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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Given the potential benefits of artificial intelligence and machine learning (AI/ML) within

healthcare, it is critical to consider how these technologies can be deployed in pediatric

research and practice. Currently, healthcare AI/ML has not yet adapted to the specific tech-

nical considerations related to pediatric data nor adequately addressed the specific vulnera-

bilities of children and young people (CYP) in relation to AI. While the greatest burden of

disease in CYP is firmly concentrated in lower and middle-income countries (LMICs), exist-

ing applied pediatric AI/ML efforts are concentrated in a small number of high-income coun-

tries (HICs). In LMICs, use-cases remain primarily in the proof-of-concept stage. This

narrative review identifies a number of intersecting challenges that pose barriers to effective

AI/ML for CYP globally and explores the shifts needed to make progress across multiple

domains. Child-specific technical considerations throughout the AI/ML lifecycle have been

largely overlooked thus far, yet these can be critical to model effectiveness. Governance

concerns are paramount, with suitable national and international frameworks and guidance

required to enable the safe and responsible deployment of advanced technologies impact-

ing the care of CYP and using their data. An ambitious vision for child health demands that

the potential benefits of AI/Ml are realized universally through greater international collabo-

ration, capacity building, strong oversight, and ultimately diffusing the AI/ML locus of power

to empower researchers and clinicians globally. In order that AI/ML systems that do not

exacerbate inequalities in pediatric care, teams researching and developing these technolo-

gies in LMICs must ensure that AI/ML research is inclusive of the needs and concerns of

CYP and their caregivers. A broad, interdisciplinary, and human-centered approach to AI/

ML is essential for developing tools for healthcare workers delivering care, such that the cre-

ation and deployment of ML is grounded in local systems, cultures, and clinical practice.

Decisions to invest in developing and testing pediatric AI/ML in resource-constrained set-

tings must always be part of a broader evaluation of the overall needs of a healthcare
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system, considering the critical building blocks underpinning effective, sustainable, and

cost-efficient healthcare delivery for CYP.

IntroductionAU : Pleasenotethatthereferencecitationsintexthavebeenreorderedtobeinsequentialorder:Pleasecheckandcorrectwherenecessary:: Interconnected problem drivers

At the heart of pediatric global health is the goal of delivering sustained, holistic, and equitable

progress in child health and development outcomes [1]. In recognition of the growing role

played by artificial intelligence and machine learning (AI/ML) within healthcare, it is impor-

tant to consider how these technologies can support the advancement of global health objec-

tives for children and young people (CYP) [2,3].

Despite significant interest and emerging studies in pediatric healthcare AI/ML, we remain

in the foothills of exploring the potential and implications of these digital health technologies

[4]. Existing research papers exploring machine learning in pediatrics span early disease detec-

tion and diagnostics, prognostic scoring systems based, risk prediction models, disease classifi-

cation systems, and a range of clinical decision support tools [2,4–8]. Data types for training

models include electronic medical record (EMR) data, imaging data such as chest radiographs

or neuroimaging (i.e., electroencephalogram data), and even digital biomarkers for diagnosing

cognitive impairment based on speech. A range of machine learning approaches have been

used, including neural networks, deep learning, regression algorithms, Bayesian algorithms,

decision tree algorithms, clustering algorithms, natural language processing, and ensemble

methods [2]. However, this field is still at an early stage, with the literature consisting primarily

of proof-of-concept studies. There are comparatively few studies evaluating algorithms actually

deployed within pediatric practice and current clinical care, although this is expected to change

in the coming years as AI/ML systems are further integrated clinical practice [2,4,8].

Several review articles focused on global use cases for pediatric AI/ML highlight how

research is, thus far, overwhelmingly undertaken in high-income settings, typically in aca-

demic centers [2,7]. A 2021 systematic review found that 82% of the available literature on

child and adolescent healthcare ML was from high-income countries (HICs), while only 3% of

studies came from lower middle-income countries [2]. This finding reveals a potential mis-

alignment, because 90% of the global child and adolescent population are based in lower and

middle-income countries (LMICs) [9]. Other review articles have focused on healthcare AI/

ML applications within LMICs for all age groups, and these identified few papers focused on

pediatric use cases [10–12]. Notably, a 2022 systematic scoping review of AI/ML systems

deployed in LMICs included only a single pediatric use-case, while a review article focused on

AI/ML for pediatric tuberculosis noted that of the 21 articles included, only 2 papers related to

algorithms validated on data sets that included patients under 15 years old [5,10]. In summary,

there is a major shortfall in published clinical studies on the use of pediatric AI/ML tools in

LMICs.

If the potential benefits of technological progress are to be realized, advances in healthcare

AI/ML and their application must be equitably distributed and representative of the needs of

pediatric populations worldwide, in order both to support universal progress in child health

and avoid worsening of existing disparities [12].

This narrative review explores a number of pediatric-specific challenges relating to health-

care AI/ML with a particular focus on LMICs, discussing how these might be overcome so that

AI/ML can positively impact global child health. These issues include governance and ethics,

as well as key CYP-specific technical considerations and in the opinion of the authors, this
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topic demands urgent attention and prioritization for clinicians, software developers, and pol-

icymakers [13].

Governance, ethics, and privacy concerns are central to the use of CYP data in healthcare

AI/ML. In the United States, the FDA has approved medical devices that include children

among the target population [14]. However, there remains a critical need for laws, policies,

guidelines, and incentive structures that account for age-specific considerations and complexi-

ties in the pediatric population, catering to variations in age, development, disease type, and

geographical location so that CYP are both protected and included as healthcare AI/ML pro-

gresses forward.

Delivering equitable healthcare AI/ML for children globally requires recognition of inter-

secting challenges that include (i) the additional practical and ethical complexities inherent in

pediatric research; (ii) the chronic underrepresentation of LMICs in healthcare research glob-

ally; and (iii) challenges inherent in health technology research in lower-resource settings

[15,16]. Furthermore, general well-characterized pitfalls of healthcare AI/ML research and

deployment (data quality, drifts and shifts, algorithmic bias, and poor generalizability) also

require attention in this context [8,17–19].

Beyond AI/ML, children remain underrepresented in clinical research efforts globally com-

pared to adults in both high- and low-income settings, due to a range of structural factors [16].

The problem of representation is greatest in those from traditionally marginalized groups,

lower socioeconomic backgrounds, ethnic minorities, patients with rare diseases, and LMICs

[15]. These aforementioned challenges can be considered together as interconnected problem

drivers that present barriers for progress in child health globally, and we call for interdisciplin-

ary healthcare AI/ML teams developing tools for CYP must recognize and confront this com-

plexity throughout the research and development lifecycle [13].

Technical and methodological challenges: Using pediatric data

The SPIRIT-AI and CONSORT-AI guidelines established for clinical trial design and report-

ing present a framework for regulation and policymaking in healthcare AI [20,21]. While these

guidelines are comprehensive for study design and reporting across specialties, they do not

account for specific age-related considerations and ethical complexities that AI/ML research

presents in children.

Recently, pediatric AI best practice (ACCEPT-AI) was drafted by bioethicists, researchers,

and clinicians, although consensus is still needed to represent diverse viewpoints [13].

ACCEPT-AI outlines 6 key areas that must be prioritized to promote equity and minimize

bias and harm, including age-specific considerations, consent and assent, communication,

equity, and technological considerations. ACCEPT-AI has been designed to complement exist-

ing formalized guidelines such as SPIRIT-AI and CONSORT-AI, but places emphasis on the

specific challenges of “age-related algorithmic bias,” which refers to systematic errors that

result from the discrepancy between adult and pediatric data in AI data sets [13]. The failure to

segregate data by age and account for heterogeneity in physical and cognitive development of

children in health data sets can lead to inappropriate generalizations of pediatric data to an

adult population and vice versa. Recent examples include evaluation of an AI algorithm

trained to interpret echocardiograms that found differences in model performance between

adult and pediatric data, with superior performance in adults compared to children [22]. The

authors concluded that child and adult data sets should be considered separately in training

and testing to optimize model performance. Similarly, a dermatology study highlighted the

importance of training and testing algorithms on pediatric data for the detection of melanoma

and improving the overall generalizability of dermatology AI models [23].

PLOS DIGITAL HEALTH Applied artificial intelligence for global child health: Addressing biases and barriers

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000583 August 22, 2024 3 / 14

https://doi.org/10.1371/journal.pdig.0000583


Even in high-income settings, there is simply less data for pediatric populations than adults,

resulting in more limited EHR data sets for training models [8,24]. These smaller data sets are

themselves highly heterogeneous due to the variations that occur within normal ranges and

variation in disease presentation and treatment approaches for children of different age

groups, posing a number of technical challenges to data quality and variety [7,24]. With lim-

ited training samples comes greater statistical noise, potentially undermining predictive

capability.

Irregularity in temporality within EHR data risk undermining model performance, particu-

larly in pediatrics as this issue is compounded by the fact that children undergo major develop-

mental progress in their early years, impacting both their normal physiology, behavior, and

disease manifestations [8]. While strategies exist for handling different types of missing data,

temporally irregular data has been found to pose challenges for predictive capabilities of deep

learning algorithms trained on longitudinal EHRs [25].

Additional issues relate to how algorithms are successfully deployed and evaluated in pedi-

atric populations and how adverse events and algorithmic harm specific to children and young

people (captured either in clinical studies or routine deployment of an algorithm) must be

addressed [8,13,24]. Issues of bias and generalizability are paramount and are discussed in the

following section.

Finally, challenges in the broader pediatric research landscape risk negatively impacting AI/

ML efforts. The ethical and legal complexities of pediatric research, logistical and technical dif-

ficulties of studying medical interventions in children, and comparatively less funding of pedi-

atric clinical research may all affect the quantity and quality of training data sets [16]. In the

opinion of the authors, recognizing this reality is essential when developing strategies to

undertake and deliver equitable, effective healthcare AI/ML for CYP throughout the AI/ML

lifecycle [26].

Barriers and biases: Representative pediatric data sets for ML research

globally

In high-stakes AI/ML domains such as healthcare, large training data sets representative of tar-

get populations are essential. Issues with data quality or validity can lead to major downstream

risks, such as the need for significant technical updates and model iterations, or worse, project

abandonment and harm to beneficiaries [10,27].

When considering pediatric data sets in both high-, middle-, and low-resource settings,

major differences and variation in healthcare systems, clinical practice, sociocultural norms,

human resources, and EHR use between and within HICs and LMICs pose crucial challenges

to algorithmic performance and the generalizability of ML systems [3,15]. Within the US,

training data originates predominantly from only a handful of states, typically from large aca-

demic centers, posing technical challenges to model generalizability and raising concerns

around inclusion and equity [28]. This same phenomenon is replicated globally, with data sets

originating predominantly from a small number of HICs, while both adult and pediatric popu-

lations in LMICs are underrepresented [2].

This lack of LMIC population representation in training data sets is multifactorial. The

comparatively limited use of electronic health records and less mature digital infrastructure in

some MIC or LIC settings will inevitably play a role [2,10]. Naturally, “LMICs” are a highly

heterogeneous group—technically “middle” income nations such as India and Brazil have

large EHR data sets at national, regional, and local levels [10]. By comparison, in lower mid-

dle-income or low-income countries, sufficiently large, complete, and regularly updated data

sets for training models may be not available, very limited, or may be viewed as inadequate for
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the purposes of AI/ML training, introducing the potential of geographical bias [29,30]. Even

where data collection is routinely undertaken, challenges in the processes for digitization, data

management, and underlying IT infrastructure can inhibit potentially rich sources of clinical

data [10].

Where EHRs are in use, patient records will reflect the realities of clinical practice on the

ground. For example, in a large systematic review of global pediatric AI/ML, the pediatric

intensive care unit (PICU) was frequently the setting for clinical research with AI/ML, as it

presents a rich repository of clinical data for training models, typically focused on clinical deci-

sion support and early detection [2,7]. However, PICUs are overwhelmingly based in HICs

and tertiary academic centers, undermining the relevance of such tools in settings where few

PICUs exist.

The role of power dynamics and socioeconomic inequalities also shapes data sets. Through

determining what data are included and excluded and the chosen measurements for capturing

the ground truth, data sets (and the model outputs that follow) are unavoidably a product of

the socioeconomic, cultural, political norms, and agendas of that context, reflecting existing

power structures [27].

The systemic underrepresentation of specific populations, groups, or regions within train-

ing data has been termed “health data poverty” [31]. When the chronic underrepresentation of

LMIC and pediatric populations in training data sets intersects with the aforementioned chal-

lenges of using pediatric data in AI/ML models, the issue of health data poverty as it relates to

CYP may be further compounded and risks perpetuating global child health inequities [32].

Ethics, safety, and governance

Concerns regarding the oversight of AI/ML for pediatrics include questions over healthcare

data privacy and governance in addition to age-specific vulnerabilities inherent to children

and young people whose minds and bodies are still developing. Issues such as CYP-specific

agency and consent in making healthcare decisions and the role of the parent or carer in the

overall care and health of children are central. However, a recent systematic review of global

standards for AI ethics failed to identify specific ethical frameworks focused on CYP,

highlighting an urgent gap [33,34]. As summarized by UNICEF, “Children interact with or are

impacted by AI systems that are not designed for them, and current policies do not address

this” [35].

Ethicists have proposed that AI/ML algorithms must be grounded in clinical needs of CYP

and attuned to the pediatric population to ensure the core pillars of medical ethics, the princi-

ples of autonomy, beneficence, non-maleficence, and justice are upheld [36,37].

Beneficence may be determined by ensuring that algorithms are developed to positively

impact child health priorities with clearly defined outcomes linked to pediatric health and

wellbeing. The principle of non-maleficence can be incorporated by ensuring that potential

harms (linked to privacy, data security, technical issues) that may arise through technology

development are accounted for, monitored, and mitigated as appropriate [13,35,38].

The core ethical principles of autonomy and justice will be supported by the appropriate,

equitable, and diverse participation of young people globally in AI/ML initiatives, grounded in

the logic of human-centered AI (discussed in the following sections) to help address concerns

over fairness and justice [38–44]. Scholars have also proposed a fifth ethical tenant for AI,

“explicability,” which aims to complement the other principles, encompassing both under-

standing the decisions made (the “black box” problem) but also making explicit who is

accountable for model outputs, both of which can be considered paramount in healthcare for

CYP and in LMICs [10,36].
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A review of global guidelines for AI Ethics found that published recommendations were

highly concentrated in Europe and North America while largely absent in the rest of the world

[33]. With this status quo, it is inevitable that choices around ethics largely reflect western

norms, yet it cannot be assumed that western norms and values around algorithmic bias, fair-

ness, inclusion, and privacy are automatically portable across different contexts in LMICs [33].

Since “fairness” (a concept linked to “justice”) has no single definition that would apply

across pediatric AI/ML for children globally, teams developing algorithms will need to estab-

lish clear aims and objectives so that models can be tested and adjusted as required, affirming

the crucial need for experts in child health and welfare within AI/ML teams [35,39]. This will

inevitably involve trade-offs when competing measures of fairness and justice for children

must be considered and weighted against each other.

Pediatric AI/ML grounded in ethical principles must be supported by robust, coordinated,

and fit-for-purpose governance structures. Global governance of healthcare AI/ML medical

devices is in its infancy and remains fragmented, with limited coordination of laws that differ

across nations, particularly in the context of data protection and removal, which are crucial

considerations for child protection [45].

Policymaking organizations are increasingly recognizing the importance of establishing a

hierarchy of accountability and international standards for the potential misuse of technology

that may compromise child protection [13,35]. These standards must be robust and also adap-

tive, remaining fit-for-purpose as the role of AI/ML in CYP healthcare evolves [38]. However,

currently there is no clear consensus and further efforts are required.

At the local and regional level, Institutional Review Board (IRB) processes and consent laws

vary across nations, as do approaches in CYP consent [46]. Greater harmonization and stan-

dardization of policies across borders and moving towards globally generalizable regulation,

safety and governance will be an essential step for the safe and equitable inclusion of children

and pediatric data for AI/ML in HICs and LMICs alike.

Developing pediatric-specific international standards is paramount. Emerging coordinated

efforts such as the “Pediatric Moonshot” aim to unify data across pediatric hospitals interna-

tionally to develop safe and generalizable algorithms through an internationally federated lab

and represent an important step towards global coordination of AI/ML for the pediatric popu-

lation [47].

While western nations and organizations such as the OECD and the EU have so far led in

setting standards and governance frameworks for healthcare AI, the “Global South” is increas-

ingly developing its own standards and frameworks. Organizations such as the Africa-Asia AI

Policymaker Network was established in 2022 to bring together policy and regulatory leaders

to develop frameworks and strategies for responsible AI/ML globally that include diverse

regional viewpoints [48]. Examples include the African Academy of Sciences and the African

Union Development Agency recommendations for coordinated data governance for partici-

pant-centered research involving human participants, while the Science for Africa AI and

Data Science initiative is a holistic attempt to convene scientific, government, civil society, and

industry representatives for improved AI/ML governance in Africa, with a focus on global

health [49,50]. The Africa-Canada Artificial Intelligence and Data Innovation Consortium is

one example of an emerging health data partnerships between HIC and LMICs [15].

Co-design: Equity, inclusion, and education

Inclusion is central to addressing several key challenges facing global pediatric healthcare AI/

ML. In the simplest sense, inclusivity requires broadening training data to include CYP from a

broad range of backgrounds to ensure that historically marginalized groups of CYP, such as
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those from ethnic minorities or those with developmental delay, are not excluded from tech-

nological efforts that have the potential to benefit them [32].

However, inclusion refers not only to which populations in the training data for models,

but also who is involved in developing and validating these tools [38,43]. UNICEF guidance

on AI and children emphasizes the importance of partnering with young people to co-design

innovations [35]. In the US and UK, researchers have engaged with CYP on the topic of

healthcare AI, demonstrating through education programs that CYP generally express a strong

interest in and desire to be involved in the design, policy-making, and implementation for

healthcare AI [40–42]. Such papers highlight how CYP recognize the importance of this topic

and want “a seat at the table” including through being consulted on model inputs and outputs,

at a high level so that they have a voice. Similarly, a WHO framework on “youth-centered” dig-

ital health interventions called for CYP advisory boards to input into healthcare projects, with

meaningful involvement at every stage of the research and development lifecycle [38,51]. Con-

versely, the failure to incorporate CYP voices into the development of novel healthcare tech-

nologies carries significant risks to their viability, feasibility, and sustainable deployment

within healthcare systems [43,44]. Digital and AI literacy initiatives for children can empower

CYP to support these aims, ranging from education in technical understanding of coding AI/

ML algorithms, the explainability of the algorithm’s output, and human–computer interaction

[35,39]. International consensus on educational objectives around AI and ML will help steer

towards inclusive AI/ML design for health [35,38]. However, dialogues must consider and

address the digital literacy divide and the gap in the availability of expertise and technological

resources between regions and countries [10].

Participatory co-design of health AI tools, “with children and for children” is already

happening, albeit in HICs (for example, a large CYP mental health AI project in Helsinki)

[52]. Inclusive co-design requires engaging with CYP, their families, and communities as

partners at all stages project inception through to development, deployment, and embed-

ding of healthcare AI/ML solutions [39,44,53]. Ensuring this approach can be adopted glob-

ally, including in low-resource settings, requires a deliberate and proactive approach.

Partnering with Community Led Organizations (CLOs) may help increase population

engagement through trusted networks in specific communities, enabling inclusion of

“hard-to-reach” groups and overcoming data poverty [54]. This is particularly important

for communities who may typically be excluded from healthcare through poverty or dis-

crimination, such as indigenous populations [55,56]. Community Advisory Boards (CABs)

are a mechanism for supporting the research process in low-income settings, adapting

research tools to best fit local contexts, being agile in recognizing and meeting community

needs [57]. Another approach termed Community-Based Participatory Research (CBPR)

ensures communities partner with researchers to engage in any decisions regarding study

designs and conduct and ensure this meets their needs—an explicit empowerment of these

community voices in the research process [54]. Partnering with children and their commu-

nities in Healthcare AI research in LMICs entails complexities and upfront investments, but

this approach is fundamental if healthcare AI/ML tools for children are to be designed in a

way that can have a positive, equitable impact globally [57].

Implementation science and human-centered AI

Human-centered AI (HAI) proposes that the design of intelligent AI/ML systems must recog-

nize the algorithm’s roles and interactions as part of a broader system consisting of human

stakeholders [58]. This approach to both research and implementation entails acknowledging

and accounting for the nuanced, often culturally specific, expectations and needs of humans in
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return helping humans understand these AI systems, explaining the AI/ML outputs in ways

that nonexpert end users can interpret and use in their shared common goals [58].

HAI is therefore an interdisciplinary and collaborative endeavor that takes on additional

complexities when considering (i) healthcare AI/ML in low-income settings; and (ii) health-

care AI/ML for pediatric populations.

When technical experts developing AI/ML models are siloed in HICs, working separately

from child health domain experts on the ground in LMICs, this can undermine the utility and

value of the model once deployed [53,59]. This is particularly important given that cutting

edge healthcare AI/ML systems Healthcare AI research in are currently typically developed in

HIC, or by teams led by those in HICs, outside of the context in which the model may one day

be deployed. The principles of HAI require that healthcare teams obtain meaningful knowl-

edge of the complexities and nuances of local health systems and clinical workflows to under-

stand and build around how end users (typically healthcare professionals) interact with and

adopt these digital tools [60]. In low-resource settings, this means placing greater value on

local knowledge and inputs [12]. A paper focusing on AI/ML practitioners in India and East

Africa identified that flawed assumptions about end users relating to healthcare literacy, lan-

guage barriers, or IT infrastructure and can lead to incorrect interpretation of model outputs

that undermine and complicate existing workflows and cause stress to both healthcare workers

and patients [10,27]. Grounding AI/ML systems for pediatric care within the realities of exist-

ing clinical workflows, structures, and processes can help overcome the difficulty of the “last

mile” implementation with end users, which has so often limited the adoption and therefore

success of AI/ML tools, particularly in LMICs [10,61]. An illustrative case is that of a deep

learning system developed in HICs but deployed in an LMIC clinic for retinal disease, where

issues with clinic infrastructure, internet connectivity, staff and patient behavior all drastically

undermined the potential benefit of the algorithm [60].

In relation to pediatrics, HAI necessitates broad, interdisciplinary expertise. Child psychol-

ogists, pediatricians, nurses, child-rights experts, and ethicists may be integrated into AI/ML

research teams alongside user experience professionals (UX), human–computer interaction

(HCI), human-factors engineers, and implementation scientists [62]. As outlined previously,

children and their families can play a key role as co-creators in this wider team depending on

the type of tool being developed [38,43]. Technical teams developing models need a baseline

level of literacy relating to critical issues of welfare and rights [39]. For AI/ML developers and

research teams, understanding how to ensure the inclusion and welfare of children in the con-

text that the algorithm is deployed must be considered core knowledge.

Implementation phases of healthcare algorithms for CYP must continuously evaluate hard

clinical endpoints and weigh them against the risk of harm, including unintended conse-

quences [2,7,8]. Accountability, responsibility, hierarchies, and power balance are currently

under-explored in this field, particularly with algorithms that impact CYP. However, estab-

lished mechanisms such as provision of data sheets and model cards, mechanisms for commu-

nity engagement, and open multi-stakeholder dialogue at each step of the AI lifecycle can

provide vital safety components of the AI pipeline to ensure those who are disproportionately

burdened by disease benefit the most [63,64].

Building capacity for AI/ML within health systems

While applied pediatric AI/ML within LMICs remains in its infancy, researchers and clinicians

are increasingly aiming to address this knowledge gap as LMICs further invest in IT infrastruc-

ture, continue to adopt EHRs and technological capabilities improve globally [2,10]. It is

encouraging that a growing body of literature has demonstrated proof of concept in key
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pediatric global health areas such as childhood malaria. These include a number of papers vali-

dating predictive and diagnostic algorithms on blood films for malaria in West African nations

[65–67]. Diagnostic algorithms for detecting tuberculosis from chest radiographs and pneu-

monia classification from ultrasound images holds promise for application to pediatric sub-

jects, while areas of potential promise also include diagnosis of childhood anemia [5,68–73].

AI/ML enabled smartphone apps have highlighted the potential role of AI/ML in supporting

the prevention of childhood malnutrition in India and general health promotion [74].

Further encouraging developments include the growth of data sharing and research networks

in LMICs dedicated to inpatient pediatric clinical research, for example, a cohort of hospitals in

Mozambique and other sub-Saharan African countries [75]. Such networks will be essential for

data sharing and creation of high-quality, standardized data sets for training ML models.

While these proof-of-concept AI/ML use cases demonstrate real potential, testing and

deployment are essential. Without implementation and evaluation of the real-world perfor-

mance of these algorithms in low-resource settings (and their impact on key outcomes of

interest), the proposed benefits of AI/ML for global pediatrics will remain unrealized. Transla-

tion from proof-of-concept mandates deployment within the chosen clinical context and

ongoing monitoring and evaluation for safety and efficacy [10].

To realize this ambition, there is consensus that it is crucial to develop the capabilities and

infrastructure for pediatric AI/ML globally [12,15,38]. Pragmatic proposals include increased

investment in the technical training of developers in LMICs, adequately compensating and

improving training for community health workers who collect data and ensuring that clinical

staff in lower-resource settings has the time, incentives, and ability to participate in the co-

design and evaluation of AI/ML systems for CYP [27]. Increased training of researchers and

developers in LMICs is key so that the next generation of healthcare AI teams are drawn from

diverse, globally representative AI/ML workforce with a variety of lived experiences and back-

grounds in high- and low-resource settings, attuned to the needs and context of the communi-

ties in which these algorithms are deployed [10,15].

Ultimately, AI/ML investment and funding decisions must first be part of a broader evalua-

tion of the overall needs of a healthcare system and the relevant resource constraints, consider-

ing the critical building blocks underpinning effective, sustainable, and cost-efficient

healthcare delivery [76]. Healthcare AI/ML investment must make sense as part of a broader

consideration of, and commitment to, system development and investments aligned to meet-

ing the greatest needs of the world’s CYP [77].

Both human and technical factors here are essential. There is an irony that with increasing

focus on AI/ML for low-resource settings, the reality remains that some low-income countries

(and also low-income regions within middle- or high-income countries) may be struggling

with fundamentals required to support these technologies, such as reliable internet coverage,

basic cybersecurity, and even dealing with power outages [77]. Worse still, the enthusiasm for

how AI/ML may improve health systems and outcomes in LMICs may end up distracting pol-

icymakers, researchers, and clinical leaders from investments in more pressing needs and pri-

orities, such as improving critical healthcare infrastructure and improving services for

children [10,76]. Training staff and building capacity in AI/ML knowledge and skills in LMICs

will be important, yet this must not come at the expense of the training and upskilling of staff

in delivering the fundamental clinical services for CYP.

Conclusions

Currently, there are very few AI/ML tools applied to pediatric care outside of high-income

countries, limiting the potential of AI/ML to address the global burden of pediatric disease.
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This narrative review has discussed how various barriers can be overcome in order for AI/ML

to have a positive impact on child health in high- and low-resource settings. Firstly, there must

be greater emphasis on the unique CYP-specific challenges at different stages of the AI/ML life

cycle, with broader recognition of these issues and adoption of CYP-specific standards for

data. In lower-resource settings, fundamental challenges to both healthcare and AI/ML

research and deployment are well established. CYP can be considered a subgroup in these pop-

ulations where extra attention and concerted effort is required.

Governance, regulatory, and policy frameworks can enable a positive, equitable vision of

AI/ML for CYP; however, these require open dialogue and consensus to deliver guidance that

can be effective and useful beyond high-income settings and facilitate safe and effective collab-

orations globally. Safeguarding CYP and mitigating harms and risks is paramount. Addressing

valid concerns around inclusion and equity, AI/ML for CYP must be human-centered and

(where appropriate) co-designed with CYP and their caregivers, who must be considered criti-

cal stakeholders in this process. Integrating child health expertise into interdisciplinary health-

care AI teams and ensuring these technologies meet the needs of the children and

communities they are intended to benefit must become standard practice in both high- and

low-income settings. Data sharing, research collaborations, and development outside of HICs

is essential. Finally, equitable investment, capacity building, and education globally is essential

to enable global impact of healthcare AI/ML for children and young people. While the focus of

this paper has been AI/ML, broader investment in electronic healthcare records and general

health system capacity building for CYP is an essential step that will underpin any potential

benefits of emerging AI/ML tools. Developing safe, effective, and equitable AI/ML for CYP

globally can act as a shared objective around which a wide range of stakeholders can unify,

advocate, and accelerate research, deployment, and evaluation.

Limitations

We acknowledge the limitations of the paper, primarily that this is a perspective-based narra-

tive review. While we appreciate that a systematic or scoping review would provide a higher

level of evidence, a sparsity of studies at this intersection limits this possibility, which would be

considered for future work. Plans are in process to gain expert consensus in this area.
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