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molecular pathomechanisms of BMs has greatly improved 
over the past years, and novel treatment options, including 
stereotactic radiosurgery, as well as molecularly targeted 
pharmacotherapy and immune checkpoint inhibition, have 
emerged [2–4]. Consequently, the prognosis of BM patients 
has improved, however, median overall survival times are 
still limited as indicated by the range from 2 to 21 months 
in the population-based Surveillance Epidemiology and End 
Results database [5].

Introduction

Approximately 20–25% of patients with metastatic can-
cers, including those with carcinomas of the lung, breast, 
kidney, and colon, as well as cutaneous melanoma patients, 
develop brain metastases (BMs), with BMs being over-
all 10 times more frequent than primary brain tumors [1]. 
Despite advancements in the treatment of the respective pri-
mary tumors and metastases in other organs, the incidence 
of BMs is increasing [1]. Understanding of the biology and 
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Patients with BMs are a complex and heterogeneous pop-
ulation, making it challenging to develop general recom-
mendations for specific treatments [6]. Furthermore, most 
patients have already received several treatments for their 
primary cancers, increasing the likelihood of resistance to 
multiple lines of therapy of BMs [7]. Therefore, predictive 
molecular testing and in vitro drug screening of BM tissue 
samples may broaden the personalized landscape of treat-
ment options for improved management of BM patients.

In this study, we aimed to develop a pipeline for investi-
gating in vitro drug sensitivity of tumor cells isolated from 
BMs using low-passage patient-derived tumor spheroid 
cultures and high-throughput drug screening. By integrat-
ing individual drug response results with tumor-associated 
genetic alterations, we identified potential personalized 
therapeutic options in individual BM patients. Hence, our 
approach bears the potential to be further developed towards 
personalized medicine for BM patients.

Materials and methods

Ethical approval and collection of patient samples

Ethical approval was obtained from the Ethics Committee 
of the Medical Faculty, Heinrich Heine University Düs-
seldorf (protocol No. 2020 − 1124). All patients gave their 
written informed consent for the use of their tissue samples 
and associated data for research purposes.

Establishment of primary cell cultures from BMs

Primary tumor spheroid cultures were established from 
freshly resected surgical specimens, as previously described 
by Nolte et al. [8]. Briefly, neurosurgically resected sterile 
tumor tissue was cut into 1 mm diameter pieces and digested 
with 1X TrypLE (Gibco, Thermo Fischer Scientific, 
Waltham, USA) for 5 min at room temperature. The elimi-
nation of red blood cells was achieved using a red blood cell 
lysis buffer (Invitrogen, Carlsbad, USA) according to the 
manufacturer´s protocol. Tumor cells were cultured as 3D 
spheroids on Hema-coated low-attachment plates (Greiner 
Bio-One, Kremsmünster, Austria). The cells were grown in 
Dulbecco’s modified Eagle medium (Gibco) supplemented 
with 2% B27 (Gibco), 20 ng/ml bovine fibroblast growth 
factor (FGF, Peprotech, ThermoFisher Scientific), 20 ng/
ml human epidermal growth factor (EGF, Peprotech), 5 µg/
ml heparin (Sigma-Aldrich, St. Louis, USA), 1% Pen/Strep 
(Gibco) in standard culture conditions (humidified 37 °C, 
5% CO2). Human fibroblast cells (HFB, NHDF-Ad) were 
obtained from Lonza (Basel, Switzerland) and were cul-
tured using FGM-2 growth media.

Blood processing

Blood samples were collected using BD Vacutainer K2E 
EDTA tubes (BD, Mississauga, Canada). To obtain periph-
eral blood cells (PBC) and total white cells, standard proto-
cols were followed using EasySep RBC Depletion Reagent 
(Stemcell, Cologne, Germany). Specifically, immunomag-
netic beads were used to remove red blood cells from fresh 
peripheral blood. Red blood cell-free PBCs were then cul-
tured in Roswell Park Memorial Institute medium supple-
mented with 10% fetal bovine serum (Gibco).

Immunohistochemistry

Formalin-fixed and paraffin-embedded tissue sections were 
deparaffinized in xylene and rehydrated over a graded etha-
nol series. To block endogenous peroxidase activity, sec-
tions were incubated in 3% hydrogen peroxide solution. The 
detection of HER2 protein expression was carried out using 
a polyclonal antibody against HER2 (A0485, Dako, Ham-
burg, Germany, diluted 1:1200). Anti-rabbit IgG was used 
as the secondary antibody. Horseradish peroxidase was used 
as a catalytic enzyme. Antibody binding was visualized with 
3.3.-diaminobenzidine as a substrate for the horseradish 
peroxidase and chromogen. Finally, the slides were coun-
terstained with hematoxylin and mounted for microscopic 
examination. Immunostaining for HER2 was evaluated 
according to the following immunoscore: 0, no positivity of 
the tumor cells; 1+, tumor cell clusters with weak or hardly 
perceptible membranous positivity; 2+, tumor cell clus-
ters with weak to moderate complete, basolateral or lateral 
membranous positivity; 3+, tumor cell clusters with strong 
complete, basolateral or lateral membranous positivity.

Gene-panel next-generation sequencing (NGS)

Tumor DNA was extracted from primary BM tissue sam-
ples and paired cell pellets from tumor spheroid cultures 
using the ReliaPrep gDNA Miniprep System (Promega, 
Mannheim, Germany) in accordance with the manufactur-
er’s protocol. Tumor tissue samples used for DNA extrac-
tion were histologically evaluated to show sufficient tumor 
cell content of 80% or more. Amplicon-based gene panel 
next-generation sequencing was performed as reported [9]. 
The NGS libraries were generated with DNA extracted from 
BM tissue samples and cell pellets using a customized gene 
panel for predictive molecular testing of non-small cell lung 
carcinoma (NSCLC) for BM from lung carcinomas or the 
commercially available Ion AmpliSeq™ Cancer Hotspot 
Panel v2 (Thermo Fisher Scientific, Waltham, USA) for 
BM from other primary tumors. The NSCLC panel covered 
mutational hot-spots in 27 cancer-associated genes (ALK, 
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BRAF, CTNNB1, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, 
FGFR4, HRAS, IDH1, IDH2, KEAP1, KRAS, MAP2K1, 
MET, NRAS, NTRK1, NTRK2, NTRK3, PIK3CA, PTEN, RET, 
ROS1, STK11 and TP53), while the Ion AmpliSeq™ Cancer 
Hotspot Panel v2 covered mutational hot-spot regions in 50 
cancer-associated genes (https://www.illumina.com/prod-
ucts/by-type/sequencing-kits/library-prep-kits/ampliseq-
cancer-hotspot-panel.html). After sequencing, the amplicon 
sequences were aligned to the human reference genome 
GRCh37 (hg19) and the detected sequence variations were 
evaluated as reported [9].

CellTiter-Glo luminescent cell viability (CTG) assay

The CellTiter-Glo reagent (Promega) was used to measure 
cell viability. The reagent was prepared according to the 
manufacturer’s instructions. The cell concentrations were 
validated to ensure logarithmic growth during the 72 h of 
incubation. The cells were seeded in 1536 well plates with 
Multidrop™ Combi Reagent dispenser (Thermo Fischer Sci-
entific). After incubation, CellTiter-Glo was used to quench 
cells, and luminescence was measured using a Spark 10 M 
microplate reader (Tecan, Männedorf, Switzerland).

Inhibitor libraries and drug screening

Drug screening was performed at the High-throughput Drug 
Screening Core Facility (HTS-CF) of the Medical Faculty 
at Heinrich Heine University Düsseldorf. Sample prepara-
tion and data processing were performed as described [10]. 
In brief, cancer cells were dissociated from the short-term 
spheroid cultures. In total, 2–3 million cells were required 
for examining drug response using a 1536-well format. A 
clinical library consisting of 267 anti-cancer compounds 
(TargetMol, Wellesley Hills, USA), including both FDA-
approved medications and drugs undergoing clinical evalu-
ation (Fig. 1A, Table S1). Each compound was tested across 
6 to 8 different concentration levels, ranging from 0 to 10 
µM [11]. The cellular response to the compounds was mea-
sured using a CTG assay and evaluated based on the nor-
malized area under the dose-response curve (AUC).

Statistical analysis

Drug response was evaluated by generating dose-response 
curves using non-linear regression in Python. The curves 
plotted log (concentration of inhibitor) versus response. 
To normalize the data, the cell viability at the lowest drug 
concentration was set to 100%. The parameters, including 
R2, AUC, and Z’, were calculated using an in-house results 
evaluation pipeline from HTS-CF.

Results

Establishing high-throughput drug screening using 
primary patient-derived cancer cells

In total, we tried to generate primary tumor spheroid cell 
cultures from BMs of 36 patients. The samples included 
various malignancies, including BMs from primary lung 
and breast carcinomas, cutaneous melanomas as well as 
other cancers (Table S2). The success rate in generating a 
short-term culture of cancer cells from BM tissue samples 
across all cancer types was 72% (26/36, Table S2). After 
3–4 days, primary cancer cells formed dense aggregates, 
which were characteristically large, tightly packed spher-
oids of 100–800 μm in diameter (Fig. S1A).

In vitro cultivated cancer cells from the last six BM 
patients (BM28, BM31, BM32, BM33, BM35 and BM36) 
with sufficient tissue available for sequencing and for 
whom primary cultures were successfully established, were 
subjected to in vitro drug screening, thereby evaluating 
their response to 267 anti-cancer drugs. The median time 
between sample collection/start of in vitro cultivation and 
high-throughput drug screening was two weeks (range 1–4 
weeks). 10 to 16 DMSO controls from each plate were plot-
ted to calculate the coefficient of variation (CV) for evaluat-
ing variations in luminescence detection and errors in liquid 
handling (Fig. S1B). As proof of principle, on each plate, 
we employed panobinostat [12] and staurosporine [13], 
which have a wide range of toxic effects on different types 
of cancer cells. R2 was used to assess the goodness-of-fit 
for the response of the cells to these two drugs (Fig. S1C). 
Accurate screening results were selected based on the qual-
ity controls (CV < 15%, R2 > 0.8). Using these criteria, it 
was determined that the results obtained in five out of six 
BM primary cultures selected for in vitro drug testing met 
the quality standards.

Gene-panel next-generation sequencing was performed 
with tumor DNA extracted from tumor tissue samples and 
matched short-term cell cultures of these five patients. Iden-
tical genetic alterations were confirmed, with comparable 
mutant allele frequencies in both BM tissue and primary 
cultures (Table 1).

Using the pharmacogenomic approach to select 
potential personalized treatments

As stated above, we performed in vitro drug screening for 
a clinical anticancer library, in which nearly 80% of drugs 
are FDA-approved, and the remaining are in clinical evalu-
ation (Fig. 1A). Using primary BM cancer cells from one 
patient (BM36) diagnosed with brain metastases derived 
from an adenocarcinoma of the esophagus exemplifies the 
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Fig. 1 Combining molecular profiling within vitro drug screening to 
identify potential therapeutic options. (A) A graphical representation 
summarizing the different stages of clinical application and evaluation 
of the drugs included in the clinical library. (B) Plot of the fitted area 
under the dose-response curve (AUC) for 130 drugs with R2 > 0.8. The 
drugs have been sorted based on their AUC value. Blue dots: standard 
chemotherapy drugs used for esophageal cancer treatment. (C) A heat-
map of Z’. Drugs with Z’<-2 were presented. (D) Immunohistochemi-

cal staining for HER2 expression in BM section of esophageal cancer 
in patient BM36. HER2-positive cells show a brown membranous 
stain. Left: Immunohistochemical staining of the first brain metastasis 
with intense complete membranous staining (HER2-Score 3+, scale 
bar: 100 μm); Right: Immunohistochemical staining of the relapsed 
brain metastasis with moderate staining on the basolateral and lateral 
sides of tumor cells (Score 2+, scale bar: 100 μm). (E) The distribution 
of selected potential drugs across target families
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(V718L). In line, five of the 29 drugs (13.8%) showing in 
vitro efficacy were JAK inhibitors (Fig. 1E).

To further select targeted therapies based on molecular 
alterations, we graphed the dose-response curve for HER2 
and JAK inhibitors. The graphs showed that the identified 
HER2 (Fig. 2A) and JAK (Fig. 2B-E) inhibitors signifi-
cantly suppressed the growth of BM-derived tumor cells of 
patient BM36 while having little or no effect on HFB and 
PBCs.

Using the same strategy and cut-off criteria illustrated for 
case BM36, potential therapeutic options were identified for 
the four other BM patient primary cultures subjected to in 
vitro drug screening and gene panel NGS (Fig. S3). Taken 
together, we identified promising drugs that targeted either 
the specific genetic alterations, such as JAK3 inhibitors in 
BM31 and fibroblast growth factor receptor (FGFR) inhibi-
tors in BM35, or drugs that targeted the signaling path-
ways downstream of the detected genetic alterations, such 
as extracellular-signal-regulated kinases (ERK), histone 
deacetylase (HDAC) and heat shock protein 90 (HSP90) 
inhibitors in BM28, and mitogen-activated protein kinase 
(MEK) inhibitors in BM32 (Table S3).

Discussion

As the most frequent intracranial neoplasms in adults, BMs 
are commonly treated by neurosurgical resection or stereo-
tactic radiosurgery, often followed by whole-brain radia-
tion [3]. In addition, conventional chemotherapy, as well 
as molecularly guided targeted pharmacological treatments 
and/or immune checkpoint inhibition are increasingly used 
for treating BM patients [3]. While the combined multi-
modal treatment has improved the overall outcome of these 
patients, there still is a major clinical need to advance indi-
vidualized treatment and thereby further prolong survival. 
Therefore, we investigated a potential personalized thera-
peutic approach for BM patients employing a translational 

capabilities of our drug screening platform. Dose-response 
curves were selected based on the goodness-of-fit param-
eter R2. In total, 130 drugs showed an R2 value above 0.8 
in the BM-derived short-term cultures of this patient. To 
assess the potency and efficacy of each drug, we calculated 
the AUC and selected only those drugs with an AUC of at 
least 0.75 as effective compounds [14]. Using this crite-
rion, out of 130 drugs, 60 drugs (46%) showed the expected 
effect on the patient-derived short-term cultures (Fig. 1B), 
including standard drugs used for clinical chemotherapy 
of esophageal cancers, such as epirubicin and doxorubicin 
[15, 16]. However, the dose-response curves of both drugs 
also showed high cytotoxicity toward peripheral blood cells 
(PBCs, Fig. S2).

To identify potential therapeutic options and exclude 
drugs with unwanted cytotoxic effects, Z’ was calculated 
[17]. Human fibroblasts (HFB) and PBCs were used as non-
neoplastic control cells. Z’ lower than − 2 for primary can-
cer cells indicated a drug specifically targeting cancer cells 
but not the non-neoplastic control cells (Fig. 1C). Using this 
multiple criteria approach, 29 drugs (R2 > 0.8, AUC < 0.75, 
Z’ <-2) showed selective antitumor effects. As amplification 
and overexpression of the human epidermal growth factor 
receptor 2 (HER2) gene is an established therapy target 
in esophageal cancers, we performed immunohistochemi-
cal staining for HER2 expression on formalin-fixed and 
paraffin-embedded tissue sections, which indicated an over-
expression in the two distinct brain metastases of patient 
BM36 (Fig. 1D). Nearly 25% of the drugs identified in the 
in vitro drug screen were targets of HER2-mediated signal-
ing pathways, such as inhibitors for the mitogen-activated 
protein kinase (MAPK) pathway and phosphatidylinositol 
3-kinase (PI3K) pathway [18]. Additionally, among six 
identified tyrosine kinase inhibitors, the novel oral pan-
HER2 inhibitor, neratinib [19], was identified. Furthermore, 
gene panel NGS of BM36 tumor tissue and short-term 
cultures revealed a Janus kinase 3 (JAK3) somatic variant 

Table 1 Summary of genetic alterations detected in brain metastases and corresponding short-term cultures of five patients. The respective mutant 
allele frequencies are indicated in brackets
Sample ID Primary tumor 

entity
DNA variants detected in BM tissue samples DNA variants detected in BM-derived short-

term cultures
BM28 NSCLC STK11 c.289_290 + 2delAAGT (AF = 59.6%)

TP53 c.734G > T:p.G245V (AF = 69.8%)
STK11 c.289_290 + 2delAAGT (AF = 90.5%)
TP53 c.734G > T:p.G245V (AF = 92.5%)

BM31 Melanoma KIT c.2447 A > T:p.D816V (AF = 29.5%)
JAK3 c.2164G > A:p.V722I (AF = 50.1%)

KIT c.2447 A > T:p.D816V (AF = 31.7%)
JAK3 c.2164G > A:p.V722I (AF = 51.0%)

BM32 GC ATM c.2572T > C:p.F858L (AF = 40.8%) ATM c.2572T > C:p.F858L (AF = 44.3%)
BM35 NSCLC FGFR3 c.1345 C > T:p.P449S (AF = 49.1%)

KRAS c.34G > T:p.G12C (AF = 50.9%)
FGFR3 c.1345 C > T:p.P449S (AF = 52.6%)
KRAS c.34G > T:p.G12C (AF = 62.8%)

BM36 ESCA JAK3 c.2152G > C:p.V718L (1st BM: AF = 31.6%; 2nd 
BM: AF = 36.5%)

JAK3 c.2152G > C:p.V718L (AF = 47.5%)

Abbreviations: NSCLC, non-small cell lung cancer; GC, gastric cancer; ESCA: esophageal carcinoma; AF, mutant allele frequency; BM, brain 
metastasis
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cancer cells, including their mutational profiles and pheno-
typic properties such as stem-like features that may impact 
drug response [23, 24]. To further preserve genetic and phe-
notypic features of the respective BM tissues, only shortly-
term cultures of cancer cells that had undergone less than 
three splittings were investigated for selecting potentially 
effective drugs.

To employ drug screening of a more extensive collec-
tion of compounds with limited numbers of available can-
cer cells, we established a pipeline for use in a 1536-well 
format, which requires 90% less volume and fewer primary 
cells than a 384-well format [25]. For results evaluation, we 

preclinical platform for high-throughput in vitro drug 
screening combined with gene panel NGS-based mutational 
profiling of BM tissues and BM-derived short-term cultures.

In comparison to the use of patient-derived tumor xeno-
graft models and preclinical in vivo drug screening [20–22], 
our approach based on primary cancer cell cultures is far less 
time-consuming and resource-demanding. We employed 
culturing cancer cells as tumor spheroids in serum-free 
medium as reported for in vitro cultivation of BM cells from 
primary lung cancer [8]. In comparison to cultivation in a 
serum-containing medium, the serum-free spheroid cultures 
used here are supposed to better preserve innate traits of the 

Fig. 2 Dose-response curves of 
selected drugs in primary cultures 
of BM36. Short-term cultures 
of BM-derived tumor cells of 
patient BM36 showed lower 
AUC values for neratinib (A), 
pacitinib (B), quizartinib (C), 
momelotinib (D), and fedratinib 
(E) treatment as compared to 
human fibroblast (HFB) and 
peripheral blood cells (PBC). 
Cell viability was measured by 
CellTiterGlo assays
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missense variant in the first and second BM of this patient. 
JAK/STAT signaling is often altered in solid tumors and 
may drive tumor malignancy [33], suggesting that combina-
tion therapy with the identified HER2 and JAK inhibitors 
may be considered a potentially effective treatment.

The BM of patient BM28 carried a common variant in the 
serine/threonine kinase 11 gene (STK11) which is predic-
tive for sensitivity to ERK inhibitors [34]. In our screening, 
we identified ulixertinib as the first-in-class ERK inhibi-
tor, which has already shown promising results in treating 
low-grade glioma [35]. Additionally, BM28 carried a loss of 
function variant in TP53 [36]. HDAC inhibitors or HSP90 
inhibitors can degrade the mutant p53 protein [37]. A com-
bined approach using ulixertinib (ERK inhibitor) with 
vorinostat (HDAC inhibitor) and tanespimycin (HSP90 
inhibitor) [38, 39], which all have been reported to cross the 
blood-brain barrier, could potentially degrade the mutant 
p53 protein, and target STK11-mutant cells by abolishing 
S6 protein. BM31 carried a gain of function JAK3 variant 
[40]. The JAK3 inhibitor, pacritinib, which was also identi-
fied in the drug screening of BM36, could be a promising 
treatment in BM31 as well. In BM32, cancer cells with ser-
ine/threonine kinase (ATM) mutation could be specifically 
targeted by trametinib (MEK inhibitor) [41]. In addition, the 
ATM F858L mutation may induce the expression of TP53 
target genes [42], making this BM a suitable candidate for 
combined treatment with MEK, HDAC, and HSP90 inhibi-
tors. The triple-angiokinase inhibitor nintedanib, which 
effectively blocks fibroblast growth factor receptor 1–3 
(FGFR), has been investigated for lung diseases and could 
be considered a treatment option for BM35 [43].

Taken together, advanced next-generation sequencing 
techniques offer the potential to identify specific molecu-
lar targets and personalized drug treatment options for 
subsets but not all cancer patients. Our preclinical study 
provides proof of concept for using in vitro drug screening 

used a comprehensive statistic package including the cal-
culations of R2, AUC, and Z’, which effectively balances 
treatment effectiveness against toxicity and reliably deter-
mines potential hits. Moreover, this robust statistic package 
enabled us to select the potential hits using single patient 
drug response data, thereby expediting the translation of our 
findings into potential clinical applications.

Due to genetic heterogeneity and the associated diver-
gence of BMs, we aimed to demonstrate the conceptual 
framework of our preclinical pipeline (Fig. 3) by present-
ing the results of an exemplary BM patient (BM36). Results 
from short-term cultured primary cancer cells-based high-
throughput drug screening of BM36 revealed 60 drugs that 
strongly suppressed the growth of BM tumor cells of this 
patient, including standard chemotherapeutic drugs com-
monly used for treating esophageal cancer, namely, epirubi-
cin and doxorubicin [26]. However, both drugs belong to the 
class of anthracyclines and exhibit severe cumulative tox-
icities, such as cardiotoxicity and secondary leukemia [27]. 
Compared to these conventional chemotherapies, targeted 
therapies are assumed to be more selective, i.e., show fewer 
side effects [28]. Patient BM36 harbored a HER2-positive 
BM. The primary tumor was treated with capecitabine and 
a HER2-directed agent (trastuzumab) [29], which showed 
improvements in the control of the systemic disease. How-
ever, large molecules like trastuzumab may not easily cross 
the blood-brain barrier [30], and this patient indeed devel-
oped BMs as the initial site of cancer relapse. In vitro drug 
screening of cancer cells derived from the HER2-positive 
BM of this patient identified a small molecule HER2 inhibi-
tor, neratinib. In patients with HER2-positive metastatic 
breast cancer, neratinib has been shown to have intracra-
nial activity [31] and treatment with this drug significantly 
reduced the risk of HER2-positive breast cancer progres-
sion and delayed the spread of this type of cancer to the 
brain [32]. Additionally, gene panel NGS revealed a JAK3 

Fig. 3 Schematic presentation of the combined molecular profiling and in vitro drug screening approaches used to identify potential personalized 
therapies in BM patients
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platforms, could be warranted to further validate targeted 
anti-cancer effects versus unwanted side effects of selected 
candidate drugs under conditions that more closely recapitu-
late the multifaceted cellular and extracellular environment 
in BM tumors [57–59]. Eventually, newly designed clinical 
trials would be required to validate the clinical effectiveness 
of personalized approaches that integrate predictive molec-
ular testing and in vitro drug screening in BM patients [60].

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s11060-
024-04763-7.
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comprehensive statistical analysis with the drug response 
of an extensive collection of primary cancer cells to select 
drugs [46–48], our study offers a robust testing strategy with 
the potential of clinical usability and demonstrates how to 
use drug responses in individual patient tumors to select 
potential hits.

We acknowledge that there are several shortcomings and 
the need for further improvements of our study. With a 72% 
success rate of in vitro primary tumor spheroid culture, our 
study falls within the upper range of reported success rates 
(9–78%) [49, 50]. However, this does not rule out the possi-
bility of achieving even higher success rates when the entire 
pipeline from tissue resection, selection of viable tumor 
pieces, and in vitro cultivation is carried out by well-trained 
personnel following fully standardized and optimized pro-
cedures. To ensure that the primary culture recapitulates 
the intratumoral heterogeneity of corresponding tumors, 
we utilized an advanced serum-free culture condition, short 
culture periods, and a high-coverage gene panel NGS to 
analyze DNA extracted from primary cultures and corre-
sponding brain metastases tissues. Our results demonstrate 
that the major tumor clones are preserved in the primary 
cultures. Nonetheless, we cannot rule out the possibility 
that minor subclones may escape from in vitro growth. To 
further optimize the experiment condition, comprehensive 
single-cell analyses would be required.

In addition, even though the blood-brain barrier is often 
compromised in malignant brain tumors, including brain 
metastases [51], certain drugs may still demonstrate low 
penetration to the BM tissue due to a blood-tumor barrier 
[52]. In case the in vitro screen identifies candidate drugs 
that are known to show limited penetration via the blood-
brain barrier / blood-tumor barrier, application strategies 
involving local drug delivery [53] or ultrasound-mediated 
blood-brain barrier modulation [54], and nanoparticle tech-
nology [55] might be considered. Moreover, as the pattern 
and types of genetic alterations may vary between primary 
tumors and respective BM [56], combination treatments 
may be required to target both cancer sites.

Additional investigation into more advanced personalized 
in vitro models, such as patient-derived organoid cultures, 
co-cultures with non-neoplastic cells, and organs-on-a-chip 
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