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Abstract

Recently, research has investigated the role of the ruminant native microbiome, and the role

microbes play in methane (CH4) production and mitigation. However, the variation across

microbiome studies makes implementing impactful strategies difficult. The first objective of

this study is to identify, summarize, compile, and discuss the current literature on CH4 miti-

gation strategies and how they interact with the native ruminant microbiome. The second

objective is to perform a meta-analysis on the identified16S rRNA sequencing data. A litera-

ture search using Web of Science, Scopus, AGRIS, and Google Scholar will be imple-

mented. Eligible criteria will be defined using PICO (population, intervention, comparator,

and outcomes) elements. Two independent reviewers will be utilized for both the literature

search and data compilation. Risk of bias will be assessed using the Cochrane Risk Bias 2.0

tool. Publicly available 16S rRNA amplicon gene sequencing data will be downloaded from

NCBI Sequence Read Archive, European Nucleotide Archive or similar database using

appropriate extraction methods. Data processing will be performed using QIIME2 following

a standardized protocol. Meta-analyses will be performed on both alpha and beta diversity

as well as taxonomic analyses. Alpha diversity metrics will be tested using a Kruskal-Wallis

test with a Benjamini-Hochberg multiple testing correction. Beta diversity will be statistically

tested using PERMANOVA testing with multiple test corrections. Hedge’s g standardized

mean difference statistic will be used to calculate fixed and random effects model estimates

using a 95% confidence interval. Heterogeneity between studies will be assessed using the

I2 statistic. Potential publication bias will be further assessed using Begg’s correlation test

and Egger’s regression test. The GRADE approach will be used to assess the certainty of

evidence. The following protocol will be used to guide future research and meta-analyses

for investigating CH4 mitigation strategies and ruminant microbial ecology. The future work

could be used to enhance livestock management techniques for GHG control. This protocol

is registered in Open Science Framework (https://osf.io/vt56c) and available in the System-

atic Reviews for Animals and Food (https://www.syreaf.org/contact).
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Background

Agriculture, forestry, and land use sectors represent 22% of the global anthropogenic green-

house gas (GHG) emissions with enteric fermentation of methane (CH4) contributing 5% of

the total direct contribution to global anthropogenic GHG [1]. Among global agricultural food

systems, CH4 emissions from livestock operations accounts for 30–40% of the total global

anthropogenic GHG emissions [2]. Enteric fermentation, primarily from beef and dairy cattle,

represents 46% of the total livestock generated CH4 emissions [2]. Due to a growing world

population, an increase in demand for food products that come from ruminant livestock could

be seen (i.e., meat, meat products, dairy products, etc.). An increase in ruminant livestock pro-

duction could therefore lead to an increase in ruminant based CH4 emissions, resulting in an

increase in anthropogenic GHG. Additionally, due to the relatively short atmospheric lifespan

of CH4, its mitigation has been suggested as the most promising means to limit climate warm-

ing in the short-term [3–5]. To combat the anthropogenic-livestock effects on climate change,

CH4 mitigation strategies have been explored via dietary manipulation, rumen manipulation,

and animal breeding [6].

Promising enteric CH4 mitigation strategies and techniques include the use of inhibitory

compounds such as 3-nitrooxypropanol (3-NOP; [7]) and halogenated bromoform from sea-

weed [8]; red algae [9]; plant secondary compounds [10, 11], early-life microbiome engineer-

ing [12]; supplemental feed to grazing cattle [13–16]; changes to the diet composition [17];

and breeding and genetics programs designed to select for low-emissions animals [18]. Inter-

estingly, researchers have turned their attention to understanding how these mitigation strate-

gies affect ruminant microbial ecology. To date, several studies have investigated how various

CH4 mitigation techniques impact the rumen microbiome including inhibitory compounds

such as 3-NOP [19] and halogenated bromoform from algae [20, 21], dietary manipulation

[22, 23], breeding programs [24, 25], and early-life microbiome manipulation [12].

Currently, there remains a gap in the literature for an updated comprehensive and systemic

review and meta-analysis on the effects of CH4 mitigation strategies on the ruminant micro-

biome. One of the reasons for this is the variation between microbiome datasets makes com-

parisons between studies difficult. This variation stems from differences in sampling

procedures, a lack of consensus in computational methods, and differences in preprocessing

methods [26, 27]. However, compiling multiple 16S rRNA amplicon sequencing datasets and

analyzing them together could elucidate key large-scale patterns and results. Therefore, the

results from the proposed study are crucial to increasing our understanding of how current

CH4 mitigation strategies influence the rumen microbiome and how the native microbiome

could be used for CH4 reduction. Our results could also enhance on-farm guidelines for future

management decisions on best practices for reducing livestock GHG emissions.

Our overall objective is to address this knowledge gap by generating a systematic review

and meta-analysis identifying CH4 mitigation strategies that impact the rumen microbiome.

To accomplish this, we present this protocol that will accomplish two preliminary aims: 1) to

outline how we will identify, compile, summarize, and discuss the current literature on CH4

mitigation strategies and their effects on the native rumen microbiome; and 2) to detail how

we will perform a meta-analysis on the selected studies from the literature curation. The future

study will address the research question of how CH4 mitigation strategies influence the rumen

microbiome of post-weaned cattle.

Methods

Reporting of this protocol is in accordance with the Preferred Reporting Items for Systematic

Review and Meta-Analysis Protocols (PRISMA-P) statement [28]. The PRISMA-P checklist is
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used to guide researchers while writing the protocol by providing the essential and minimum

component requirements. The PRISMA-P checklist is included in S1 Table. The protocol is

registered in Open Science Framework (https://osf.io/vt56c) and available in the Systematic

Reviews for Animals and Food (https://www.syreaf.org/contact). The proposed systematic

review and the meta-analysis will follow the recommendations of the Cochrane Collaboration

Handbook for Systematic Reviews [29]. The Cochrane method is a transparent and reproduc-

ible method for scientific investigation. The future meta-analysis will correspond to the steps

outlined in Fig 1.

Eligibility criteria

The eligibility criteria were defined using Population, Intervention, Comparison, Outcome

Study Design (PICO) elements (Table 1).

Study design, characteristics, and population

The design of the systematic review is a thorough literature search for primary research studies

wherein 16S rRNA gene amplicon datasets are publicly available in a national database such as

Fig 1. Above is a brief flowchart of the steps to be performed in the future systematic review and meta-analysis study.

https://doi.org/10.1371/journal.pone.0308914.g001
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the National Center for Biotechnology (NCBI), European Bioinformatics Institute (EBI), or

similar [30, 31]. Eligible studies will also be determined based on the CH4 mitigation strategy

used with the target strategies being dietary interventions and rumen manipulations as defined

by previous research [6]. Our initial search for papers will include all age ranges within post-

weaned cattle (six months of age or older) to determine our population and the availability of

published studies that meet our inclusion criteria. Pre-weaned cattle will be initially excluded

as to not confound the microbiome datasets found within the literature review. If the number

of studies found is insufficient, the parameters will be widened to include pre-weaned cattle

and the appropriate measures in analysis will be taken accordingly. No restrictions will be

placed on breed or sex as we are not comparing microbiomes between different breeds or sex;

instead, we aim to address how CH4 mitigation strategies alter the rumen microbiome regard-

less of these parameters. Only studies published in English will be included.

Additionally, studies that meet the above criteria must also meet certain amplicon sequenc-

ing method criteria. Eligible studies must adhere to the best of their abilities to the criteria

within the Earth Microbiome Project protocol [32]. These criteria include but are not limited

to 16S rRNA amplicon sequencing that use primers that target the V4 or V4-V5 region of the

16S small subunit rRNA; using Illumina sequencing technology; and reports amplicons at least

390 base-pairs in length.

Intervention, comparison groups, and outcomes

All dietary and rumen manipulation CH4 mitigation strategies will be included in the initial

search for the intervention group. Eligible studies must have investigated the effects of CH4

mitigation strategies on the native rumen microbiome with no restriction for the method of

inhibition, dose, or concentration. No limits will be placed on the length of the study. Our

comparison group will include studies that have a significant change in microbial ecology

from the control group. Additionally, studies must include outcomes where significant CH4

reduction was seen between control and treatment groups as well as microbial analyses. The

main outcomes will include alpha and beta diversity changes as well as taxonomic profile dif-

ferences between studies where CH4 reduction was seen.

Search strategy

Our search strategy will include structured terms based on our PICO elements. The primary

bibliographic databases to be used will include Web of Science, Scopus, International

Table 1. The eligibility criteria as defined by the PICO elements.

Category Inclusion Exclusion

Population Post-weaned cattle (> 6 mo.) Pre-weaned calves

Intervention Dietary and rumen manipulation CH4 mitigation

strategies

Animal and feed management

strategies

Comparator Studies demonstrating significant changes in microbial

ecology as well as significant CH4 reduction between

control and treatment groups

Either no difference in microbial

composition or no significant CH4

reduction

Outcomes Taxonomic and diversity changes where CH4 reduction

is seen

Sequencing

Protocol

Earth Microbiome Project Protocols will be prioritized

Sequencing

Region

16S rRNA SSU V4 or V4-V5

https://doi.org/10.1371/journal.pone.0308914.t001
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Information Systems for Agricultural Sciences and Technology (AGRIS), and Google Scholar.

A preliminary literature search was conducted in October 2023 and the results of this search

are described in S1 File. The preliminary search allowed us to refine our search terms which

utilize the Boolean operators “AND” and “OR” to connect the search terms. The strategy for

the preliminary search was “ruminant OR rumen OR ruminants OR cattle AND methane

AND inhibition AND microbiome”. The search strategy to be used in the literature search

stage of the study will use the above strategy with refinements used as necessary. These refine-

ments might include but are not limited to the use of synonyms to the keywords, the use of

various spellings of keywords (i.e., British versus American spelling in Standard English), and

the addition of other keywords not yet listed.

Selection and screening process

Two independent reviewers (ANF and ADB) will be responsible for carrying out the literature

screening process. Each reviewer will independently screen the above-mentioned databases

using the defined search strategy in two stages. The first stage will include screening the titles

and abstracts of identified articles for descriptions detailed in the PICO elements. The second

stage will examine the text of the studies for the PICO elements and any study not meeting the

inclusion criteria will be excluded and cataloged at this stage. If at any point there is a discrep-

ancy between the two independent reviewers during the two-staged literature screening pro-

cess, a third independent reviewer will be responsible for determination of study eligibility.

Data extraction and management

The selected eligible studies will be cataloged, and metadata will be managed using Microsoft

Excel. Data extraction will be done by one reviewer and a second reviewer will be responsible

for assuring data accuracy and completeness of the data collection to avoid measurement bias.

The study-level data that will be extracted will include the article title, the authors’ names, the

article DOI, year of publication, journal title, geographic location, the bioproject database, the

bioproject number, and the study type (i.e., in-vitro v. in-vivo). Population-level data will

include animal species, animal breed, animal sex, herd size, housing or pen information, feed

type, methane collection system, and if applicable the in-vitro system used. Intervention and

comparator level data will include the description of the CH4 intervention used, the concentra-

tion and/or dosage, and the length of the trial or study. Finally, outcome level data will include

the hypervariable region(s) sequenced, primer sets, the sequencing platform, sequencing geo-

graphic location, sequencing analysis pipeline and version number, and the number of reads

sequenced in the study.

Risk of bias and quality assessment

Quality and bias risk will be assessed by one reviewer using the Cochrane Risk of Bias Tool 2.0

(RoB 2) with adaptations to the signal questioning to fit animal science studies as previously

described [33, 34]. For example, questions that consider if participants are aware of their inclu-

sion of the study will be either dropped or amended as the population of interest are ruminant

livestock animals. A precedent has been described for this amendment to RoB 2 signaling

questioning in previous livestock studies [34, 35]. The five domains of bias to be evaluated

include the randomization process, deviations from intended interventions, missing outcome

data, measurement of outcome data, and the selection of reported results. A preliminary analy-

sis will be conducted to ensure that the criteria can be applied appropriately and consistently.

Once the preliminary analysis is completed, risk assessment will be conducted by one reviewer

with a second reviewer responsible for analyzing the results of the assessment for criteria
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application consistency. If needed, a third reviewer will be consulted to resolve any discrepan-

cies between the first two reviewers in the process. The evaluation will be scored according to

the criteria established in the RoB 2 worksheet (S2 File) and will address each domain based

on “low risk”, “high risk” or “some concern for risk” of bias in each study. The overall evalua-

tion of the article will be scored according to the following points system: between 7–10 points

means there is low risk of bias; between 3–6 points indicates there is some concern for risk of

bias; and below 2 points is considered high risk for bias. All articles will then be ranked accord-

ing to their risk of bias evaluation score, and the level of bias will influence the degree of

importance for each study in evidence synthesis.

Data synthesis and meta-analysis

The certainty and quality of evidence will be assessed by two independent reviewers (ANF and

ADB) using the Grading of Recommendations, Assessment, Development and Evaluations

(GRADE) approach [36, 37]. GRADE is used to evaluate the certainty of evidence across the

PICO elements. The parameters used in the GRADE method include risk of bias, imprecision,

inconsistency, indirectness, and publication bias. Given any discrepancies between the two

independent reviewers regarding the results of the GRADE assessment, a third reviewer will

be consulted for resolution to evidence evaluation.

If there are sufficient studies (i.e., more than three) having similar definitions of the PICO

elements, meta-analyses will be conducted. If in the case that pre-weaned cattle were included

due to insufficient studies of post-weaned cattle, meta-analyses will be performed adjusting for

age within the microbial analysis. Publicly available 16S rRNA amplicon sequencing data will

be extracted using NCBI’s Sequence Read Archive using SRA Toolkit [38], QIIME2’s fondue
plugin [39], or other extraction methods as necessary. Data processing will be performed using

a modified protocol adapted from previously published methods [26, 40]. Briefly, the cata-

logued 16S rRNA gene datasets will be initially processed using a standardized protocol in

QIIME2 version 2023.9 [41]. Demultiplexed sequences will undergo quality control using the

DADA2 plugin [42] or DEMUX plugin [41] depending on original sequence quality. The

resulting feature table will be filtered for mitochondria and chloroplasts. Taxonomic analyses

will be assessed at the genus level by first assigning taxonomy to the amplicon sequence vari-

ants (ASVs) using the pre-trained SILVA 138 99% database via the q2-feature-classifier plugin

[43, 44]. Phylogenetic diversity analyses will be conducted by creating a phylogenetic insertion

tree using the q2-fragment-insertion plugin, rarefying the sequences to an acceptable level,

and finally using the q2-core-diversity plugin for alpha and beta diversity analyses [41, 45, 46].

For diversity testing, Shannon’s Diversity Index [47], Faith’s Phylogenetic Diversity [48],

and richness [49] will be assessed for alpha diversity and tested statistically using the Kruskal-

Wallis test with a Benjamini-Hochberg multiple testing correction [50]. Meta-analyses of the

above alpha diversity metrics will be performed in RStudio using the packages meta and meta-

for following previously published protocols [40, 51]. Hedge’s g standardized mean difference

statistic will be used to calculate fixed (i.e., CH4 reduction) and random effects (i.e., difference

in mitigation strategy) model estimates using a 95% confidence interval [52]. Heterogeneity

between studies will be assessed using the I2 statistic used for calculating the percentage of vari-

ation reflecting true heterogeneity [53]. Heterogeneity varies between 0–100% which will be

interpreted as follows: 0%– 39% could not be important, 40%– 59% could represent moderate

heterogeneity, 60%– 90% could indicate substantial heterogeneity, and anything greater could

suggest considerable heterogeneity [29, 52]. Potential publication bias will be further assessed

using Begg’s correlation test [54] and Egger’s regression test [55]. Potential bias will be indi-

cated if the number of studies is greater than 10 with a P-value < 0.1. For beta diversity, both
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weighted and unweighted UniFrac distance will be analyzed and statistically tested using PER-

MANOVA testing with multiple test corrections [56, 57]. All raw sequencing data used within

the future study will be published to EBI, a publicly available database, using the QIITA plat-

form [58]. The data and R scripts used for statistical analyses will be presented and described

within the future manuscript as well as deposited into a GitHub repository.

Discussion

Methane is a potent GHG with a global warming potential that is estimated to be 28-times

higher than CO2 per unit mass on a 100-year time horizon and 82 times higher on a 20-year

time horizon [59, 60]. Ruminants in agriculture, primarily dairy and beef cattle, contribute to

anthropogenic GHG sources and therefore, measures have been taken to address enteric CH4

emissions. Recently, research has reported that manipulation of the ruminant microbiome

could prove a promising avenue for CH4 reductions [12, 19–20, 24, 61]. Unfortunately, utiliz-

ing the information from the various microbiome studies has many technical challenges due

to the variation in methodologies employed in microbial ecological studies [26, 27]. One

potential work around is compiling the data from the various studies and re-analyzing the data

in a more cohesive manner. Therefore, the future systematic review and meta-analysis will

summarize and compile data investigating the effects of CH4 mitigation strategies on the

rumen microbiome as well as re-analyze the compiled data from 16S rRNA amplicon sequenc-

ing studies to assess the abilities of CH4 mitigation strategies to manipulate the rumen micro-

biome. The future results from the proposed study could help both researchers and producers

formulate more streamlined microbiome engineering protocols for CH4 reduction.

The proposed review and meta-analysis will have several strengths in that the study will

follow guidelines previously reported for systematic reviews and meta-analyses studies in

animal science and veterinary medicine [33, 62, 63]. Additionally, the members of the study

will comprise scientists from various research backgrounds in animal science including

microbiology, ruminant nutrition, food and meat safety, and agricultural engineering. The

diverse nature of the research team will allow for a more robust systemic review and method-

ological approach. Bias will be minimized by using two independent reviewers for literature

screening and data compilation. However, the study will be limited due to the various techni-

cal aspects of microbiome studies including the use of targeted primers (i.e., 16S primers),

the differences in sampling methods, and the availability of sequencing data to the public.

Another limitation could be only selecting studies that investigate cattle microbiomes. The

data elucidated in the future study might not translate between different ruminant species.

However, results could translate between ruminant species given recent evidence that there

is a shared and heritable core ruminant microbiome irrespective of species [64]. Still, our

preliminary search has yielded papers that meet our requirements and therefore indicate we

are likely to have success with this study.

Supporting information

S1 Table. PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis

Protocols) 2015 checklist: Recommended items to address in a systematic review protocol.

(DOC)

S1 File. Preliminary literature search results for data compilation performed in October

2023.

(XLSX)
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51. Balduzzi S., Rücker G. and Schwarzer G. How to perform meta-analysis with R: a practical tutorial.

Evid. Based Ment. Heal. 2019. 22(4). 153–160. https://doi.org/10.1136/ebmental-2019-300117 PMID:

31563865

PLOS ONE Impact of methane mitigation strategies on the native ruminant microbiome: A protocol for a systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0308914 August 22, 2024 10 / 11

https://doi.org/10.1093/nar/gkab1112
https://doi.org/10.1093/nar/gkab1112
http://www.ncbi.nlm.nih.gov/pubmed/34850941
https://doi.org/10.1038/nature24621
https://doi.org/10.1038/nature24621
http://www.ncbi.nlm.nih.gov/pubmed/29088705
http://dx.doi.org/10.1136/bmj.l4898
http://dx.doi.org/10.1136/bmj.l4898
http://www.ncbi.nlm.nih.gov/pubmed/31462531
https://doi.org/10.1371/journal.pone.0253379
http://www.ncbi.nlm.nih.gov/pubmed/34170953
https://doi.org/10.1017/S1466252319000264
http://www.ncbi.nlm.nih.gov/pubmed/32081126
https://doi.org/10.1016/j.jclinepi.2011.04.014
https://doi.org/10.1016/j.jclinepi.2011.04.014
http://www.ncbi.nlm.nih.gov/pubmed/21802903
https://doi.org/10.1093/nar/gkq1019
http://www.ncbi.nlm.nih.gov/pubmed/21062823
https://doi.org/10.1093/bioinformatics/btac639
http://www.ncbi.nlm.nih.gov/pubmed/36130056
https://doi.org/10.1186/s12866-022-02686-9
http://www.ncbi.nlm.nih.gov/pubmed/36376804
https://doi.org/10.1038/s41587-019-0209-9
http://www.ncbi.nlm.nih.gov/pubmed/31341288
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.3869
http://www.ncbi.nlm.nih.gov/pubmed/27214047
https://doi.org/10.1093/nar/gks1219
http://www.ncbi.nlm.nih.gov/pubmed/23193283
https://doi.org/10.21105/joss.00934
http://www.ncbi.nlm.nih.gov/pubmed/31552137
https://doi.org/10.1186/1471-2105-11-538
http://www.ncbi.nlm.nih.gov/pubmed/21034504
https://doi.org/10.1128/mSystems.00021-18
http://www.ncbi.nlm.nih.gov/pubmed/29719869
https://doi.org/10.1016/0006-3207%2892%2991201-3
https://doi.org/10.1016/0006-3207%2892%2991201-3
https://doi.org/10.2307/1932674
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1136/ebmental-2019-300117
http://www.ncbi.nlm.nih.gov/pubmed/31563865
https://doi.org/10.1371/journal.pone.0308914


52. Borenstein M., Hedges L.V., Higgins J.P.T. and Rothstein H.R. A basic introduction to fixed-effect and

random-effects models for meta-analysis. Res. Synth. Methods. 2010. 1. 97–111. https://doi.org/10.

1002/jrsm.12 PMID: 26061376

53. Higgins J.P.T., Thompson S.G., Deeks J.J. and Altman D.G. Measuring inconsistency in meta-analyses

testing for heterogeneity. BMJ. 2003. 327. 557–560. https://doi.org/10.1136/bmj.327.7414.557 PMID:

12958120

54. Begg C.B. and Mazumdar M. Operating characteristics of a rank correlation test for publication bias.

Biometrics. 1994. 50(4). 1088–1101. https://doi.org/10.2307/2533446 PMID: 7786990

55. Egger M., Smith G.D., Schneider M. and Minder C. Bias in meta-analysis detected by a simple, graphi-

cal test. BMJ. 1997. 315(7109):629. https://doi.org/10.1136/bmj.315.7109.629 PMID: 9310563

56. Lozupone C. and Knight R.. UniFrac: a new phylogenetic method for comparing microbial communities.

Appl. Environ. Microbiol. 2005. 71. 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

PMID: 16332807

57. Lozupone C.A., Hamady M., Kelley S.T. and Knight R.. Quantitative and qualitative beta diversity mea-

sures lead to different insights into factors that structure microbial communities. Appl. Environ. Micro-

biol. 2007. 73. 1576–1585. https://doi.org/10.1128/AEM.01996-06 PMID: 17220268

58. Gonzalez A., Navas-Molina J.A., Kosciolek T., McDonald D., Vázquez-Baeza Y., Ackermann G., et al.

Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Met. 2018. 15:796–798. https://doi.org/10.

1038/s41592-018-0141-9 PMID: 30275573

59. Edenhofer O. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press. Cam-

bridge, MA, USA. 2015. Vol. 3.

60. Carnachan S.M., Bell T.J., Hinkley S.F. and Sims I.M. Polysaccharides from New Zealand native plants:

a review of their structure, properties, and potential applications. Plants. 2019. 8(163). https://doi.org/

10.3390/plants8060163 PMID: 31181819
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