
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Lu et al. Biology Direct           (2024) 19:72 
https://doi.org/10.1186/s13062-024-00516-8

Introduction
Tetraspanins (TSPANs) are a protein family with 33 
mammalian members that consists of four transmem-
brane segments, a large extracellular loop, a small extra-
cellular loop, and a small intracellular loop [1–3]. Large 
amounts of evidence have demonstrated TSPANs as 
a facilitator of tumor development [4]. Runzhi Huang 
et al. discovered the important role of TSPANs in pan-
cancer [5]. Notably, it has been found that TSPAN8 could 
increase tumor cell stemness through the activation of 
sonic Hedgehog pathway in breast cancer [6]. Apart 
from this, high expression of TSPAN13 could induce the 
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Abstract
Background  TSPAN7 is an important factor in tumor progression. However, the precise function of TSPAN7 and its 
role in pan-cancer are not clear.

Methods  Based on Xinhua cohort incorporating 370 patients with kidney neoplasm, we conducted differential 
expression analysis by immunohistochemistry between tumor and normal tissues, and explored correlations 
of TSPAN7 with patients’ survival. Subsequently, we conducted a pan-cancer study, and successively employed 
differential expression analysis, competing endogenous RNA (ceRNA) analysis, protein-protein interaction (PPI) 
analysis, correlation analysis of TSPAN7 with clinical characteristics, tumor purity, tumor genomics, tumor immunity, 
and drug sensitivity. Last but not least, gene set enrichment analysis was applied to identify enriched pathways of 
TSPAN7.

Results  In Xinhua cohort, TSPAN7 expression was significantly up-regulated (P-value = 0.0019) in tumor tissues 
of kidney neoplasm patients. High TSPAN7 expression was associated with decreases in overall survival (OS) 
(P-value = 0.009) and progression-free survival (P-value = 0.009), and it was further revealed as an independent 
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CXCR4/CXCL12 signaling transduction, and increase 
the homing or migration of leukemia stem cells towards 
bone marrow niche [7]. In addition, TSPAN1 was related 
to the chemotherapy resistance of tumor cells [8]. Above 
all, TSPANs function in multiple steps of tumor develop-
ment and tumor therapy.

TSPAN7 is a member of TSPANs located in chro-
mosome Xp11.4 in humans, and exhibits a significant 
expression in the cerebral cortex and hippocampal region 
[9, 10]. Although other proteins of TSPAN family have 
been widely reported to be related to tumor develop-
ment, there are relatively limited studies about TSPAN7’s 
roles in tumors. Marco Gerlinger et al. identified 
TSPAN7 as a predictive factor of poor cancer-specific 
survival in clear cell renal cell carcinoma [11]. Besides, in 
osteosarcoma, it has been discovered that TSPAN7 could 
stimulate the invasion of malignant cells by triggering 
FAK-Src-Ras-ERK1/2 signaling pathway and generating 
epithelial-mesenchymal transition (EMT) [12]. In glioma, 
the expressions of PD-1, PD-L1, and CTLA-4 were nega-
tively correlated with the expression level of TSPAN7, 
suggesting it as a potential target of immunotherapy [13]. 
Although these studies preliminarily highlighted the piv-
otal role of TSPAN7 in a single kind of tumor, few studies 
have focused on the general function of TSPAN7 across 
various tumors.

Some previous studies have already identified certain 
genes as biomarkers in cancer progression at a pan-
cancer level [14, 15]. Thus, we intended to carry out 
a pan-cancer study to comprehensively illustrate the 
complicated functions of TSPAN7 in tumors. First of 
all, based on a large retrospective cohort of kidney neo-
plasm, we discovered the differential expression level of 
TSPAN7 between tumor and normal tissues, and iden-
tified TSPAN7 as a promising prognostic biomarker for 
kidney neoplasm patients. Subsequently, we questioned if 
TSPAN7 also played a vital role in other tumors, and con-
ducted a pan-cancer study. Based on The Cancer Genome 
Atlas (TCGA), we revealed the differential expression of 
TSPAN7 at a transcription level across 33 cancer types, 
and further constructed the competing endogenouse 
RNA (ceRNA) network and protein-protein interaction 
(PPI) network of TSPAN7. Then, we studied the clinical 
correlations of TSPAN7, as well as its relationships with 

tumor purity, tumor genomics, tumor immunity, and 
drug sensitivity. Last but not least, we conducted func-
tional enrichment analysis of TSPAN7, to preliminar-
ily reveal the molecular mechanism of TSPAN7’s role in 
tumor development.

Materials and methods
Data source
Our study was approved by the Ethics Committee of Xin-
hua Hospital Affiliated to Shanghai Jiao Tong University 
School of Medicine. 370 patients with kidney neoplasm, 
who received surgery from 2016 to 2018 were selected 
to constitute a large retrospective cohort. We conducted 
follow-up on March, 2021. Tumor and normal tissues of 
these patients were extracted for immunohistochemi-
cal (IHC) staining and scoring to reveal the expression 
of TSPAN7 in kidney neoplasm at a proteomic level. The 
TSPAN7 expression data, the patients’ clinical data, the 
single nucleotide variation (SNV) data, the copy num-
ber variation (CNV) data, and the methylation data 
across 33 cancer types were obtained from TCGA data-
base (https://tcga-data.nci.nih.gov/tcga/). The data of 
microRNAs (miRNAs) derived from DIANA-microT 
(https://dianalab.e-ce.uth.gr/microt_webserver/#/) [16], 
miRWalk (http://mirwalk.umm.uni-heidelberg.de/) [17], 
miRDB (https://mirdb.org/) [18], miRcode (http://www.
mircode.org/) [19],  and Encyclopedia of RNA Interac-
tomes (ENCORI) (https://rnasysu.com/encori/) data-
bases [20]. The data of long noncoding RNAs (lncRNAs) 
was from ENCORI database as well. The protein-protein 
interaction data came from STRING database (https://
cn.string-db.org/) [21]. The microsatellite instability 
(MSI) scores derived from Sameek Roychowdhury et al.’s 
study [22]. The genetic alteration profiles of various pan-
cancer studies were obtained from cBioPortal (https://
www.cbioportal.org/) [23]. Besides, we also retrieved the 
immune cell infiltration data from Tumor Immune Esti-
mation Resource 2.0 (TIMER2.0) (http://timer.cistrome.
org/) [24], and searched for the data concerned with 
cytotoxic T-lymphocyte (CTL) infiltration and func-
tion from the Tumor Immune Dysfunction and Exclu-
sion (TIDE) database (http://tide.dfci.harvard.edu/) [25]. 
The data concerned drug sensitivity was obtained from 
Genomics of Drug Sensitivity in Cancer (GDSC) (https://

risk factor for OS (P-value = 0.0326, HR = 5.66, 95%CI = 1.155–27.8). In pan-cancer analysis, TSPAN7 expression was 
down-regulated in most tumors, and it was associated with patients’ survival, tumor purity, tumor genomics, tumor 
immunity, and drug sensitivity. The ceRNA network and PPI network of TSPAN7 were also constructed. Last but not 
least, the top five enriched pathways of TSPAN7 in various tumors were identified.

Conclusion  TSPAN7 served as a promising biomarker of various tumors, especially kidney neoplasms, and it was 
closely associated with tumor purity, tumor genomics, tumor immunology, and drug sensitivity in pan-cancer level.
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www.cancerrxgene.org/) [26], The Cancer Therapeu-
tics Response Portal (CTRP) (https://pubmed.ncbi.nlm.
nih.gov/23993102/) [27–29], and CellMiner database 
(https://discover.nci.nih.gov/cellminer/home.do) [30, 31]. 
Last but not least, the data concerning signaling path-
ways came from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (https://www.genome.jp/kegg/) [32].

Immunohistochemical staining and scoring
Tumor and normal tissues of 370 patients with kidney 
neoplasm were preliminarily fixed, embedded in paraf-
fin and then sliced into tissue sections. Then, the sections 
were dewaxed and rehydrated, and Ethylene Diamine 
Tetraacetic Acid (EDTA) (pH = 9.0) buffer was employed 
for the antigen-retrieval process. After that, the samples 
were treated with 3% hydrogen peroxide solution to 
block endogenous hydrogen peroxide. 5% goat serum was 
then added to prevent the non-specific antibody binding. 
Afterwards, we successively added primary antibodies 
(TSPAN7, proteintech, 18695-1-AP, 1: 50) and second-
ary antibodies marked with enzyme Horseradish Peroxi-
dase (HRP). Then, Diaminobenzidine (DAB), the specific 
substrate for HRP, was then added for color develop-
ment. Besides, haematoxylin was utilized to enhance 
nuclear contrast. Ultimately, a series of alcohol solution 
with graded concentrations were used to dehydrate the 
samples, and all tissue sections were observed under a 
light microscope. Two pathologists were invited to inde-
pendently evaluate the slides. The conflicted results were 
carefully checked by a third pathologist. As TSPAN7 is 
mainly expressed in cytoplasm and membranes [4], the 
staining of these locations under the light microscope 
was regarded as positive staining. The staining intensity 
score was defined as: 0 for negative, 1 for weak, 2 for 
moderate, and 3 for intense. The score for the percentage 
of positive cells was defined as: 0 for 0%, 1 for 1–10%, 2 
for 11–40%, 3 for 41–70%, and 4 for 71–100%. The IHC 
score was the product of the staining intensity score and 
score for the percentage of positive cells, ranging from 0 
to 12.

Clinical correlation analysis of TSPAN7 in kidney neoplasm
We collected the clinical data of 370 patients with kidney 
neoplasm in the retrospective cohort, and data concern-
ing age, gender, histopathological classification, Fuhrman 
nuclear stage, TNM stage, clinical stage, progression 
after treatment, progression free survival (PFS), and 
overall survival (OS) were put into further analysis. The 
differential IHC scores of TSPAN7 in tumor and normal 
tissues were visualized in violin plot based on “ggviolin” 
function from “ggpubr” package (version 0.6.0, https://
rpkgs.datanovia.com/ggpubr/). The “surv_cutpoint” 
function from “survminer” R package (version 0.4.9, 
https://rpkgs.datanovia.com/survminer/index.html) was 

applied to identify the cut-off value of the IHC score of 
TSPAN7, and divided the patients into two subgroups. 
Kaplan-Meier (K-M) survival analysis was then applied 
to explore the associations of TSPAN7 with the OS and 
PFS of patients with kidney neoplasm. Besides, we also 
used the method of Chi-square test to explore the rela-
tionships between TSPAN7 and other clinicopathologi-
cal variables based on “chisq.test” function from “rstatix” 
package (version 0.7.2, https://rpkgs.datanovia.com/
rstatix/) as well as “ggstatsplot” package (version 0.12.3, 
https://indrajeetpatil.github.io/ggstatsplot/, https://
github.com/IndrajeetPatil/ggstatsplot). Subsequently, 
we incorporated demographic variables including “age”, 
“gender”, some important clinicopathological variables in 
the clinical practice of kidney neoplasms including “KIRC 
(yes or no)”, “Fuhrman nuclear stage”, “T stage”, “progres-
sion after treatment”, as well as “IHC score of TSPAN7 
in tumor tissues” to conduct multivariable Cox regres-
sion analysis based on “coxph” function from “survival” 
package (version 3.7-0, https://github.com/therneau/
survival). 76 patients lacking any of the above data were 
excluded, and 294 patients were ultimately included in 
the analysis. The forest plots and nomograms concerning 
the OS of patients with kidney neoplasm were then con-
structed, and the risk scores were calculated as follows:

Risk Score = β1 × Variable1 + β2 × Variable2 + 
…… + βn × Variablen.

β referred to the regression coefficient determined by 
the multivariable Cox regression model. n referred to the 
number of variables.

Based on the median value of risk scores, we divided 
the patients into the high- and low-risk subgroup, and 
visualized the OS of patients within the two subgroups, 
respectively, in the form of scatter plots and K-M survival 
curves. Finally, we employed residual analysis, calibration 
curve analysis, and Receiver Operating Characteristic 
(ROC) analysis to diagnose the multivariable Cox regres-
sion model (“survminer” package, “survival” package, and 
“timeROC” package (version 0.4, https://CRAN.R-proj-
ect.org/package=timeROC)).

Differential expression analysis of TSPAN7 in pan-cancer
“ggpubr” R package was applied to reveal the differential 
expression of TSPAN7 between tumor and normal tis-
sues across 33 cancer types in TCGA (Wilcox test). The 
expression of TSPAN7 was illustrated in the boxplot.

Competing endogenouse RNA (ceRNA) network analysis of 
TSPAN7 in pan-cancer
First of all, we identified miRNAs targeting TSPAN7 
based on DIANA-microT, miRWalk, miRDB, and miR-
code databases, and took the intersections of them as key 
miRNAs. Then, we explored the correlations between the 
expressions of key miRNAs and TSPAN7 in pan-cancer 
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based on ENCORI database. Afterwards, we identified 
the target lncRNAs of key miRNAs as well, and con-
structed the ceRNA network of TSPAN7, visualized in 
the form of Cytoscape network and Sankey diagram.

Protein-protein interaction (PPI) analysis of TSPAN7 in pan-
cancer
We investigated possible interactions of TSPAN7 with 
other proteins based on the STRING database, and 
exhibited the results in a protein-protein interaction 
(PPI) network.

Clinical correlation analysis of TSPAN7 in pan-cancer
Based on the data of TSPAN7 expression and patients’ 
survival data including OS, PFS, disease free survival 
(DFS), and disease specific survival (DSS), we succes-
sively conducted K-M survival analysis and univariable 
Cox regression analysis to explore the associations of 
TSPAN7 with patients’ survival in pan-cancer based on 
“survival” R package. Besides, we also displayed TSPAN7 
expression in diverse stages of cancer, and used Wilcox 
test to reveal the correlations between TSPAN7 and clini-
cal stages. Moreover, for four types of tumors that com-
monly metastasized to bones, including BLCA, BRCA, 
MESO, and PRAD, we conducted differential expression 
analysis between the primary and metastatic tumor to 
discover the potential role of TSPAN7 in tumor metas-
tasis. Last but not least, we also exhibited the differential 
expression level of TSPAN7 across four different molecu-
lar subtypes of BRCA and the corresponding normal tis-
sues, suggesting TSPAN7’s value in tumor heterogeneity.

Estimation of STromal and Immune cells in MAlignant 
tumors using expression data (ESTIMATE) analysis
Tumors are usually consisted of tumor cells and the adja-
cent tumor microenvironment (TME), and TME is com-
posed of stromal cells, immune cells, etc. [33, 34]. In our 
study, the ESTIMATE algorithm was employed to calcu-
late the immune scores and stromal scores of 33 types of 
cancers in TCGA [35]. Subsequently, Spearman correla-
tion analysis was conducted between TSPAN7 expression 
and immune scores or stromal scores. Generally speak-
ing, more abundant immune and stromal components 
there were, lower the tumor purity was. Tumor purity 
was negatively correlated with immune scores and stro-
mal scores. Similarly, the immune cell infiltration was 
also evaluated by the ESTIMATE algorithm, and corre-
lations of TSPAN7 expression with immune infiltration 
were tested by Spearman correlation analysis as well.

Tumor mutation burden (TMB) analysis, microsatellite 
instability (MSI) analysis, cBioPortal analysis, and gene set 
cancer analysis (GSCA)
The TMB in 33 types of cancers was tested by “maftools” 
based on the TCGA Whole Exome Sequencing (WES) 
data [36], and the MSI scores of them came from Sameek 
Roychowdhury et al.’s study [22]. Subsequently, we used 
the method of Spearman correlation analysis to explore 
the relationships between TSPAN7 expression and TMB 
or MSI, visualizing the results in two radar maps. cBio-
Portal was applied to further reveal the genomic rele-
vance of TSPAN7 (https://www.cbioportal.org/) [23]. We 
selected 10 pan-cancer studies as our database [37–46], 
and analyzed CNVs as well as mutation sites of TSPAN7. 
Afterwards, based on GSCA platform, we further iden-
tified the mutation profiles of TSPAN7 concerning SNV, 
CNV, and methylation, and explored the survival differ-
ences among patients with various TSPAN7 mutation 
types.

Co-expression analysis of TSPAN7 and immune gene in 
pan-cancer
Across 33 cancer types in TCGA, we used Spearman 
correlation analysis to analyze the correlations between 
TSPAN7 expression and 47 immune-related genes, 
including TNFRSF9, CD44, CD86, etc. The above results 
were illustrated in a heatmap, with the yellow triangle 
referring to the P-value, and the red or blue triangle 
referring to the correlation coefficient.

Immune infiltration analysis
TIMER2.0 used methods of CIBERSORT, TIMER, quan-
TIseq, xCell, MCP-counter, and EPIC algorithm to esti-
mate the immune cell infiltration [24]. Subsequently, we 
used the method of Spearman correlation analysis to dis-
cover the associations between TSPAN7 and immune cell 
infiltration.

Cytotoxic T-lymphocyte infiltration and survival analysis
We used TIDE to explore correlations of TSPAN7 
with CTLs and patients’ survival [25]. Based on the 
E-MTAB-179 (https://www.ebi.ac.uk/biostudies/array-
express/studies/E-MTAB-179), GSE12417_GPL570 [47], 
METABRIC [48], TCGA [49] database, we first exhibited 
the relevance of TSPAN7 with CTLs in the form of scat-
ter plots and fitting curves. Then, we divided the sam-
ples into high- or low-TSPAN7 subgroups based on the 
median value of TSPAN7 expression, as well as separat-
ing the samples into high- or low-CTL subgroups based 
on the expressions of CTL biomarkers, including PRF1, 
CD8A, CD8B, GZMA, and GZMB. Finally, we obtained 
the K-M survival curves of these subgroups, to further 
reveal the impact of TSPAN7 on CTLs’ function.

https://www.cbioportal.org/
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-179
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Drug sensitivity prediction
We collected the half maximal inhibitory concentra-
tion (IC50) data and the corresponding mRNA expres-
sion of TSPAN7 in certain cell lines from GDSC, CTRP, 
and CellMiner database. For GDSC and CTRP database, 
Pearson correlation analysis was conducted between 
TSPAN7 expression and IC50 of certain small molecule 
drugs based on GSCA online platform. For CellMiner 
database, Pearson correlation analysis was conducted 
between TSPAN7 expression and Z scores of certain 
drugs based on “cor.test” function. Higher Z scores indi-
cated higher drug sensitivity.

Gene set enrichment analysis (GSEA)
We applied GSEA to reveal the enriched KEGG pathways 
related to TSPAN7 expression across 33 cancer types in 
TCGA. Specifically, we first divided the pan-cancer sam-
ples from TCGA database into high- and low-TSPAN7 
subgroups based on the median TSPAN7 expression, and 
re-ordered these samples according to the fold change of 
differential expressions. Then, we conducted functional 
enrichment analysis by comparing the gene expression 
profiles of certain KEGG pathways [32] with the gene 
expression profiles of our pan-cancer samples through 
the clusterProfiler R package (version 4.12.0, https://
yulab-smu.top/biomedical-knowledge-mining-book/
(docs)https://doi.org/10.1016/j.xinn.2021.100141(paper)) 
[50]. The cancer types with P-value < 0.05 were selected 
and the top five KEGG pathways with the highest enrich-
ment scores of them were exhibited, respectively.

Statistical analysis
The statistical analysis was conducted with R version 
4.3.2 software. Continuous variables having a normal 
distribution were described by mean ± standard devia-
tion, while continuous variables with an abnormal dis-
tribution were described by median (range). Two-tailed 
P-values < 0.05 and false discovery rate (FDR) < 0.05 were 
regarded as statistically significant.

Results
Demographic information and clinical features of the 
cohort including 370 patients with kidney neoplasm
The comprehensive analysis steps of our study were illus-
trated in Fig. 1A and Figure S1. We selected 370 patients 
with kidney neoplasm, who received surgery from 2018 
to 2022 to constitute a large retrospective cohort. The 
inclusion and exclusion criteria of the clinical cohort 
were shown in Fig.  1B. Table S1 illustrated the demo-
graphic information and clinical features of the cohort. 
As for the histopathological classification of neoplasm, 
88.92% of the patients were diagnosed with KIRC, while 
4.86%, 2.16%, and 4.05% of them were diagnosed with 
KIRP, KICH, and other kidney neoplasms, respectively. 

Considering the Fuhrman nuclear stage, patients with 
stage 1, 2, 3, 4 accounted for 18.65%, 63.24%, 13.78%, and 
4.32% of all patients, separately. Besides, the majority of 
the patients were diagnosed with kidney neoplasm of an 
early clinical stage, as “Stage 1” (76.22%) accounted for 
the majority of the pathological sections. Regarding the 
patients’ survival, 74.59% of them were alive, and most of 
the patients were alive without the progression of the dis-
ease (69.73%).

Immunohistochemical staining and scoring of TSPAN7 in 
kidney neoplasm tissues and normal tissues
IHC staining was employed on the tissue sections 
obtained from the 370 patients in the cohort (Fig.  1B). 
The mean values of the IHC scores of TSPAN7 in tumor 
and normal tissues were 10.45 and 9.77, respectively, 
suggesting an up-regulation of TSPAN7 protein expres-
sion in kidney neoplasm (P-value = 0.0019) (Table S1 and 
Fig. 1C). The IHC scores were graded as 0–9 (low), 10–12 
(high) by the cut-off value (Figure S2A). Specifically, the 
distribution of tumor tissue sections within low- and 
high-IHC score subgroups was 31.62% and 67.84% while 
the distribution of normal tissues sections was 33.51% 
and 48.65%, separately (Table S1). In Fig. 1D, we exhib-
ited several IHC staining pictures of the tumor and nor-
mal tissue sections from the cohort.

Clinical correlations of TSPAN7 in kidney neoplasm
The specific clinicopathological data of each patient 
was shown in the heatmap in Fig.  2A. Then, through 
K-M survival analysis, we discovered that TSPAN7 
protein expression in tumor tissues harbored signifi-
cant correlation with the OS (P-value = 0.009) and PFS 
(P-value = 0.009) of patients with kidney neoplasm, and 
high TSPAN7 protein expression usually led to poor clin-
ical outcomes (Fig. 2B-C). Through Chi-square tests, we 
further revealed that the IHC scores of TSPAN7 in tumor 
tissues were significantly associated with three variables, 
including the IHC scores of TSPAN7 in normal tissues 
(P-value < 0.001), PFS classification (P-value < 0.05), and 
OS classification (P-value < 0.01) (Figure S2B and Table 
S1).

Subsequently, we incorporated seven variables to 
conduct multivariable Cox regression analysis. From 
the forest plot, we could identify high TSPAN7 pro-
tein expression as an independent risk factor of the OS 
of patients with kidney neoplasm. The hazard ratio 
(HR) value of high IHC scores of TSPAN7 in tumor tis-
sues within the multivariable Cox regression model 
was 5.66, with confidential interval (CI) = 1.155–27.8, 
P-value = 0.0326 (Fig. 2D). The nomogram was also con-
structed (Figure S2C). Based on the median value of 
the risk scores, we separated the patients into high- or 
low-risk subgroups (Figure S2D). The survival time, OS 

https://yulab-smu.top/biomedical-knowledge-mining-book/(docs)
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Fig. 1  The analysis flow and the results of immunohistochemical (IHC) staining and scoring. (A) The workflow highlighted the important steps of our 
analysis. (B) The inclusion and exclusion criteria of the retrospective cohort were illustrated. (C) The IHC scores of TSPAN7 in kidney neoplasm tissues were 
higher than those in normal tissues (P-value = 0.0019). (D) Several IHC staining results of kidney neoplasm tissues and normal tissues were exhibited. Ab-
breviations: ceRNA, competing endogenouse RNA; PPI, protein-protein interaction
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censor, and risk score of each patient were shown in the 
scatter plot (Figure S2E). In the K-M survival analysis, 
patients in the low-risk subgroup usually harbored bet-
ter prognosis (P-value < 0.001) (Figure S2F). Last but not 
least, residual analysis, calibration curves, and ROC were 
applied for model diagnosis. Through residual analysis, 
the proportional hazards assumption of the multivari-
able Cox regression model was tested (Figure S2G-H). 
In the calibration curves, the observed OS was approxi-
mately consistent with the predicted OS at 1 year, 2 years, 
3 years, 4 years, and 5 years (Figure S2I). Notably, in the 
ROC analysis, the area under the curve (AUC) for OS at 
1 year, 2 years, 3 years, 4 years, and 5 years were 0.971, 

0,975, 0,939, 0.982, and 0.980, respectively, suggesting the 
outstanding prognostic prediction value of the multivari-
able Cox regression models (Figure S2J).

Differential expression, ceRNA network, and PPI network 
of TSPAN7 in pan-cancer
Considering the differential expression and strong clinical 
correlations of TSPAN7 in kidney neoplasm, we further 
questioned if TSPAN7 also played a vital role in pan-
cancer. The abbreviations of 33 cancer types in TCGA 
were shown in Table S2. At the transcriptomic level, 
TSPAN7 expression in tumor tissues was lower than that 
in normal tissues in BLCA, BRCA, CESC, COAD, GBM, 

Fig. 2  Exploring the clinical correlation of TSPAN7 in kidney neoplasm
 (A) The demographic information and clinical features of the cohort including 370 patients with kidney neoplasm were illustrated in the heatmap. (B-C) 
The Kaplan-Meier survival curves showed that high expression of TSPAN7 was usually associated with lower overall survival (OS) (P-value = 0.009) and 
progression free survival (PFS) (P-value = 0.009) in kidney neoplasm. (D) High IHC scores of TSPAN7 in tumor tissues served as a risk factor of OS (hazard 
ratio (HR) = 5.66, confidential interval (CI) = 1.155–27.8, P-value = 0.0326) in kidney neoplasm. *, P-value < 0.05; **, P-value < 0.01; ***, P-value < 0.001. Ab-
breviations: OS, overall survival; PFS, progression free survival; KIRC, Kidney clear cell carcinoma; KICH, kidney chromophobe; KIRP, kidney renal papillary 
cell carcinoma.
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Fig. 3 (See legend on next page.)
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HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, 
SARC, STAD, THCA, and UCEC. The results were oppo-
site when considering KICH and PCPG (Fig.  3A). Sub-
sequently, we searched for TSPAN7-targeted miRNAs 
from DIANA-microT, miRWalk, miRDB, and miRcode 
databases, and identified hsa-miR-140, hsa-miR-302 as 
key TSPAN7-targeted miRNAs by taking the intersec-
tions of all miRNAs (Figure S3A). The expression level of 
hsa-miR-140-3p, hsa-miR-140-5p, hsa-miR-302a-3p, hsa-
miR-302a-5p, hsa-miR-302b-3p, hsa-miR-302b-5p, hsa-
miR-302c-3p harbored close correlations with TSPAN7 
in various cancers (Figure S3B). Finally, integrated with 
hsa-miR-140-targeting- and hsa-miR-302-targeting 
lncRNAs, we revealed the TSPAN7-miRNAs-lncRNAs 
interactions and constructed the ceRNA network of 
TSPAN7 (Figure S3C and Fig.  3B). Moreover, we also 
investigated the possible interactions of TSPAN7 with 
other proteins. At the proteomic level, TSPAN7 was 
closely associated with OPHN1, IL1RAPL1, GRIA3, 
PICK1, GRIA2, HSPA5, TSPAN32, CD81, ITGB1, IGSF3, 
etc. (Fig.  3C). The ceRNA and PPI network might indi-
cate the possible mechanisms of TSPAN7’s role in cancer 
progression.

Clinical correlations of TSPAN7 in pan-cancer
We further studied the associations between TSPAN7 
and patients’ survival in pan-cancer. Through K-M sur-
vival analysis, we discovered that low TSPAN7 expres-
sion was typically associated with decreased OS in KIRC, 
LGG, LUAD, and PAAD. Besides, patients with lower 
expression level of TSPAN7 usually harbored lower PFS 
in KICH, KIRC, LGG, PAAD, SARC, and THCA, except 

for ACC and KIRP. As for DFS, TSPAN7 expression was 
negatively associated with the DFS of patients in DLBC, 
KIRP, but was positively correlated with LUAD, PAAD, 
and SARC. Moreover, TSPAN7 was a prognostic pre-
diction index of low DSS in KIRP and LIHC. The results 
were opposite in KIRC, LGG, and PAAD (Fig.  3D and 
Figure S4). Subsequently, the univariable Cox regression 
analysis was applied, and the results were shown in the 
forest plots. TSPAN7 served as a risk factor in BLCA, 
HNSC, STAD, and UCEC, but was a protective factor in 
KICH, KIRC, LGG, LUAD, OV, and PAAD. As for PFS, 
TSPAN7 was a risk factor of ACC, HNSC, while served 
as a protective factor of KICH, KIRC, LGG, LUAD, OV, 
PAAD, SARC, and THCA. In addition, TSPAN7 was 
a protective factor of DFS in LUAD, OV, PAAD, and 
SARC, but a risk factor of HNSC. As for DSS, the role 
of TSPAN7 was two-sided. While it was a risk factor in 
BLCA, KIRP, LIHC, and UCEC, it functioned as a pro-
tective role in KICH, KIRC, LGG, LUAD, OV, and PAAD 
(Fig. 3E).

Besides, TSPAN7 was positively correlated with the 
clinical stage of BLCA, KIRP, and MESO, but was nega-
tively associated with that of BRCA, KIRC, and THCA 
(Figure S5A). For four types of tumors which usually 
metastasized to bones, including BLCA, BRCA, MESO, 
and PRAD, the expression level of TSPAN7 did not show 
a statistical difference between the primary and meta-
static tumor (Figure S5B). Last but not least, the expres-
sion of TSPAN7 varied significantly among different 
molecular subtypes of BRCA (Figure S5C).

(See figure on previous page.)
Fig. 3  Differential expression, protein–protein interaction (PPI) network, and survival analysis of TSPAN7 in pan-cancer. (A) The expression of TSPAN7 in 
tumor was down-regulated in BLCA (P-value < 0.001), BRCA (P-value < 0.001), CESC (P-value < 0.01), COAD (P-value < 0.001), GBM (P-value < 0.01), HNSC 
(P-value < 0.05), KIRC (P-value < 0.001), KIRP (P-value < 0.001), LIHC (P-value < 0.001), LUAD (P-value < 0.001), LUSC (P-value < 0.001), PRAD (P-value < 0.001), 
READ (P-value < 0.001), SARC (P-value < 0.05), STAD (P-value < 0.001), THCA (P-value < 0.001), and UCEC (P-value < 0.001), however, up-regulated in KICH 
(P-value < 0.001) and PCPG (P-value < 0.05). (B) The ceRNA network was constructed by Cytoscape, illustrating the possible TSPAN7-miRNAs-lncRNAs in-
teractions. (C) The PPI network illustrated the close association of TSPAN7 with OPHN1, IL1RAPL1, GRIA3, PICK1, GRIA2, HSPA5, TSPAN32, CD81, ITGB1, and 
IGSF3.. (D) The Kaplan-Meier survival curves showed that low expression of TSPAN7 was associated with low probability of OS in KIRC (P-value < 0.001). Be-
sides, low expression of TSPAN7 was also correlated with lower PFS in KICH (P-value = 0.021), KIRC (P-value < 0.001), but higher PFS in KIRP (P-value < 0.001). 
Moreover, TSPAN7 was negatively related to the disease free survival (DFS) of patients in KIRP (P-value = 0.006). As for disease specific survival (DSS), pa-
tients with high expression of TSPAN7 usually harbored lower DSS in KIRP (P-value < 0.001), but higher DSS in KIRC (P-value < 0.001). (E) TSPAN7 served as 
a risk factor of OS in BLCA (HR = 1.144, CI = 1.037–1.263, P-value = 0.007), HNSC (HR = 1.123, CI = 1.027–1.228, P-value = 0.011), STAD (HR = 1.181, CI = 1.010–
1.380, P-value = 0.037), UCEC (HR = 1.227, CI = 1.071–1.406, P-value = 0.003), however, served as a protective factor in KICH (HR = 0.456, CI = 0.278–0.746, 
P-value = 0.002), KIRC (HR = 0.650, CI = 0.571–0.741, P-value < 0.001), LGG (HR = 0.523, CI = 0.433–0.632, P-value < 0.001), LUAD (HR = 0.866, CI = 0.774–0.968, 
P-value = 0.012), OV (HR = 0.908, CI = 0.832–0.991, P-value = 0.030), PAAD (HR = 0.679, CI = 0.561–0.821, P-value < 0.001). As for PFS, TSPAN7 acted as a risk 
factor of ACC (HR = 1.289, CI = 1.004–1.656, P-value = 0.047), HNSC (HR = 1.099 CI = 1.004–1.203, P-value = 0.041), while played an opposite role in KICH 
(HR = 0.532, CI = 0.370–0.763, P-value < 0.001), KIRC (HR = 0.681, CI = 0.602–0.770, P-value < 0.001), LGG (HR = 0.533, CI = 0.444–0.641, P-value < 0.001), LUAD 
(HR = 0.913, CI = 0.836–0.997, P-value = 0.043), OV (HR = 0.910, CI = 0.839–0.986, P-value = 0.022), PAAD (HR = 0.690, CI = 0.581–0.820, P-value < 0.001), SARC 
(HR = 0.814, CI = 0.701–0.945, P-value = 0.007), and THCA (HR = 0.775, CI = 0.612–0.982, P-value = 0.035). Moreover, TSPAN7 was protective of DFS in LUAD 
(HR = 0.782, CI = 0.673–0.908, P-value = 0.001), OV (HR = 0.891, CI = 0.796–0.998, P-value = 0.047), PAAD (HR = 0.505, CI = 0.335–0.761, P-value = 0.001), and 
SARC (HR = 0.720, CI = 0.574–0.903, P-value = 0.005), but served as a risk factor of HNSC (HR = 1.408, CI = 1.056–1.878, P-value = 0.020). As for DSS, while 
TSPAN7 was a risk factor in BLCA (HR = 1.189, CI = 1.064–1.330, P-value = 0.002), KIRP (HR = 1.246, CI = 1.013–1.533, P-value = 0.037), LIHC (HR = 1.262, 
CI = 1.005–1.585, P-value = 0.046), and UCEC (HR = 1.209, CI = 1.028–1.422, P-value = 0.021), it played a protective role in KICH (HR = 0.348, CI = 0.197–0.615, 
P-value < 0.001), KIRC (HR = 0.578, CI = 0.499–0.669, P-value < 0.001), LGG (HR = 0.435, CI = 0.345–0.547, P-value < 0.001), LUAD (HR = 0.881, CI = 0.781–0.994, 
P-value = 0.040), OV (HR = 0.909, CI = 0.828–0.998, P-value = 0.046), and PAAD (HR = 0.702, CI = 0.570–0.865, P-value < 0.001). *, P-value < 0.05; **, P-val-
ue < 0.01; ***, P-value < 0.001. Abbreviations: DFS, disease free survival; DSS, disease specific survival
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The correlations of TSPAN7 with tumor purity in pan-
cancer
To further reveal the molecular mechanism of TSPAN7’s 
role in the development of pan-cancer, we conducted the 
following research. First of all, we used the ESTIMATE 
algorithm to calculate the immune score and stromal 
score of tumors. Generally speaking, TSPAN7 was nega-
tively correlated with immune scores in most types of 
cancers, including ACC, GBM, KIRC, LGG, LUSC, OV, 
and THCA, except for BRCA, KIRP, PAAD, and PRAD. 
However, TSPAN7 harbored a positive correlation with 
stromal scores in most cancer types, including BLCA, 
BRCA, CESC, HNSC, KIRP, LAML, PAAD, PRAD, 
STAD, TGCT, and THYM, except for ACC, GBM, LGG 
(Fig. 4A).

The correlations of TSPAN7 with tumor genomics in pan-
cancer
As for genomics, in Fig. 4B, we could find that TSPAN7 
was negatively associated with TMB in most types of 
cancers, including BLCA, BRCA, COAD, DLBC, ESCA, 
KIRC, KIRP, LGG, LIHC, LUAD, PAAD, PRAD, READ, 
SARC, STAD, THCA, UCEC, and UCS. In the MSI radar 
map, we also identified the negative association between 
TSPAN7 and MSI in BLCA, COAD, SARC, SKCM, 
STAD, and UCEC (Fig.  4C). Besides, through cBioPor-
tal analysis, we also discovered the main type of CNVs 
of TSPAN7 as shallow deletion (Fig.  4D). The mutation 
site of TSPAN7 was also exhibited in Fig.  4E. Employ-
ing GSCA, we further explored the SNV, CNV, and 
methylation profiles of TSPAN7. The main SNV type of 
TSPAN7 across various cancer types were “C > T” (Figure 
S6A), and there were no statistically significant differ-
ences between the survival of SNV and wildtype TSPAN7 
(Figure S6B). The CNV of TSPAN7 was negatively cor-
related with its mRNA expression in KIRP and SARC, 
but was positively associated with its mRNA expression 
in PAAD, PRAD, and OV (Figure S6C). Regarding the 
CNV subtypes, we observed more hetezygous amplifica-
tion of TSPAN7 in ACC, KIRP, SARC, UCS, and more 

hetezygous deletion in CHOL, ESCA, KICH, OV (Fig-
ure S6D). Besides, there were also more homozygous 
amplification of TSPAN7 in DLBC, SARC, UCS, but 
more homozygous deletion in ESCA, HNSC, OV (Fig-
ure S6E). As for patients’ survival, the CNV of TSPAN7 
was significantly correlated with OS in KIRP, PAAD, 
PRAD, and UCEC, with PFS in KIRP, PAAD, THYM, and 
UCEC, with DSS in KIRP, LUAD, PAAD, PRAD, THCA, 
and UCEC, with DFS in COAD, KIRP, and UCEC (Fig-
ure S6F). In consideration of methylation, it had nega-
tive correlations with the mRNA expression of TSPAN7 
in CESC, COAD, ESCA, HNSC, KICH, KIRC, LAML, 
LUAD, LUSC, PCPG, SKCM, STAD, OV, UCEC, UCS, 
UVM, except for BRCA (Figure S6G). The methylation of 
TSPAN7 served as a risk factor of OS in PAAD, of PFS in 
KIRP, PRAD, of DSS in PAAD, however, served as a pro-
tective factor of OS in COAD, MESO, of PFS in COAD, 
of DSS in COAD, ESCA, STAD (Figure S6H).

The correlations of TSPAN7 with tumor immunity in pan-
cancer
In the following studies, we explored the associations of 
TSPAN7 with tumor immunology and immunotherapy. 
Among 33 types of cancer in TCGA database, TSPAN7 
showed a positive co-expression with both the immune 
inhibitory genes and stimulatory genes in BRCA, KIRP, 
LAML, LIHC, PAAD, PRAD, STAD, etc., but was nega-
tively correlated with them in ACC, GBM, KICH, KIRC, 
LGG, LUSC, OV, THCA, UCEC, etc. The immune cor-
relations of TSPAN7 in pan-cancer were two-sided and 
complicated (Fig. 5A).

Then, we used the ESTIMATE algorithm as well as 
the TIMER2.0 database to further discover the asso-
ciations of TSPAN7 with immune cell infiltration. Nota-
bly, TSPAN7 played an immune inhibiting role in most 
types of cancers, especially for KIRC, GBM, THCA, and 
UCEC. In KIRC, TSPAN7 exhibited a significantly nega-
tive correlation with the infiltration of macrophages 
(macrophages M0), myeloid cells, B cells (B cells memory, 
plasma cells), and T cells (T cells CD4 memory activated, 

(See figure on previous page.)
Fig. 4  The correlations of TSPAN7 with tumor purity and tumor genomics in pan-cancer. (A) The scatter plots and the corresponding fitting curves il-
lustrated the correlations of TSPAN7 with the immune score and stromal score in pan-cancer. TSPAN7 harbored a negative correlation with the immune 
scores in most types of tumors, including ACC (R = -0.59, P-value < 0.001), GBM (R = -0.36, P-value < 0.001), KIRC (R = -0.34, P-value < 0.001), LGG (R = 
-0.53, P-value < 0.001), LUSC (R = -0.18, P-value < 0.001), OV (R = -0.3, P-value < 0.001), and THCA (R = -0.27, P-value < 0.001), except for BRCA (R = 0.31, P-
value < 0.001), KIRP (R = 0.21, P-value < 0.001), PAAD (R = 0.32, P-value < 0.001), and PRAD (R = 0.53, P-value < 0.001). As for stromal scores, TSPAN7 was posi-
tively correlated with the stromal scores in most types of cancers, including BLCA (R = 0.23, P-value < 0.001), BRCA (R = 0.44, P-value < 0.001), CESC (R = 0.21, 
P-value < 0.001), HNSC (R = 0.2, P-value < 0.001), KIRP (R = 0.41, P-value < 0.001), LAML (R = 0.27, P-value < 0.001), PAAD (R = 0.27, P-value < 0.001), PRAD 
(R = 0.69, P-value < 0.001), STAD (R = 0.37, P-value < 0.001), TGCT (R = 0.6, P-value < 0.001), and THYM (R = 0.45, P-value < 0.001), except for ACC (R = -0.44, P-
value < 0.001), GBM (R = -0.4, P-value < 0.001), LGG (R = -0.44, P-value < 0.001). (B) The radar map highlighted the negative correlation of TSPAN7 with TMB 
in BLCA (P-value < 0.001), BRCA (P-value < 0.001), COAD (P-value < 0.001), DLBC (P-value < 0.05), ESCA (P-value < 0.001), KIRC (P-value < 0.001), KIRP (P-val-
ue < 0.001), LGG (P-value < 0.001), LIHC (P-value < 0.05), LUAD (P-value < 0.001), PAAD (P-value < 0.001), PRAD (P-value < 0.001), READ (P-value < 0.05), SARC 
(P-value < 0.001), STAD (P-value < 0.001), THCA (P-value < 0.001), UCEC (P-value < 0.001), and UCS (P-value < 0.05). (C) The radar map highlighted the nega-
tive correlation of TSPAN7 with MSI in BLCA (P-value < 0.05), COAD (P-value < 0.001), SARC (P-value < 0.05), SKCM (P-value < 0.05), STAD (P-value < 0.001), 
and UCEC (P-value < 0.001). (D) The major copy number alterations of TSPAN7 were shallow deletion. (E) The mutation site of TSPAN7 was exhibited in the 
plot. *, P-value < 0.05; **, P-value < 0.01; ***, P-value < 0.001
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T cells CD8, T cells follicular helper, T cells gamma delta, 
T cells regulatory), but a weak positive correlation with 
NK cell infiltration (NK cell resting). In GBM, TSPAN7 
was negatively associated with the infiltration of macro-
phages, myeloid cells, CD8 + T cells, but was positively 
associated with B cells. In THCA, TSPAN7 was nega-
tively associated with the infiltration of macrophages, 
myeloid cells (dendritic cells activated, monocytes), and 
T cells (T cells CD4 memory activated, T cells regula-
tory). In UCEC, TSPAN7 also harbored a negative corre-
lation with the infiltration of macrophages, myeloid cells, 
and T cells (T cells CD4 memory activated). However, 
in KIRP, TSPAN7 seemed to played an opposite role, as 
tumors with high TSPAN7 expression were enriched with 
macrophages (macrophages M1), B cells (B cells naïve), 
and CD8 + T cells (T cells CD8). Interestingly, TSPAN7 
was strongly positively correlated with endothelial cells 
and cancer-associated fibroblasts in almost all types of 
tumors (Fig. 5B, Figure S7, and Figure S8).

CTLs were one of the most important components 
in tumor immunity. Thus, we retrieved the TIDE data-
base to further explore the association of TSPAN7 with 
CTLs (Figure S9A). From Figure S9B, we could find that 
TSPAN7 was positively correlated with CTLs in BRCA, 
but was negatively correlated in UCEC. Regarding the 
survival status, patients with higher TSPAN7 expres-
sion usually harbored better prognosis in LAML, but 
had worse prognosis in UCEC (Figure S9C). However, 
there was no statistical difference between the survival of 
patients with high- or low-CTL infiltration in the high- 
and low-TSPAN7 subgroups, indicating that TSPAN7 
was not statistically associated with the CTL dysfunction 
phenotype in our study (Figure S9D).

The correlations of TSPAN7 with drug sensitivity in pan-
cancer
Ulteriorly, we discovered that TSPAN7 expression had 
significant correlation with drug sensitivity in pan-cancer 
based on GDSC (Fig. 6A), CTRP (Fig. 6B), and CellMiner 
database (Fig. 6C). Notably, high expression of TSPAN7 
was related with high drug sensitivity of most drugs, 
specifically for Navitoclax and Vorinostat, which served 
as the top associated drugs in all three databases. Excep-
tionally, the drug sensitivity of Dasatinib was found to 

be negatively correlated with TSPAN7 expression. The 
above results suggested that TSPAN7 might function in 
drug therapies of cancers and TSPAN7-target treatment 
was promising in improve the therapeutic effect of anti-
cancer drugs.

Functional enrichment analysis of TSPAN7 in pan-cancer 
through GSEA
To further explore the role of TSPAN7 in pan-cancer, we 
applied GSEA to identify the enriched KEGG pathways 
in high-TSPAN7 subgroups. Generally speaking, “Cal-
cium signaling pathway”, “Cytosolic DNA sensing path-
way”, “Drug metabolism cytochrome P450”, “Metabolism 
of xenobiotics by cytochrome P450”, “Neuroactive ligand 
receptor interaction”, “Olfactory transduction”, “Regu-
lation of autophagy”, and “RIG I like receptor signaling 
pathway” were the most common KEGG pathways in our 
analysis. Specifically, “Calcium signaling pathway” was 
up-regulated in KIRP, PRAD, PAAD, and UVM. “Drug 
metabolism cytochrome P450” and “Metabolism of xeno-
biotics by cytochrome P450” was up-regulated in TGCT, 
KIRP, LUAD, and HNSC. “Neuroactive ligand receptor 
interaction” was up-regulated in KIRP, PAAD, UVM, and 
SARC. “Olfactory transduction” was down-regulated in 
CESC, STAD, SARC, but up-regulated in UVM. “Cyto-
solic DNA sensing pathway”, “Regulation of autophagy” 
and “RIG I like receptor signaling pathway” was down-
regulated in BLCA, CESC, PAAD, and UCS. These 
enriched KEGG pathways might suggest the molecular 
biological functions of TSPAN7 in pan-cancer (Fig. 7 and 
Figure S10).

Discussion
TSPAN7, a member of TSPANs, is found to be closely 
associated with tumor progression. Several studies have 
reported TSPAN7’s role in tumor cell invasion, metas-
tasis, and immunotherapy [11–13]. However, the pre-
vious studies have contradictory results, and the exact 
function of TSPAN7 in tumor development is not clear 
enough. Thus, we conducted a pan-cancer study of 
TSPAN7 in order to comprehensively reveal the unique 
role of TSPAN7 across various types of tumors. First of 
all, we employed IHC staining on a large retrospective 
cohort consisted of 370 patients with kidney neoplasm, 

(See figure on previous page.)
Fig. 5  The correlations of TSPAN7 with immune gene sets and immune cell infiltration in pan-cancer. (A) TSPAN7 was positively associated with both the 
immune inhibitory genes and stimulatory genes in BRCA, KIRP, LAML, LIHC, PAAD, PRAD, STAD, etc., but showed a negative correlation with them in ACC, 
GBM, KICH, KIRC, LGG, LUSC, OV, THCA, UCEC, etc. (B) TSPAN7 was negatively associated with the infiltration of B cells memory (R = -0.16, P-value < 0.001), 
macrophages M0 (R = -0.29, P-value < 0.001), plasma cells (R = -0.17, P-value < 0.001), T cells CD4 memory activated (R = -0.2, P-value < 0.001), T cells CD8 (R 
= -0.18, P-value < 0.001), T cells follicular helper (R = -0.16, P-value < 0.001), T cells gamma delta (R = -0.18, P-value < 0.001), and T cells regulatory (R = -0.37, 
P-value < 0.001), but positively associated with the infiltration of B cells naïve (R = 0.22, P-value < 0.001), dendritic cells resting (R = 0.17, P-value < 0.001), 
mast cells resting (R = 0.44, P-value < 0.001), monocytes (R = 0.18, P-value < 0.001), NK cells resting (R = 0.34, P-value < 0.001), and T cells CD4 memory rest-
ing (R = 0.15, P-value < 0.001) in KIRC. TSPAN7 was positively associated with the infiltration of B cells naïve (R = 0.29, P-value < 0.001), macrophages M1 
(R = 0.42, P-value < 0.001), and T cells CD8 (R = 0.22, P-value < 0.001), except for mast cells resting (R = -0.22, P-value < 0.001) in KIRP. *, P-value < 0.05; **, 
P-value < 0.01; ***, P-value < 0.001
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Fig. 6 (See legend on next page.)
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and discovered the differential expression of TSPAN7 
between tumor and normal tissues. Clinical correlation 
analyses were then applied, suggesting the potential func-
tion of TSPAN7 in the development of kidney neoplasm. 
Subsequently, we questioned if TSPAN7 also harbored 
an important role in pan-cancer level, and successively 
conducted differential expression analysis, ceRNA analy-
sis, PPI analysis, correlation analysis of TSPAN7 with 
patients’ survival, clinical stages, tumor purity, tumor 
genomics, tumor immunology, and drug sensitivity. 
Last but not least, we also conducted GSEA to discover 
the enriched signaling pathways of TSPAN7, indicat-
ing the possible molecular mechanisms of TSPAN7 in 
pan-cancer.

TSPAN7 might serve as a potential biomarker across 
various types of tumors
Previous studies have reported the prognostic prediction 
value of TSPAN7 in several tumor types. Low TSPAN7 
expression was found to be related to poor prognosis in 
BRCA, GBM, LUAD, KIRC, LIHC, PDAC, SARC, BLCA, 
and multiple myeloma [13, 51–58]. However, in STAD 
and osteosarcoma, oppositely, TSPAN7 could promote 
the progression of tumor, and was usually correlated with 
worse clinical outcomes [12, 59]. In our study, through 
IHC staining, we discovered an up-regulation of TSPAN7 
in kidney neoplasm tissues compared to normal ones. 
High TSPAN7 expression was predictive of shorter OS 
and PFS of patients with kidney neoplasm. In pan-can-
cer, TSPAN7 expression in tumor tissues was lower than 
normal tissues in most types of tumors, including BLCA, 
BRCA, CESC, COAD, GBM, HNSC, KIRC, KIRP, LIHC, 
LUAD, LUSC, PRAD, READ, SARC, STAD, THCA, and 
UCEC, except for KICH and PCPG at the transcriptomic 
level. From the K-M survival analysis and univariable Cox 
regression analysis, we further identified TSPAN7 as a 
protective factor of OS in KIRC, LGG, LUAD, PAAD, of 

PFS in KICH, KIRC, LGG, PAAD, SARC, THCA, of DFS 
in LUAD, PAAD, SARC, of DSS in KIRC, LGG, PAAD, 
but as a risk factor of PFS in ACC, of DSS in KIRP, LIHC. 
Besides, TSPAN7 was also positively correlated with the 
clinical stage of BLCA, KIRP, and MESO, but was nega-
tively associated with that of BRCA, KIRC, and THCA. 
Although the function of TSPAN7 in various types of 
tumors was two-sided, our study still indicated TSPAN7 
as a promising biomarker in pan-cancer.

In addition, TSPAN7 might also serve as a potential 
therapeutic biomarker in various cancers. In our study, 
we found that high TSPAN7 expression was of significant 
correlation with high drug sensitivity of Navitoclax and 
Vorinostat, but oppositely associated to low drug sensi-
tivity of Dasatinib. Navitoclax was a double antagonist of 
BCL-2 and BCL-XL, and had been approved for patients 
with 17p-deficient chronic lymphocytic leukemia who 
had received at least one therapy type [60]. The applica-
tion of Navitoclax in other solid tumors, especially small 
cell lung cancer, was also under clinical research [61]. 
Besides, Vorinostat was a FDA-approved drug for cuta-
neous T-cell lymphoma [62], and “Vorinostat plus other 
drugs” therapy was gradually catching more research-
ers’ attention in treating Hodgkin lymphoma [63, 64]. 
Last but not least, Dasatinib, a BCR-ABL inhibitor [65], 
had been widely studied in treatment of metastatic 
breast cancer [66], small cell lung cancer [67], non-clear 
cell renal cell carcinoma [68], etc. However, there were 
no previous studies reporting the correlations between 
TSPAN7 and the sensitivity of these drugs. Pharmaceuti-
cal research concerned TSPAN7 in pan-cancer seemed to 
be a promising research direction in the future.

Further, we constructed the ceRNA and PPI network 
to suggest the possible mechanism of TSPAN7 in can-
cer progression. In ceRNA network, hsa-miR-140 and 
hsa-miR-302 were identified as two key miRNA family 
closely associated with TSPAN7. Although there were 

(See figure on previous page.)
Fig. 6  The correlations of TSPAN7 with drug sensitivity in pan-cancer. (A) In GDSC database, TSPAN7 expression was positively correlated with IC50 of 
17-AAG, Afatinib, AUY922, AZD6482, BEZ235, Bleomycin, Bleomycin (50 μm), CGP-60,474, Dasatinib, Docetaxel, Elesclomol, Epothilone B, Midostaurin, 
NU-7441, piperlongumine, QL-VIII-58, Shikonin, TGX221, Tipifarnib, WZ-1-84, Z-LLNle-CHO, but was negatively correlated with IC50 of BMS345541, BX-912, 
CX-5461, GSK1070916, NPK76-II-72-1, TL-2-105, Vorinostat, ZM-447,439. (B) In CTRP database, TSPAN7 expression was positively correlated with IC50 of Da-
satinib, YM-155, but was negatively correlated with IC50 of ABT-737, Apicidin, BI-2536, BRD-A94377914, BRD-K70511574, CD-437, Ceranib-2, Cucurbitacin 
I, Entinostat, GSK461364, ISOX, JQ-1, Leptomycin B, Linsitinib, LRRK2-IN-1, LY-2,183,240, Marinopyrrole A, Mitomycin, Nakiterpiosin, Navitoclax, Neuronal 
differentiation inducer III, Nutlin-3, Panobinostat, Phloretin, SCH-79,797, Tacedinaline, Triazolothiadiazine, Vorinostat. (C) In CellMiner database, TSPAN7 
expression was positively correlated with compound activity of Nelarabine (R = 0.825, P-value < 0.001), Zalcitabine (R = 0.757, P-value < 0.001), Methyl-
prednisolone (R = 0.681, P-value < 0.001), Chelerythrine (R = 0.548, P-value < 0.001), ANCITABINE HYDROCHLORIDE (R = 0.510, P-value < 0.001), Pipobroman 
(R = 0.489, P-value < 0.001), Ribavirin (R = 0.485, P-value < 0.001), Cytarabine (R = 0.473, P-value < 0.001), XK-469 (R = 0.470, P-value < 0.001), Fludarabine 
(R = 0.469, P-value < 0.001), Barasertib (R = 0.462, P-value < 0.001), ST-3595 (R = 0.456, P-value < 0.001), IDOXURIDINE (R = 0.451, P-value < 0.001), Asparagi-
nase (R = 0.449, P-value < 0.001), PX-316 (R = 0.446, P-value < 0.001), ZM-336,372 (R = 0.440, P-value < 0.001), Dexamethasone Decadron (R = 0.429, P-val-
ue < 0.001), Bendamustine (R = 0.399, P-value < 0.01), Thiotepa (R = 0.396, P-value < 0.01), Chlorambucil (R = 0.388, P-value < 0.01), Fluphenazine (R = 0.382, 
P-value < 0.01), DECITABINE (R = 0.380, P-value < 0.01), Triethylenemelamine(R = 0.380, P-value < 0.01), SNS-314 (R = 0.378, P-value < 0.01), Uracil mustard 
(R = 0.364, P-value < 0.01), Noscapine (R = 0.359, P-value < 0.01), Hydroxychloroquine Sulfate (R = 0.358, P-value < 0.01), Melphalan (R = 0.357, P-value < 0.01), 
Navitoclax (R = 0.353, P-value < 0.01), Ifosfamide (R = 0.351, P-value < 0.01), FENRETINIDE (R = 0.343, P-value < 0.01), LMP-400 (R = 0.343, P-value < 0.01), Vori-
nostat (R = 0.339, P-value < 0.01), Idarubicin (R = 0.338, P-value < 0.01), Dasatinib (R = -0.336, P-value < 0.01). Abbreviations: GDSC, Genomics of Drug Sensi-
tivity in Cancer; CTRP, The Cancer Therapeutics Response Portal; Cor, correlation coefficient
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Fig. 7 (See legend on next page.)
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not previous studies directly reporting the correlations 
between the two miRNA families and TSPAN7, both of 
them played an important role in the development of 
cancers. Especially for hsa-miR-140, it was found that 
hsa-miR-140 could not only inhibit the proliferation, 
migration, and invasion of gastric cancer, but also func-
tion in the chemoresistance of pancreatic ductal adeno-
carcinoma [69, 70]. Among the target lncRNAs of key 
miRNAs, KCNQ1OT1 stands out as the most widely 
associated one. It was found that KCNQ1OT1 took part 
in the progression of cholangiocarcinoma through the 
regulation of miR-140-5p/SOX4 axis [71]. In the PPI net-
work, we found TSPAN7 was possibly interacted with 
IGSF3, IL1RAPL1, PICK1, GRIA2, and GRIA3 (known 
interactions from curated databases or experiments), 
especially for PICK1 with the highest predicted score. 
However, there were not previous studies of TSPAN7 
with the above potential protein partners in the field of 
cancers. Maria Passafaro et al. reported that TSPAN7 
could regulate excitatory synapse development and 
AMPAR trafficking through PICK1 in X-linked intellec-
tual disability [72]. Deeper investigations of the ceRNA 
and PPI network are conducive to reveal the possible 
mechanisms of TSPAN7 in cancer progression.

TSPAN7 was possibly associated with immune infiltration 
and immunotherapy across various types of tumors
Moreover, we explored the correlations of TSPAN7 with 
tumor purity, tumor genomics, and tumor immunology. 
Notably, TSPAN7 was found to have a close correlation 
with immune infiltration and immunotherapy across 
various types of tumors. Previous studies have validated 
our findings. In GBM, TSPAN7 was negatively associ-
ated with the infiltration of cancer-associated M2 macro-
phages, and the expression of CTLA-4, PD-1, and PD-L1 
[13]. In BRCA, TSPAN7 was reported to be associated 
with the T and B cell infiltration as well as the occurrence 
of tertiary lymphoid structures, which was predictive 
of the therapeutic effect of immune checkpoint inhibi-
tors [51]. In our study, we discovered that TSPAN7 was 
positively co-expressed with both the immune inhibitory 

genes and stimulatory genes in BRCA, KIRP, LAML, 
LIHC, PAAD, PRAD, STAD, and negatively correlated 
with them in ACC, GBM, KICH, KIRC, LGG, LUSC, 
OV, THCA, UCEC. Considering immune cell infiltration, 
TSPAN7 usually functioned as an immune inhibitory 
factor in pan-cancer, especially for KIRC, GBM, THCA, 
and UCEC. Among these four types of tumors, TSPAN7 
was mostly negatively associated with the infiltration of 
macrophages, myeloid cells, and T cells. Macrophages 
were reported to stimulate angiogenesis, malignant cell 
invasion, and inhibit the anti-tumor immunity, thus 
promoting the initiation and progression of tumor [73]. 
However, T cells usually served as a tumor-killing actor, 
and were associated with favorable clinical outcomes. 
Among T cells, CD4 + T cells could communicate with B 
cells, antigen presenting cells (APCs), and other immune 
cells, in order to facilitate their anti-tumor functions 
[74, 75]. Most importantly, CD4 + T cells could contrib-
ute to the proliferation and differentiation of CD8 + T 
cells, and enhance the tumor-killing role of CD8 + T 
cells through various ways [76, 77]. CTLs, the main sub-
types of CD8 + T cells, were of the greatest importance 
in tumor immunity. CTLs could secrete perforin and 
apoptosis-related cytokines to kill tumor cells [78]. The 
above results suggested the close relationships between 
TSPAN7 and macrophages, myeloid cells, T cells, and 
identified TSPAN7 as a promising immunotherapeutic 
target for tumors. Apart from this, it was noteworthy 
that TSPAN7 was positively associated with the infiltra-
tion of endothelial cells and cancer-associated fibroblasts 
in almost all cancer types in TCGA. Although there was 
no study reporting the relationship between TSPAN7 
and cancer-associated fibroblasts, TSPAN7 was found 
to harbor a far higher expression within endothelial 
cells than tumor cells in KIRC [53]. In BRCA, TSPAN7 
was reported to be associated with the formation of high 
endothelial venules, which could recruit naïve lympho-
cytes to lymph nodes and enhance the anti-tumor immu-
nity [51].

Nonetheless, CTL dysfunction and exclusion were 
the main reason for the failure of anti-tumor immunity 

(See figure on previous page.)
Fig. 7  The enriched signaling pathways of TSPAN7 in pan-cancer. (A) In BLCA, the top five enriched down-regulated KEGG pathways were “Cytosolic 
DNA sensing pathway”, “DNA replication”, “Nucleotide excision repair”, “Regulation of autophagy”, and “RIG I like receptor signaling pathway”. (B) In CESC, 
the top five enriched down-regulated KEGG pathways were “Autoimmune thyroid disease”, “Cytosolic DNA sensing pathway”, “Olfactory transduction”, 
“Regulation of autophagy”, and “RIG I like receptor signaling pathway”. (C) In HNSC, the top five enriched up-regulated KEGG pathways were “Arrhythmo-
genic right ventricular cardiomyopathy_ARVC”, “Cardiac muscle contraction”, “Hypertrophic cardiomyopathy_HCM”, “Drug metabolism cytochrome P450”, 
and “Metabolism of xenobiotics by cytochrome P450”. (D) In KIRP, the top five enriched up-regulated KEGG pathways were “Calcium signaling pathway”, 
“Drug metabolism cytochrome P450”, “Neuroactive ligand receptor interaction”, “PPAR signaling pathway”, and “Retinol metabolism”. (E) In LUAD, the top 
five enriched up-regulated KEGG pathways were “Adipocytokine signaling pathway”, “Drug metabolism cytochrome P450”, “GnRH signaling pathway”, 
“Metabolism of xenobiotics by cytochrome P450”, and “Steroid hormone biosynthesis”. (F) In PRAD, the top five enriched up-regulated KEGG pathways 
were “Calcium signaling pathway”, “Cell adhesion molecules_CAMs”, “Chemokine signaling pathway”, “Cytokine-cytokine receptor interaction”, and “focal 
adhesion”. (G) In SARC, the four enriched up-regulated KEGG pathways were “Cardiac muscle contraction”, “Dilated cardiomyopathy”, “Hypertrophic cardio-
myopathy_HCM”, and “Neuroactive ligand receptor interaction”. However, “Olfactory transduction” was down-regulated in SARC. (H) In STAD, the four en-
riched up-regulated KEGG pathways were “Adipocytokine signaling pathway”, “Arrhythmogenic right ventricular cardiomyopathy_ARVC”, “Maturity onset 
diabetes of the young”, and “Renin angiotensin system”. However, “Olfactory transduction” was down-regulated in STAD
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[79]. Thus, we conducted our subsequent analysis among 
BRCA, SKCM, UCEC, LAML, and neuroblastoma based 
on the TIDE database. We discovered that patients with 
high TSPAN7 expression were usually accompanied by 
enriched CTLs in BRCA, but low infiltration of CTLs in 
UCEC. However, there were no statistical correlations 
between TSPAN7 and CTL dysfunction.

Apart from this, in our study, we also found that 
TSPAN7 was closely associated with tumor genom-
ics. TSPAN7 exhibited a negative correlation with TMB 
in most cancer types including BLCA, BRCA, COAD, 
DLBC, ESCA, KIRC, KIRP, LGG, LIHC, LUAD, PAAD, 
PRAD, READ, SARC, STAD, THCA, UCEC, UCS, and 
was negatively correlated with MSI in BLCA, COAD, 
SARC, SKCM, STAD, UCS. Besides, we also revealed 
the close relationships between TSPAN7 and genom-
ics instability in pan-cancer through cBioPortal analysis 
and GSCA. Notably, the genomic instability of tumors 
was of close associations with immunotherapy. It has 
been reported that tumors with large amounts of somatic 
mutations driven by mismatch-repair defects were more 
sensitive to PD-1 targeted therapy [80, 81], and MSI 
might serve as a reliable biomarker for the therapeutic 
effect of PD-1 blockade [82]. TSPAN7 possibly played 
a role in tumor immunotherapy by regulating tumor 
genomics.

Then, we used GESA and identified several enriched 
signaling pathways of TSPAN7, which were possibly 
associated with its role in tumor immunity across vari-
ous types of tumors. “Cytosolic DNA sensing pathway” 
is involved in the recognition of double-stranded cyto-
solic DNA, and functioned in the innate immune system 
[83]. Cyclic GMP-AMP synthase (cGAS) is one of the 
DNA sensors in the pathway, and could activate STING 
to initiate type I interferon (IFN) response, which could 
promote the maturity of dendritic cells and the presenta-
tion of tumor antigens towards T cells [84, 85]. Besides, 
the activation of cGAS/STING is also associated with 
PD-L1 expression [86]. However, the activation of “Neu-
roactive ligand receptor interaction” is associated with 
the inhibition of “Cytosolic DNA sensing pathway”, and 
could lead to the reduction of CD8 + T cell infiltration in 
COAD [87]. The recognition of DNA could also be indi-
rectly accomplished by RNA sensor RIG-I through “RIG 
I like receptor signaling pathway” [88]. The “RIG I like 
receptor signaling pathway” could enhance the function 
of Vγ9Vδ2 T cells [89], and induce apoptosis, pyroptosis, 
and autophagy of tumor cells [90–92]. The above signal-
ing pathways had close correlation with immunity, and 
might be interacted with TSPAN7’s role of anti-tumor 
immunity across various types of tumors. In spite of 
this, there have not been previous studies directly illus-
trating the correlations of TSPAN7 with these signaling 
pathways. Further studies should be focused on revealing 

the precise molecular mechanisms of TSPAN7’s role in 
pan-cancer.

Limitations of the study
In spite of this, there were still some limitations in our 
study. Firstly, all 370 patients with kidney neoplasm were 
from Xinhua Hospital Affiliated to Shanghai Jiao Tong 
University School of Medicine. The findings of our study 
were not validated by patients from other medical cen-
ters. Besides, the pan-cancer data of our study was from 
public databases like TCGA, cBioPortal, TIMER2.0, 
TIDE, etc. The majority of these samples derived from 
patients in Western countries, which might lead to the 
racial deviance of our study. Last but not least, our study 
only preliminarily identified TSPAN7 as a promising bio-
marker in pan-cancer, and discovered its relationships 
with tumor purity, tumor genomics, tumor immunology, 
and drug sensitivity. As studies concerned TSPAN7 in 
tumors were still in the initial stages, we did not deeply 
investigate the molecular mechanisms of it, and more 
studies need to be conducted in the future to unveil the 
precise regulatory role of TSPAN7 in tumor progression.

Conclusion
In summary, we comprehensively studied the unique role 
of TSPAN7 in tumor progression across various types 
of tumors based on a large retrospective cohort of kid-
ney neoplasm and subsequently online databases in pan-
cancer level. Our study identified TSPAN7 as a promising 
biomarker of various tumors, and illustrated its close 
relationships with tumor purity, tumor genomics, tumor 
immunology, and drug sensitivity. Last but not least, we 
preliminarily explored the enriched signaling pathways of 
TSPAN7 in different types of tumors. In the future, more 
efforts need to be made to unveil the precise molecular 
mechanism of TSPAN7’s role in tumor progression.
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