASS1P3 expression was 
not detected by the authors, it was postulated that 
AR may physically interact with ASS1P3, thereby 
impeding the interaction between ASS1P3 and 
miRNA-34a-5p.132 Bai et  al.133 investigated the 
relationship between the lncRNA known as HOX 
transcript antisense intergenic RNA (HOTAIR) 
and AR in human ccRCC. HOTAIR is a trans-
acting lncRNA located on chromosome 12q13.13, 
with a regulatory boundary in the HOXC clus-
ter.139 HOTAIR, along with other lncRNAs asso-
ciated with the HOX locus, such as HOTAIRM1 
and HOTTIP, plays significant roles in the devel-
opment of ccRCC,140–142 through various mecha-
nisms.115,143–145 The Hedgehog-GLI (HH-GLI) 
signalling pathway has been implicated in pro-
moting cellular proliferation, differentiation, vas-
cularization and stem cell maintenance. In RCC, 
GLI1/2 is activated by PI3K/AKT signalling.146 
Here, it was shown that GLI2 serves as a target 
gene for both HOTAIR and AR synergistically. 
HOTAIR and AR cooperatively bind to the GLI2 
promoter, leading to an increase in its transcrip-
tional activity. Consequently, GLI2 and its down-
stream genes, including cancer stem cell (CSC) 
transcription factors, vascular endothelial growth 
factor A (VEGFA) and PDGFA, were upregu-
lated. This upregulation promotes tumour angio-
genesis and enhances cancer stemness in RCC 
cells both in vitro and in vivo.133

MiRNA-143-3p, identified as a tumour suppres-
sor, is frequently down-regulated in various can-
cers, including RCC.147–150 Its decreased 
expression has been associated with the promo-
tion of RCC cell invasion, migration and prolif-
eration through downstream signalling molecules, 
including AKT, MMP-13, K-RAS and P-ERK. 
In a study by Zhai et al. AR influence of miRNA-
143-3p expression by direct binding to its poten-
tial androgen response elements (AREs) in its 
promoter, thereby transcriptionally suppressing 
miRNA-143-3p was discovered. Additionally, a 
long noncoding RNA called suppressing AR in 
RCC (lncRNA-SARCC) was identified to directly 
bind and suppress the AR function by post-tran-
scriptionally modulating the AR protein, conse-
quently increasing miRNA-143-3p expression 
and suppressing the RCC progression. 
Consequently, expression of lncRNA-SARCC 
was found to be reduced in ccRCC and meta-
static ccRCC compared to surrounding non-
tumour and non-metastatic tissues, and this 
reduction correlated with a poorer prognosis in 
ccRCC patients. Interestingly, the authors 
observed that Sunitinib induces the expression of 
lncRNA-SARCC, thereby reducing the resist-
ance of RCC cells to this drug.134 An additional 
suppressive effect of LncRNA-SARCC on RCC 
development could be revealed through its regu-
lation of the AR/HIF-2α/C-MYC axis signalling 
pathway. Interestingly, the expression of lncRNA-
SARCC was found to be mediated differently in 
response to hypoxia. Under hypoxic conditions, 
lncRNA-SARCC suppressed AR expression, 

Sex hormone 
axis

HR/ncRNA 
interaction

ncRNA effect Pathway Regulation Effect on RCC Reference

lncRNA-
ECVSR/ER-β

lncRNA-ECVSR ↑ ER-
β miRNA stability
ER-β  Hif2-α ↑
Hif2-α  CSC 
phenotype and VM 
formation ↑

HIF-2α/VM 
formation

↑ •  Tumour 
angiogenesis

(119)

ER-β/
circDGKD

ER-β  circDGKD 
expression ↑
CircDGKD sponge 
miRNA-125-5p
miRNA-125-5p  VE-
cadherin ↑

miRNA-125-5p/
VE-cadherin

↑ •  Tumour 
angiogenesis

(120)

AR, androgen receptor; ASS1, argininosuccinate synthase 1; CDC42, cell division cycle 42 protein; circATP2B1, circular RNA ATPase plasma 
membrane transporter 2B1; circDGKD, circular RNA DGKD; CSC, cancer stem cell; ER, oestrogen receptor; FN1, fibronectin 1; HOTAIR, HOX 
transcript antisense intergenic RNA; K-RAS, Kirsten rat sarcoma viral oncogene; lncRNA, long noncoding RNA; miRNA, micro RNA; ncRNA, 
noncoding RNA; PDGFA, Platelet derived growth factor subunit A; RCC, renal cell carcinoma; VE-cadherin, vascular endothelial cadherin; VEGF, 
vascular endothelial growth factor; VM, vasculogenic mimicry; ↑, promoting effect; ↓, inhibiting effect.

Table 2. (Continued)
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Figure 1. Schematic representation of potential interaction mechanisms between sex hormones and ncRNA regarding RCC 
formation. (1) Function via altering circRNA with inhibiting effect of ER-β on transcription of circRNA,116 promoting effect of ER-
β on transcription of circRNA120 and direct effect of AR on circRNA function.137 (2) The interaction between AR and lncRNA with 
chromatin has a synergistic effect on the activities that affect the intrachromosomal genes located nearby.133 (3) The effect of AR on 
miRNA expression occurs through the direct binding of its candidate AREs in the promoter region.136 (4) The function and stability of 
a protein is influenced by its interaction with lncRNA, thereby impacting interactions between the protein and miRNA.134 (5) Direct 
interaction with AR can regulate the ceRNA activity, resulting in an increased effect of the competing miRNA.132

Source: Created with BioRender.com.
ARE, androgen response elements; ceRNA, competitive endogenous RNA; circRNA, circular RNAs; lncRNA, long noncoding RNA; miRNA, microRNA.

leading to a decrease in the HIF-2α/C-MYC axis 
and its cell proliferating and tumourigenic effect. 
In return, lncRNA-SARCC expression can be 
transcriptionally regulated by HIF-2α through its 

binding to hypoxia-responsive elements on the 
lncRNA-SARCC promoter, suggesting the pres-
ence of a negative feedback loop.135 These find-
ings provide valuable insights into the role of 

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 16

10 journals.sagepub.com/home/tam

lncRNA-SARCC as a suppressor of RCC pro-
gression and highlight new therapeutic strategies 
for the treatment of RCC, specifically focusing on 
the regulation of AR and miRNA interactions.

Huang et  al. investigated a novel interaction 
mechanism of AR with HIF-2α through miRNA 
regulation in ccRCC. Elevated AR expression was 
associated with increased haematogenous metas-
tasis to the lung but reduced lymphatic metasta-
ses, through enhanced miRNA-185-5p expression 
by binding to its promoter region, leading to the 
suppression of vascular endothelial growth factor 
C (VEGF-C). Conversely, AR-mediated upregu-
lation of miRNA-185-5p promoted HIF-2α/
VEGF-A expression. This unique interplay 
between AR, miRNA-185-5p, VEGF-C and HIF-
2α/VEGF-A highlighted AR’s dual role in facili-
tating or inhibiting ccRCC metastasis.136 In 
addition, AR has been found to exert differential 
regulation on VEGF-A and VEGF-C in VHL 
wild-type ccRCC, depending on the oxygen con-
ditions (normoxia vs hypoxia), thereby impacting 
the metastasis processes in distinct ways. Under 
normoxic conditions, the down-regulation of 
miRNA-185-5p results in the up-regulation of 
both VEGF-A and VEGF-C. Conversely, in a 
hypoxic environment, the upregulation of miRNA-
185-5p leads to a decrease in both VEGF-A and 
VEGF-C expression. However, the activation of 
HIF-2α in hypoxia leads to the transcriptional 
upregulation of VEGF-A, outweighing miRNA-
185-5p’s down-regulation, resulting in elevated 
VEGF-A expression.151

Literature also reveals another study describing 
showing the link between AR and miRNAs in 
RCC, indicating that AR affects ccRCC cell 
migration and invasion by changing circHIAT1/
miRNA-195-5p/29a-3p/29c-3p/cell division cycle 
42 protein (CDC42) signalling. Suppression of 
circulating RNA circHIAT1 by AR resulted in 
altered miRNA-195-5p/29a-3p/29c-3p expres-
sion, which increased CDC42 expression, leading 
to intensified cell migration and invasion.137

It has been shown that AR can bind to the ARE 
on the promoter region of miRNA-145, leading 
to the reduced ability of p53 to induce miRNA-
145 expression. MiRNA-145 normally acts to 
suppress the expression of HIF-2α, VEGF, 
MMP9 and CCND1, which are key factors 
involved in RCC progression. Suppressing AR or 
introducing miRNA-145 mimics reduced RCC 
progression, regardless of VHL status. In a 

preclinical RCC mouse model, miRNA-145 
mimic administration effectively suppressed RCC 
progression.138

Oestrogens
As a transcription factor, ER-β can bind to spe-
cific DNA sequences in the promoter regions of 
target genes, either activating or repressing their 
transcription. ER-β was identified as a suppressor 
of circRNA ATPase plasma membrane trans-
porter 2B1 (circATP2B1) expression by directly 
binding to the 5′ promoter region of its host gene 
ATPase plasma membrane Ca2+ transporting 1 
(ATP2B1), which encodes circATP2B1. 
CircATP2B1 is implicated in regulating miRNA-
204-3p in ccRCC cells, significantly increasing 
miRNA-204-3p by circATP2B1 addition. 
Moreover, circATP2B1 may function as a so-
called ‘reservoir’ to stabilize miRNA-204-3p 
expression, as it interacts directly with miRNA-
204-3p. This interplay results in elevated 
fibronectin 1 (FN1) expression in ccRCC cells, as 
miRNA-204-3p directly targets FN1 mRNA’s 3′ 
UTR, suppressing FN1 protein expression. 
Inhibition of miRNA-204-3p increases FN1 
expression, while miRNA-204-3p overexpression 
decreases FN1 levels in ccRCC cells. Analysis of 
the ccRCC patient survival data from the Cancer 
Genome Atlas indicates worse overall survival 
(OS) for patients with elevated ER-β and FN1 
expression, while higher miRNA-204-3p expres-
sion correlates with significantly better OS, 
emphasizing the clinical relevance of the ER-β/
circATP2B1/miRNA-204-3p/FN1 axis in ccRCC 
progression.116 Furthermore, ER-β facilitates an 
increase in HOTAIR expression by binding to its 
promoter in RCC. Consequently, HOTAIR 
assumes a role in counteracting the effects of vari-
ous miRNAs. Subsequently, HOTAIR counter-
acts the effects of several miRNAs. By antagonizing 
miRNA-138, (targeting ADAM9), miRNA-204 
(targeting CCND2), miRNA-217 (targeting 
genes like VEGFA, VIM, ZEB1 and ZEB2) and 
miRNA-200c (targeting ZEB1 and ZEB2), it 
results in collective interaction with RCC cell, 
proliferation, migration and invasion.115

Higher ER-β expression correlates with elevated 
VE-cadherin, a pivotal adhesion molecule in vas-
culogenic mimicry (VM) formation. VM is a pro-
cess where tumour cells mimic blood vessel-like 
structures to secure nutrients and oxygen, poten-
tially contributing to ccRCC progression and 
metastasis.119 One supposed mechanism by which 
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sunitinib promotes VM formation in RCC cells 
involves the modulation of lncRNA called 
lncRNA-ECVSR. Sunitinib treatment can 
increase the expression of lncRNA-ECVSR, 
which enhances the stability of ER-β mRNA. 
This increased ER-β expression can then function 
via transcriptional up-regulation of Hif2-α by 
binding to ERE, specifically to ERE1, in the pro-
moter region of Hif2-α. Hif2-α, in turn, promotes 
the CSC phenotype, which is associated with 
increased VM formation. The sunitinib/lncRNA-
ECVSR-increased ERβ expression can transcrip-
tionally regulate lncRNA-ECVSR expression via 
a positive-feedback loop, further enhancing the 
effects of sunitinib on VM formation.119

TKI-induced ER-β transcriptionally up-regulates 
the circular RNA DGKD (circDGKD), which 
functions as a miRNA-125-5p sponge. MiRNA-
125-5p interacts with the 3′ UTR of VE-cadherin 
mRNA, leading to its degradation or translational 
inhibition. In RCC, miRNA-125-5p down-regu-
lation results in increased VE-cadherin expres-
sion, promoting VM formation. Targeting 
circDGKD tempers sunitinib-induced RCC VM 
formation, reduces metastasis and enhances sur-
vival in experimental animal models. The authors 
propose that intervening in ERβ/circDGKD sig-
nalling may enhance TKI effectiveness and offer 
novel combination therapies for the management 
of metastatic RCC.120

SHs and treatment of RCC

Androgen treatment in RCC
The potential significance of the androgen-signal-
ling axis in the progression of RCC has led to the 
thought that interfering with the hormonal axis 
may be a potential strategy to enhance patient 
survival. Clinical trials are already investigating 
the efficacy of therapeutic agents targeting AR in 
RCC. The BARE trial (Blockade of Androgens in 
RCC using Enzalutamide, NCT02885649, www.
clinicaltrials.gov, accessed on 9 September 2021) 
was designed to elucidate the impact of the AR 
inhibitor enzalutamide on tumour growth prior to 
surgical resection. Regrettably, the trial was pre-
maturely terminated due to unavailability of 
funding.

Flutamide, a nonsteroidal anti-androgen, was 
also investigated in patients with RCC. Among 
25 cases treated, one patient exhibited partial 
remission and two patients experienced a state of 

stabilization of disease. Nevertheless, flutamide 
did not demonstrate any anti-tumour activity in 
individuals with metastatic RCC.122 Enzalutamide 
and abiraterone acetate, a CYP17A1 inhibitor 
that inhibits androgen production, showed more 
promising results in in vivo studies, demonstrat-
ing a substantial reduction in tumour size.152

Knockdown of the epigenetic co-regulator lysine-
specific histone demethylase 1, along with enzalu-
tamide, slowed RCC growth and migration in a 
mouse model.153 In a patient-derived xenograft 
model with sunitinib-resistant RCC, AR upregu-
lation was observed. Enzalutamide treatment led 
to AR degradation and decreased AR activity, 
resulting in effective tumour regression when 
combined with sunitinib.154 These findings high-
light the importance of the androgen axis in RCC 
and suggest AR as a potential target for a thera-
peutic approach.

Oestrogen treatment in RCC
Investigation on hormonal carcinogenesis, spe-
cifically highlighting the involvement of the SH in 
RCC pathogenesis, has yielded encouraging find-
ings. Particularly outcomes in the domain of RCC 
therapy targeting ER remain promising, provid-
ing notable advantages for managing metastatic 
disease.

In a hamster model, RCC was successfully 
induced through the chronic administration of 
DES and polydiethylstilbestrol phosphate, under-
lining the possibly important involvement of oes-
trogens in RCC aetiology.155–157 Conversely, the 
inhibitory impact on tumour formation was dem-
onstrated with the antioestrogen agent nafox-
idine.158 In vitro investigations proposed that 
potentially reactive oestrogen intermediates might 
act as instigators of experimental nephron-car-
cinogenesis, inducing substantial oxidative stress 
within renal cells upon prolonged oestrogen 
exposure.159,160

The potential utility of tamoxifen, a selective ER 
modulator commonly used in breast cancer treat-
ment, was explored as a therapeutic approach for 
small cohorts of patients with RCC, yielding var-
ied outcomes. In one study, 34 patients with pro-
gressive RCC were treated with high-dose 
tamoxifen (100 mg/ml 2 daily) until disease pro-
gression. An overall partial response of 10%, 
including one complete remission, was observed. 
Favourable survival outcomes were noted in 
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patients with pulmonary metastases, good perfor-
mance status and prior nephrectomy.161

Another investigation involved 10 patients with 
advanced RCC treated using combined chemo-
endocrine therapy comprising tegafur, a prodrug 
of fluorouracil, and tamoxifen. Positive responses 
were observed, particularly in patients with 
ER-positive and ER-negative tumours.162 A com-
parison study evaluated tamoxifen alone against 
IL-2/IFN-α therapy combined with tamoxifen. 
Although tamoxifen was included due to its non-
toxic behaviour and potential enhancement of 
IL-2’s anti-tumour activity, no significant survival 
differences were found between treatment 
arms.163 While high-dose tamoxifen demon-
strated some anti-tumour effects in specific cases, 
combined hormonal therapy did not confer a sig-
nificant therapeutic advantage for advanced 
RCC. Despite this, subsequent years have seen 
limited research exploring the potential of hor-
mone modulators in RCC. This is noteworthy 
considering the emergence of new therapeutic 
strategies such as TKIs and immune-based thera-
pies, which have shown promise in metastatic 
RCC management.

Progesterone treatment in RCC
Hormonal agents, like medroxyprogesterone, 
were found to have some effectiveness in treating 
metastatic RCC in early studies. However, lim-
ited data show response rates in different studies, 
ranging from 7% to 25%, and still need further 
evaluation in larger studies to confirm oncological 
ongoing response.164–166

Sex and immunotherapy in RCC
Previous research has shown differences in immune 
responses, particularly anti-tumour responses, 
between sexes.167,168 Meta-analyses propose that 
ICIs may provide greater benefits for male cancer 
patients in comparison to females.169–171 The con-
troversially discussed data do not necessarily apply 
to RCC.172,173 A recent comprehensive review 
focused on the efficacy of ICI in urological can-
cers, including RCC, indicating an improved OS, 
regardless of sex.174 Meanwhile, adjuvant ICI 
monotherapies reduce the risk of disease recur-
rence in women with locally advanced RCC, yet 
not in men. Furthermore, ranking analyses 
revealed distinct outcomes for RCC treatment 
between the sexes, suggesting that sex may influ-
ence clinical decision-making.174 However, there is 

evidence of a divergent response to ICI treatment 
in patients with advanced RCC, with a less marked 
effect observed in females compared to male 
patients, indicating that sex is a crucial factor in 
clinical decision-making.175

Another intriguing aspect of sex differences lies in 
the occurrence of adverse events associated with 
ICI. Immunotherapy disrupts immune balance, 
potentially leading to immune-related adverse 
events (irAEs) affecting various organ systems.176 
Women exhibit higher innate and adaptive 
immune responses than men, along with an 
increased susceptibility to autoimmune diseases, 
leading to a higher risk of irAEs.177 Consequently, 
female sex has been identified as a predictive bio-
marker for irAE occurrence in patients treated 
with ICIs.178 Notably, a study by Unger et al.179 
examining gender disparities in therapy responses, 
particularly to immunotherapy, revealed that 
women receiving immunotherapy exhibited a 
49% greater risk of irAEs than men, with the 
severity of irAEs being higher among women.

Some further nuanced relationships between sex 
and molecular predictors of ICI response could 
be revealed. TMB has been associated with a pos-
itive ICI response in men with certain cancers 
such as melanoma, bladder, head and neck, and 
RCC.180 Conversely, other molecular markers, 
such as activated T-cell frequency and expression 
of immune checkpoint proteins, including both 
inhibitory (programmed cell death protein1 1 
(PD-1), cytotoxic T-lymphocyte-associated 
Protein 4 (CTLA-4), Lag3) and stimulatory 
(OX40, ICOS, CD27) markers, are associated 
with a positive ICI response in female patients.181

In this context, SHs are suspected to influence 
the TME and underlie the differences in immune 
responses between men and women.182 E2 
increases immunoglobulin production, while 
androgens such as dihydrotestosterone (DHT) 
and testosterone have been shown to reduce 
immune activity.167 Regulatory T cells (Treg) rise 
when E2 levels increase.183 Reduced levels of E2 
encourage differentiation of T helper (Th) cells 
towards Th1, whereas higher levels of E2 pro-
mote the Th2 phenotype.184 Additionally, E2 is 
linked with heightened expression of PD-1.183

The persistence of androgen-induced exhaustion 
of CD8+ T cells may limit the efficacy of ICIs in 
male RCC, necessitating additional therapeutic 
strategies.89 Androgen deprivation therapy (ADT) 
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can prevent CD8+ T-cell exhaustion in the TME 
and improve the efficacy of ICIs, particularly 
anti-PD-1 treatment.86,87 Combination therapy 
with androgen receptor inhibitors (ARi) and ICIs 
has shown synergistic effects in RCC in vivo, pos-
sibly because ARi reverses androgen-induced 
immunosuppression in the TME of male RCC.89 
Other investigations suggest that ADT can 
enhance the effectiveness of immunotherapy by 
modulating immune cell function.185 Moreover, 
studies have shown that dendritic cells are better 
able to stimulate T-cell responses when ADT is 
administered after immunotherapy.

Nevertheless, the regulatory impact of SH on 
immunotherapy in cancer, particularly the asso-
ciation between SH and ICI in metastatic RCC, 
has not been thoroughly evaluated. There is a 
notable lack of data and the interpretation is com-
plicated, also due to the insufficient exploration 
of the reciprocal effects of checkpoint inhibition 
on SH and vice versa. However, anti-PD-L1 ther-
apy has been shown to significantly downregulate 
SH levels in male mice, but not in female  
mice, thereby enhancing the anti-tumour efficacy 
of anti-PD-L1.186 In contrast, an increase  
in estradiol and luteinising hormone (LH)/ 
follicle-stimulating hormone (FSH) ratio in male 
patients receiving nivolumab monotherapy for 
metastatic RCC has been recently reported and 
an association between progression free survival 
(PFS) and objective response rate (ORR) with 
increased LH/FSH ratio during nivolumab ther-
apy has been demonstrated.118

Additionally, survival outcomes among RCC 
patients may be influenced by gender-related fac-
tors such as behaviour, as well as genetics and 
hormones.57,167,187 Therefore, there is still an 
ongoing debate about sex-related differences in 
oncological outcomes for patients with metastatic 
RCC. Pooled meta-analyses may not fully cap-
ture the nuanced interactions of sex and ICI 
response. Further investigation into possible sex-
based differences in the immune response to ICIs 
is essential for identifying patients who are most 
likely to benefit from particular ICI-based combi-
nation therapies.

Summary and conclusion
Investigations of the pathobiology of sex steroid 
hormones and their receptors in RCC signifi-
cantly expand our understanding of crucial 
aspects of RCC development and progression. 

Currently, the molecular role of SH in RCC 
remains to be elucidated to provide a precise 
model of hormonal interactions with oncogenesis. 
Unfortunately, the limited number of publica-
tions in this area suggests that there is a lack of 
research priority.

As a physiological fact, variable expression of 
steroid receptors has been noted when comparing 
normal kidney tissue and RCC tissue, which is to 
be seen as the potential basis for the discovered 
differences in the development of RCC. SH sig-
nalling in RCC suggests a not yet fully under-
stood multifaceted dual role, influencing 
processes such as proliferation, invasion, apopto-
sis and angiogenesis through distinct molecular 
mechanisms. In this review, we presented com-
prehensive examples of both the oncogenic and 
tumour-suppressive effects of SH in RCC. For 
instance, E2 has been observed to interact with 
various signalling pathways, including VEGF/
HIF2α, PI3K/AKT/MMP-9, TGF-β1/SMAD3 
and ER-β/ANGPT-2/Tie-2, primarily through 
ER, whereas the activation of the AR has been 
linked to pathways involving PI3K/AKT → NF-
κB → CXCL5, AR-c-Myc and STAT5 
regulation.

Recent research has emphasized the critical role 
of ncRNAs in various biological functions and 
their profound impact on cancer, including RCC. 
Notably, the substantial influence of SH on the 
expression and functionality of numerous ncR-
NAs involved in the complex process of RCC 
development has been highlighted. Although our 
understanding of ncRNA function in RCC is 
evolving, this review underscores their potential 
role in initiating, promoting and progressing RCC 
through different miRNA/target gene axes via 
activation of AR and ER. Their contribution to 
RCC development shown in this review high-
lights their importance as potential therapeutic 
targets and biomarkers for more effective RCC 
therapies. However, our understanding of ncRNA 
function in RCC, particularly in relation to ster-
oid hormones, remains limited, and further 
research is needed to explore their full functional 
spectrum.188,189

The approval of a wide range of immunotherapies 
is considered to be the most significant break-
through in the treatment of advanced RCC in 
recent years. However, it is to be noted that many 
exploratory studies investigating hormone manip-
ulation as a potential strategy for the treatment of 
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metastatic RCC have also shown promising clini-
cal results. This highlights the need to investigate 
whether ncRNAs can modulate the immune 
pathways involved in RCC, particularly in the 
context of SH involvement.

Notably, there is a lack of specific data or evi-
dence on the interaction between SH and the effi-
cacy of immunotherapeutic interventions in 
non-ccRCC subtypes due to the lower prevalence 
of pRCC and chRCC. As a result, the existing 
body of evidence does not adequately address the 
potential impact of SH on carcinogenesis or TME 
in this particular subset of RCC. Further investi-
gation is warranted to fully elucidate this relation-
ship in patients with non-ccRCC.

In summary, the interactions between SH and the 
intricate pathways within RCC are complex and 
not fully elucidated. Nevertheless, these findings 
suggest that SH plays a role in the differential 
response rates observed in male and female RCC 
patients. This review aims to rekindle interest in 
studying steroid hormones and their receptors in 
RCC, as they hold promise for therapy and bio-
marker development. Conducting sex-specific 
research, especially in the context of clinical treat-
ments, is crucial, highlighting the importance of 
in-depth scientific exploration in this field.
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