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Hybrid assembly and comparative 
genomics unveil insights 
into the evolution and biology 
of the red‑legged partridge
Abderrahmane Eleiwa 1, Jesus Nadal 2, Ester Vilaprinyo 1,2, Alberto Marin‑Sanguino 1,2, 
Albert Sorribas 1,2, Oriol Basallo 1,2, Abel Lucido 1,2, Cristobal Richart 3, Ramona N. Pena 2,4, 
Roger Ros‑Freixedes 2,4, Anabel Usie 2,5,6 & Rui Alves 1,2*

The red‑legged partridge Alectoris rufa plays a crucial role in the ecosystem of southwestern Europe, 
and understanding its genetics is vital for conservation and management. Here we sequence, 
assemble, and annotate a highly contiguous and nearly complete version of its genome. This assembly 
encompasses 96.9% of the avian genes flagged as essential in the BUSCO aves_odb10 dataset. 
Moreover, we pinpointed RNA and protein‑coding genes, 95% of which had functional annotations. 
Notably, we observed significant chromosome rearrangements in comparison to quail (Coturnix 
japonica) and chicken (Gallus gallus). In addition, a comparative phylogenetic analysis of these 
genomes suggests that A. rufa and C. japonica diverged roughly 20 million years ago and that their 
common ancestor diverged from G. gallus 35 million years ago. Our assembly represents a significant 
advancement towards a complete reference genome for A. rufa, facilitating comparative avian 
genomics, and providing a valuable resource for future research and conservation efforts for the red‑
legged partridge.

Alectoris rufa, also known as red-legged partridge, is a game bird that holds significant ecological and economic 
importance for rural areas in southwestern  Europe1. Habitat degradation, captive breeding, and hunting man-
agement have led to the creation of a complex species situation, impacting both the ecosystems and society of 
the region. Across various hunting grounds, wild, farmed, and hybrid partridges coexist in varying proportions. 
While these partridges exhibit distinctions in behavior, physiology, morphology, anatomy, and genetics, the 
absence of a reference genome hinders our ability to molecularly differentiate these ecotypes, spanning from 
wild to  domestic2. The haploid genome of A. rufa has 9 macro chromosomes and 30 micro  chromosomes3,4. The 
advent of Next-Generation Sequencing (NGS) technologies, mainly based on short-read sequencing data, com-
bined with decreasing DNA sequencing costs, led to an increase in the number of available genome sequences. 
However, those genomes were still highly fragmented due to the limitations inherent to short reads, where for 
example repetitive regions can lead to genome misassembly. The emergence of third-generation sequencing 
technologies partially overcame those limitations by generating long-read sequencing data. These long-reads 
helped to reduce assembly fragmentation and increase contiguity, greatly improving the quality of whole-genome 
 assemblies5. Still, early long-read technologies had base-calling error rates of 10–14%, that are much higher than 
the less than 1% error rate found in short-read  technologies6. In addition, the error profiles of both technolo-
gies are different. Errors in short-reads are mostly at the level of incorrect nucleotide substitutions, while errors 
in long-reads mostly involve incorrect insertions and  deletions7,8. This difference makes long read errors more 
complex to resolve, requiring an error correction step prior to genome assembly. The error correction problem 
has been addressed either by self-correction, aligning long-reads against each other, or by a hybrid approach in 
which long-reads are corrected using short-reads. The latter approach is known to achieve more accurate genome 
assemblies than genomes assembled based only on short- or long-read  technologies9,10.
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In this context, the quality of reference genome assemblies benefited from the combination of Illumina short-
read sequencing with third-generation sequencing platforms such as Pacific Bioscience (PacBio)11 or Oxford 
Nanopore Technologies (ONT)12. Application of these technologies improved contiguity, completeness, and 
accuracy compared to assemblies based on short-read sequencing  alone13,14. In general, the number of contigs 
and scaffolds was significantly reduced, and N50 values increased, leading to better genome annotation and 
identification of more genes, including non-coding RNA genes, pseudogenes, and transposable  elements15,16. 
Examples of genomes assembled using hybrid approaches in the avian clades include, for example, the Tibetan 
 partridge15, the Indian  peafowl17, the domestic  turkey14, or the common  pheasant18.

The first effort to sequence the red-legged partridge genome of a male individual, which was published in 
2021 under the accession number GCA_019345075.119, was based on Illumina paired-end short reads sequence 
data resulting in a highly fragmented assembly, with 10 598 scaffolds, a contig/scaffold N50 of 11.57 Mb, and L90 
equal to 131. A more recent version of A. rufa‘s genome, based on ONT and short reads, was recently released at 
the NCBI under the accession number of GCA_947331505.1. That version has 426 scaffolds with N50 of 34 Mb 
and L90 of  3220. Both genomes lack detailed annotation. The contiguity of the GCA_947331505.1 assembly (~ 500 
contigs) is approximately twenty five times better than that of assembly GCA_019345075.1 (~ 10,000 contigs). 
Finally, the BUSCO completeness assessment of the two assemblies reveals that assembly GCA_019345075.1 is 
missing approximately 500 single copy BUSCO orthologs with respect to GCA_019345075.1 and has approxi-
mately twenty times more duplicated gene copies. These discrepancies may lead to potential errors in gene order 
conservation (synteny) and contribute to large-scale assembly inaccuracies. In order to overcome some of the 
challenges and limitations found in the earlier genome assemblies of A. rufa and move towards a well annotated 
chromosome level assembly, we combined short- and long-read sequencing data in a hybrid approach. Here we 
report the resulting scaffold-level assembly and its annotation. We validated the assembly by comparing it to the 
reference genomes of chicken (Gallus gallus, NCBI reference GCF_016699485.2) and quail (Coturnix japonica, 
NCBI reference GCF_001577835.2), two closely related species. Overall, we provide a valuable resource for 
comparative and population genomics, improving our understanding of avian evolution, biogeography, and 
demography.

Results
Estimation of genome size and heterozygosity rate
We conducted genome profiling on sixty A. rufa individuals using k-mer analysis of short-read sequence data, 
and finding an estimated genome size between 1 and 1.06 Gb, and 0.1% ≤ heterozygosity ≤ 0.4% (Fig. 1).

A. rufa genome assembly, annotation and quality assessment
We tested and evaluated various pipelines to assemble the genome of the red-legged partridge. The NextDenovo 
pipeline produced a primary assembly with the best metrics. This assembly comprised 116 contigs, with an N50 
length of 74 Mb and an N90 of 10 Mb (Supplementary Table S1). We further refined this assembly, recovering 
96.8% (8078 out of 8332) of the single-copy genes found in the BUSCO dataset of avian single copy orthologous 
genes (aves_odb10, N = 8332 genes) (Supplementary Table S2). The contigs were then used as the basis for 
genome scaffolding, resulting in a final genome assembly of 115 scaffolds and 1.03 Gb. Table 1 summarizes the 
most relevant contiguity metrics of this assembly and its annotation.

The final assembly significantly improves the statistical metrics of contiguity of the earlier available assemblies 
(Table 2). Our L90 is 23, closer to the 9 macro-chromosomes present in the haploid genome of A. rufa, and at 
least five times smaller than that for assemblies GCA_947331505.1 (based on short-reads) and GCA_019345075.1 
(based on long-reads). Our N50 (74 Mb) is twice that of the GCA_019345075.1 assembly and seven times that of 
the GCA_947331505.1 assembly. Our assembly contained 96.78% (n = 8053 genes) of complete and single-copy 
genes without duplications present in the BUSCO avian dataset, surpassing both the short-read (95.1%; n = 7933 
genes) and the long read (96.58%; n = 7378) genome assemblies. Table 2 summarizes the main differences in 
terms of the genome contiguity and completeness metrics between those assemblies.

Additionally, we compared our genome assembly against that of eleven birds and one reptile, all of which 
possessed chromosome-level genome assemblies (Supplementary Table S3). Our assembly has the fifth highest 
scaffold N50 value for the bird genomes analyzed here (Fig. 2A; see also Supplementary Fig. S1 for the contig 
N50 statistics). Moreover, in terms of avian orthologs, our assembly also ranks within the top five of the highest 
number of both complete and single copy orthologs. The NCBI’s Foreign Contamination Screening revealed no 
significant contamination in the assembly of those 115 scaffolds (Supplementary Table S4).

Annotation of transposable elements
RepeatMasker21 annotated 13% of the A. rufa genome as repetitive sequences. Table 3 summarizes the analysis 
of transposable elements (TE), which revealed a higher percentage of repetitive elements, when compared to 
the previous draft genome based on short reads  alone19. Long interspersed nuclear elements (LINE) are the 
most frequent transposable elements in the genome, representing 7.74% of the whole genome sequence. These 
elements have a greater divergence rate in comparison to other DNA transposable elements (Supplementary 
Fig. S2) identified in the genome. DNA transposons (2.33%) and long terminal repeat (LTR) elements (1.76%) 
are the second and third most abundant classes of transposable elements in the genome, respectively.

Annotation of RNA and protein‑coding genes
We validated 10,757 annotated protein genes through comparison of their intron–exon structure with G. gallus 
or C. japonica orthologs (Supplementary data file S1). To do so we BLASTed our annotated A. rufa proteome 
against that of G. gallus, to identify pairs of orthologs with conserved intro-exon structure. Then, we repeated the 
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process between A. rufa and C. japonica. An additional 8,509 genes were also validated through mapping of the 
full transcript (Supplementary Table S5). This generated a high-confidence data set of 19,266 predicted protein 
genes. An additional 11,010 gene were annotated with lower confidence, making a total of 30,236 protein-coding 
genes in our assembly. We summarize the statistics for all these predicted genes in Table 4.

We identified known homologs for 95% (28,862) of the predicted protein genes in a non-redundant database 
merging the complete protein datasets downloaded from SwissProt, TrEMBL and NCBI. Of these, 18,865 (62.1%) 
proteins were simultaneous and consistently annotated among the three databases (Supplementary Fig. S3). 
We were able to assign InterProScan family and subfamily domains to 25,978 (85.9%) predicted genes, and GO 
biological functions to 13,371 (57.1%) genes (Supplementary data file S1).

A KEGG-based functional annotation mapped 12,377 of our protein-coding genes predicted with high con-
fidence to their representative functional KEGG ortholog (KO) genes (Supplementary data file S1). The largest 
number of genes were mapped to genetic information processing (2968 genes), environmental information 

Figure 1.  Assessment and profiling of Alectoris rufa’s genome assembly. A Distribution of estimated genome 
size and heterozygosity levels across sixty individuals of A. rufa sequenced with Illumina short-reads. B Genome 
size and ploidy level estimation using long reads from two individual A. rufa sequenced with ONT. Left: 
Genome size and heterozygosity plot. Right: genome ploidy inference. C Assessment of scaffolds completeness 
using a 21 k-mer spectrum approach. Scaffold completeness is estimated to be 92%. D Comparison the 
completeness between genome assembly and genome annotation, based on recovered core genes from the 
aves_odb10 dataset of BUSCO.
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processing (1785 genes), and molecular function-related signaling and cellular processes (1664 genes). The top 
five KEGG metabolic pathways were carbohydrate metabolism (342 genes), lipid metabolism (306 genes), glycan 
biosynthesis and metabolism (220 genes), amino acid metabolism (180 genes), and nucleotide metabolism (148 
genes) (Supplementary data file S1, Supplementary Fig. S4).

We reported the annotation profile of non-coding RNAs (ncRNA) in the assembled genome with respect 
to their Rfam families. We identified 305 transfer RNA (tRNA) through tRNAScan. Additionally, employing 
Infernal we were able to identify 246 micro-RNA (miRNA), 135 ribosomal RNA (rRNA) and 315 small nuclear 
RNA (snRNA) genes (Supplementary data file S1).

Table 1.  Statistic for the Alectoris rufa genome assembly and annotation.

Genome assembly

Assembly size (Gb) 1.03

Number of scaffolds 115

Max. scaffold length (Mb) 149.6

N50 scaffold size (Mb) 74

N90 23

Mean scaffold length (Mb) 9.03

QV 36.3

Merqury completeness score 92%

Gene annotation

Total Protein-coding genes 30236

Functional annotation (Total)

Uniprot (SWISS_prot) 18878

Uniprot (TrEMBL) 28596

NCBI_NR 28799

Genomic features

Repeat (%) 13.3

GC (%) 42.1

Protein coding genes (%) 46.7

Non protein-coding DNA (%) 54.3

Avg. protein length (aa) 441.3

Total microRNAs 246

Total tRNA 305

Total rRNA 130

Total snRNA 315

Table 2.  Comparing Alectoris rufa genome assemblies. ONT Nanopore oxford technology.

This study Chattopadhyay et al.19 GCA_947331505.1

Sequencing technology Illumina NovaSeq 6000, ONT 
GridION Illumina HiseqX NovaSeq 6000, ONT GridION

Assembly size (bp) 1,027,480,606 1,039,068,021 1,142,486,555

Total scaffolds 115 10,598 426

Scaffold N50 (bp) 74,759,052 11,577,318 37,566,138

Scaffold N90 (bp) 10,103,736 1,025,037 6,380,696

Longest Scaffold length (Mb) 149 47 118

GC content (%) 42.1 41.4 42.3

Total predicted protein-coding genes 30,236 NA NA

Complete recovered BUSCOs 8078 7970 8094

Complete and single-copy BUSCOs 8053 7933 7378

Complete and duplicated BUSCOs 25 37 716

Fragmented BUSCOs 39 122 37

Missing BUSCOs 221 246 207

Total BUSCO groups searched 8338 8338 8338
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Figure 2.  Assessing the completeness and correctness of the A. rufa assembly in comparison to closely related 
bird species. A Scaffold N50 statistic for each genome assembly. B Completeness of each assembly based on 
BUSCO results with the aves_odb10 dataset.

Table 3.  Comparative statistics of repetitive elements between short read and hybrid A. rufa genome 
assemblies. SINE Short-interspersed element, LINE Long-interspersed elements, LTR Long terminal repeat.

This study Chattopadhyay et al.19

Length (bp) % of genome Length occupied % of genome

SINEs 723,913 0.07 179,454 0.02

LINEs 80,386,206 7.74 70,223,435 6.83

LTR elements 18,335,204 1.76 10,566,378 1.03

DNA transposon 24,247,058 2.33 7,824,132 0.76

Unclassified 14,562,721 1.40 10,691,987 1.04

Total 138,255,102 13.31 99,485,386 9.68

Table 4.  Summary of features annotated in the genome of A. rufa.

Genomics features Counts

Number of genes 30,236

Number of CDS 30,236

Number of exons 206,051

Number of intron in CDS 175,815

Number gene overlapping 0

Number of single exon gene 8625

Mean mRNAs per gene 10

Mean exons per CDS 68

Mean introns in CDSs per mRNA 58

Total gene length (bp) 485,558,167

Total CDS length (bp) 40,122,173

Total intron length per CDS 445,435,994

Mean gene length (bp) 16,058

Mean CDS length (bp) 1326

Mean CDS piece length (bp) 194

Mean intron in CDS length (bp) 2533
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Synteny analysis of the genome structures of A. rufa, C. japonica and G. gallus
A. rufa belongs to the Phasianidae (pheasants, partridges, chickens, turkeys, etc.) family of the Galliformes 
clade. While many relationships within Galliformes are well-supported, some uncertainties remain, particularly 
regarding the branching order within the species-rich Phasianidae family. One of the uncertainties in this fam-
ily is the relationship between A. rufa, C. japonica, and G. gallus. The three birds are closely related and exhibit 
a shared karyotype of n = 39  chromosomes22. This karyotype similarity motivated us to compare the sequence 
of the largest 23 scaffolds of A. rufa (containing at least 90% of the assembled genome) across the three species. 
Figure 3 highlights significant syntenic regions across the three genomes. Scaffolds 2 and 5 of A. rufa align with 
chromosome 1 in the two other species. Similarly, scaffolds 1, 3 and 4 respectively align to chromosomes 2, 4 
and 3 of both birds. Furthermore, A. rufa scaffolds 6 and 10 display near complete synteny with C. japonica’s sex 
chromosome Z, while scaffold 10 showing synteny with G. gallus’ Z chromosome. Scaffolds 7 and 15 of A. rufa 
display considerable synteny with chromosome 5 of the other birds. The remaining 14 A. rufa scaffolds exhibit 
strong synteny with individual chromosomes of the other two bird species. Notably, twelve micro chromosomes 
from C. japonica and 20 micro chromosomes from G. gallus did not exhibit significant homology with any of 
the assembled A. rufa scaffolds.

Pairwise analysis of the chromosomal rearrangements between A. rufa and C. japonica or  
G. gallus
The scaffold-to-chromosome alignments revealed significant large-scale genomic rearrangements between A. 
rufa and both C. japonica and G. gallus genomes (Supplementary Fig. S5, Supplementary Table S6). Scaffold 2 
exhibits a small 2.52 Mb inversion within the 105.87–108.07 Mb region of C. japonica’s chromosome 1. Scaffold 
5 presents two similar-sized inversions, occurring at regions 19.06–20.95 Mb and 50.02–57.48 Mb of chromo-
some 1. Scaffold 1 displays a substantial inversion in its center relative to the centromeric region of C. japonica’s 
chromosome 2 (42.9–77.77 Mb). Scaffold 3 features two inversions near one of its ends compared to chromo-
some 3. Similarly, scaffolds 4 and 18 exhibit inversions when aligned to chromosomes 4 and 15, respectively.

Pairwise alignment of our scaffolds with G. gallus chromosomes unveiled repeated inversions, particularly at 
telomeric regions. Notably, scaffold 4 included two inversions totaling 4.37 Mb within regions 1.76–4.29 Mb and 
0.02–1.77 Mb of chromosome 4. Similarly, scaffold 8 exhibited three inversions totaling 3.23 Mb between regions 
7.3–8.46 Mb, 9.97–11.06 Mb, and 11.81–12.72 Mb, aligning with chromosome 6 of the G. gallus genome. Addi-
tionally, scaffold 11 featured a substantial 8.35 Mb inversion relative to the 0.06–8.07 Mb region of chromosome 8.

Overall, these results suggest that A. rufa’s genome is more similar to that of C. japonica than to that of G. 
gallus, indicating a closer evolutionary relationship between A. rufa and C. japonica when compared to the G. 
gallus. The similarities in genomic structures and rearrangements between A. rufa and C. japonica genomes 
imply a closer evolutionary proximity between the two birds with respect to G. gallus.

Comparative proteome of A. rufa, C. japonica, G. gallus, and M. gallopavo
Comparing the ortholog clusters of protein coding genes in the high confidence dataset between the four spe-
cies reveals 10,111 shared orthologous gene families (Fig. 4A). We have also identified 113 gene families that 
are exclusive to A. rufa. Among these, 101 genes could be functionally associated to general biological processes 
using GO (Supplementary data file S1, summarized in Fig. 4B). Among the gene families linked to more specific 
GO components, 1 gene was associated with membranes, and 2 genes were associated with structural activities. 
The set of genes unique to A. rufa (Fig. 4C) is significantly enriched in genes related to viral processes (5 genes) 
regulation of immune response (8 genes) and microtubule depolymerization (16 genes).

Figure 3.  Circus plots comparing sequence homology between the largest 23 A. rufa scaffolds and the reference 
chromosomes of A C. japonica, and B G. gallus. Each line within the circle represents 10 Kb of sequence 
homology. Chromosomes are color coded to facilitate visualizing the synteny regions between A. rufa and the 
other two birds. There are 248386 regions of strong homology between A. rufa and C. coturnix, compared to 
154686 regions of strong homology between the genome of A. rufa and that of G. gallus.
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Phylogenetic analysis of A. rufa within the Galliformes clade
The phylogenetic tree (Fig. 5), constructed through the alignment of 8212 single-copy BUSCO genes found across 
thirteen genomes (Supplementary Table S3 and our A. rufa assembly), unveils pivotal points in evolutionary 
history measured in million years ago (Mya). The divergence between birds and reptiles occurred roughly 300 
Mya. Anseriformes and Galliformes parted ways around 75 (95% credibility interval 46.14–106.85) Mya, with the 
Guinea fowl diverging from the main Galliformes lineage approximately 56 (95% credibility interval 33.41–78.34) 
Mya. The clade containing G. gallus, C. japonica and A. rufa separated from the rest of the Galliformes approxi-
mately 49 (95% credibility interval 27.88–69.01) Mya, with their last common ancestor estimated at roughly 35 
(95% credibility interval 9.86–57.87) Mya. The divergence between C. japonica and A. rufa happened approxi-
mately 20 (95% credibility interval 0.0011–41.44) Mya ago. These predicted divergence timelines are consistent 
with the findings we report from the pairwise analysis of the chromosomal rearrangements between the three 
birds (Fig. 3). Because of the large confidence intervals for the divergence times we calculated the individual 
maximum likelihood gene trees for the single copy BUSCO orthologs identified in all genomes, using IQTree. We 
then used the multi-species coalescent model approach in ASTRAL to build the species tree from the individual 
gene-based trees (Supplementary Fig. S6). The speciation structure of the two trees is consistent.

Figure 4.  Functional comparison of the protein genes annotated with higher confidence in A. rufa’s proteome 
to the annotated NCBI proteomes of C. japonica, G. gallus, and M. gallopavo. A Comparison of orthologous 
gene families between A. rufa, C. japonica, G. gallus and M. gallopavo. B Generic GO enrichment terms for gene 
families that are unique to A. rufa. C Specific GO enrichment terms for gene families that are unique to A. rufa. 
Only GO categories that are associated to more than one gene were included in panels (B) and (C).
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Discussion and conclusions
We achieved a highly contiguous genome assembly for A. rufa by integrating accurate short reads from Illumina 
sequencing with lower accuracy ultra-long reads from the Oxford Nanopore Technology (ONT). The resulting 
assembly is scaffold-level, comprising 115 DNA scaffolds, with a L90 of 23. Our approach demonstrates superior 
contiguity and scaffolding accuracy compared to previous assemblies relying solely on either short-read19 or long-
read data (accession number GCA_947331505.1 at the NCBI), further validating the efficacy of the combined 
sequencing approach for de novo genome assembly in non-model organisms. Additionally, the sequences from 
sixty A. rufa individuals provides a valuable reference for future genetic studies characterizing genome size, 
ploidy, and heterozygosity rates in different A. rufa populations. Our assembly contributes to the collection of 
avian genomes and highlights the effectiveness of integrating long-read and high-quality short-read data from 
 Illumina10,16,23.

Notably, the contiguity statistics for the A. rufa genome is above average with respect to the other eleven fully 
sequenced Galliformes genomes analyzed (Fig. 2A). Still, we note that the Bird10K genome sequencing initiative 

Figure 5.  Phylogenetic analysis of A. rufa. The phylogenetic tree was reconstructed from concatenated single-
orthologous genes of the complete genome of 11 birds plus A. rufa using IQTREE. The lizard Anolis carolinensis 
(lizard) was used as outgroup. A. rufa is closer to C. japonica than to G. gallus. Numbers at each node represent 
the estimated divergence time in million years. Blue lines indicate the 95% credibility interval for those 
estimates. Only branching points supported by 100% of bootstrapped trees are shown.
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is having tremendous success in generating highly contiguous genomes and these have better contiguity statistics 
than  ours24–27. We expect to further improve our contiguity by generating and using HiC data to improve the 
assembly in the future. Assessment our assembly’s completeness using  BUSCO28 shows that it has the highest 
number of single copy orthologous genes identified with respect to the other analyzed genomes (Fig. 2B). We 
note that the BUSCO assessment of the gene annotation using BUSCOs is lower (87.9% completion rate, Fig. 1D) 
that that for the assembled genome. This discrepancy between the recovered BUSCO genes and the annotated 
gene set is consistently observed in similar  cases29. The highly contiguous assembly facilitated a comprehensive 
genome annotation by leveraging diverse functionally annotated sequence databases and pre-existing transcrip-
tomic data. As a result, we could use sequence homology to assign biological function for over 95% of all genes 
identified in our assembly. Overall, our assessment of the annotation quality using RNA sequencing data showed 
a complete alignment with gene models, with no missed single exons (Supplementary Table S5). Supplementary 
data file S1 contains all details of the annotation.

We identified 19,226 protein genes with high confidence. Of these, 10,757 protein genes were verified to 
maintain their intron–exon structure when compared to G. gallus or C. japonica orthologs (Supplementary data 
file S1), suggesting these genes are also correctly annotated. The remaining 8,509 genes were verified through 
mapping the full transcript. Notably, transcriptomic data is currently limited to the spleen and skin tissues, yet 
it aligns well with the annotated gene models. Despite varying parameters during the process of masking DNA 
transposable elements, we observed a minimal impact of those changes on the number of annotated protein-
coding genes. Given these findings, we anticipate that incorporating transcriptomic data from additional tissues 
will refine the gene models specific to A. rufa and potentially reduce the overall count of annotated genes, mir-
roring observations in other model  organisms30. Additional ab initio annotation identifies 11,010 genes with 
lower confidence.

The genomic annotation of TEs in the A. rufa genome shows a high abundance of LINE (7.74% of the genome) 
and LTR repeat elements (1.76% of the genome). These numbers are higher than those found in the genomes 
of G. gallus31 (~ 3% LINE and ~ 0.5% LTR) and C. japonica32 (~ 5.60% LINE, and ~ 0.60% LTR, Supplementary 
Table S7). The genomes of C. californica33 and C. virginianus both have a percentage of LINE (6.9% and 5.6% 
respectively) and LTR (5.6% and 1.73% respectively) more similar to that found in A. rufa. Given that trans-
posable elements were found to influence  color34,35 in insects, mammals, birds and other vertebrates, a future 
analysis of the genome should reveal if any genes involved in color determination are found within regions 
containing TEs.

Notably, 13% of the annotated genes are associated with metabolic functions, while 11% are involved in 
processing environmental information, including 9% dedicated to signal transduction tasks. The distribution 
of tRNA genes in the A. rufa genome indicates that 11% code for alanine-tRNA and 9% for serine-tRNA (Sup-
plementary data file S1, Supplementary Table S8). Our gene enrichment analysis suggests that A. rufa evolved a 
distinct set of regulatory genes and viral response proteins, likely shaped by species-specific infections and pres-
sures. These findings align with previous transcriptomic analyses that highlighted heightened immune responses 
in the A. rufa36.

A. rufa, C. japonica, and G. gallus (Phasianidae family) have a diploid genome with 78 chromosomes while 
C. virginianus or C. californica (Odontophoridae family) have 82 and 84, respectively. A structural genomic 
comparison between the three Phasianidae birds using chromosome-mapping approaches shows that chromo-
somal coverage and synteny is stronger between A. rufa and C. japonica than between A. rufa and G. gallus. Still, 
several chromosomal inversions (Supplementary Fig. S5, Supplementary Table S6) highlight that the divergence 
between A. rufa and C. japonica is not recent. For example, aligning scaffold 1 of A. rufa to chromosome 2 of C. 
japonica reveals an inversion that contains the centromeric region of the chromosome. Our sequence compari-
son between scaffold 4 of A. rufa and chromosome 4 of G. gallus reveals another centromeric inversion. This 
inversion had been previously reported  by4 based on cytogenetic analysis. Still, we note that inversions detected 
close to centromeres and telomeres may result from mis-assemblies, due to the higher DNA repeat content in 
those genomic regions. However, a more detailed analysis of those inverted regions shows that they were all 
associated to DNA mobile elements, rather than with tandem repeats (Supplementary Table S6). In addition we 
realigned the raw long reads to our assembly and this alignment is consistent with the assembly direction. As 
such, we strongly believe that those inversions are not an artefact of assembly. In fact, they are also consistent 
with similar massive inversions observed within independent populations of C. coturnix, another quail species, 
and associated to an expansion of phenotypic diversity between  populations37. These genomic rearrangements 
were reported to associate with adaptive divergence in other species of  animals38.These and other observations in 
our analysis emphasize the potential interest of future research focusing on A. rufa’s evolutionary chromosomal 
rearrangements. We are currently developing efforts to generate HiC data that would facilitate obtaining a map 
of physical interactions that would allow us to generate a chromosome level assembly. This would contribute to 
fully discard the possibility of the chromosomal rearrangements being assembly artifacts.

The genome assembly provided here is also of interest for phylogenetic studies. Phylogeny proposes an evolu-
tionary tree that aids our comprehension of species divergence over time, drawing upon evidence from paleon-
tology, biogeography, and  genetics39–41. The integration of both mitochondrial and nuclear markers significantly 
advanced the accuracy of those  studies42,43. Still, phylogenetic trees based on individual genes may be  biased44–46, 
due to factors such as incomplete lineage sorting, gene flow dynamics, and horizontal gene transfer. Coalescent-
based methods are often helpful in reducing that  bias47. Still, combining genome-based trees with estimates of 
divergence time gleaned from fossil records and genetic clocks has produced robust phylogenies that can be 
used to generate strong hypotheses about speciation  events48–50. We also combined fossil record-based diver-
gence times, concatenated gene-based trees, and coalescent-based trees to reconstruct the phylogeny of A. rufa 
in the Galliformes order. We found the phylogenetic tree topologies to be robust for the alternative approaches.
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Our tree suggests a divergence time around 75 Mya for the Galliformes clade, consistent with previous 
 estimates42,48,51. Notably, within the bird group and the order Galliformes, a variety of studies using a limited 
set of genetic markers proposed multiple and often coinciding clade formation  hypotheses51,52. Our results are 
consistent with those hypotheses. However, divergence times are slightly different because earlier efforts used a 
smaller number of genetic markers and a larger number of species. Still, those earlier estimates are well within 
the 95% credibility intervals for our divergence times. Leveraging future assemblies of A. rufa’s and other bird 
genomes to create genome wide alignments from which to create phylogenetic trees will likely enable a more 
accurate understanding of the evolutionary history of life.

Overall, our assembly and annotation provide a significant contribution towards a reference genome of the 
red-legged partridge, which will aid in developing genetics applied to phylogeny, zoology, demography, and 
ecology of the species. This near-chromosome assembly provides a foundation upon which to anchor future 
comparative genomics research between different A. rufa populations and across Phasianidae species. It is a 
valuable resource, potentially enabling the development of more effective strategies for management and con-
servation of A. rufa and wildlife.

Methods
Genome sequencing data
Total DNA was obtained from the muscle of sixty frozen A. rufa individuals (muscle from 30 wild birds obtained 
from hunter’s bags and 30 farm birds obtained from slaughtered partridges from a farm in Ciudad Real) for 
whole-genome sequencing on the NovaSeq6000 Illumina platform producing short paired-end reads with a read 
length of 151 bp as described  in2. Additionally, blood was collected from the brachial vein in the wing of two live 
individuals (one male and one female, no anesthetics were used) using a sterile syringe with a 20 G needle. We 
then extracted high molecular weight (HMW) DNA from that blood for library preparation with the genomic 
DNA sequencing kit of Oxford Nanopore technology (ONT) and then sequenced the libraries using a GridION 
platform. This had the purpose of facilitating an assembly of both sex chromosomes when HiC data becomes 
available. The study was conducted in full compliance with Spanish laws and regulations, including the licence 
of “Las Ensanchas” for sampling shot partridges. The protocol was approved by the Committee on the Ethics of 
Animal Experiments of the University of Lleida (Ref. 1998–2012/05). The ten essential ARIVE guidelines were 
followed in designing and reporting this study.

Processing sequence data
The Illumina sequencing yielded an average of 218 million raw reads per individual, with an average depth 
sequencing of 32X per sample. We assessed the quality of those reads using  FastQC53. The per-base quality 
scores were consistently high across all samples, and no adaptor content within the reads was found. Thus, it was 
determined that additional cleaning and adapter removal procedures were unnecessary.

We generated 2 million raw ultra-long reads of the Oxford Nanopore Technology (ONT), yielding 48 Gb with 
an average read length of 20.68 kb (Supplementary Table S9). We used Porechop V.0.2.454 with default parameters 
in order to scan for known Nanopore adapters and to trim them out of the long reads, ensuring a high-quality 
dataset, free of adaptor contamination. We assessed the quality of this dataset using NanoPlot v1.40.2 (part of 
the NanoPack software suite)55. We then used  Filtlong56 to split the reads into two subsets applying different 
criteria. For the first subset, we prioritized read length over average read quality, selecting a coverage depth of 
40X(–min_length 15 kb -t 40 Gb). For the second subset, we prioritized average read quality over read length, 
generating a coverage depth of 20X (–min_mean_q 12 -t 20 Gb). By using these two different subsets, we aimed 
at improving genome contiguity while also correcting structural errors, ensuring a more reliable and accurate 
analysis of the sequencing data.

Genome size estimation
We used a 21-mer-based approach in Jellyfish v.2.2.1057 to estimate k-mer histogram frequencies from the Illu-
mina paired-end sequencing data of each of the sixty individual birds. The output of Jellyfish was then used in 
 GenomeScope258 to estimate genome size and heterozygosity level for the genome of each bird. In addition to 
the genome profiling with genomescope2 on those short reads,  Smudgeplot58 was used to estimate the ploidy 
level using Nanopore long reads sequencing data.

Hybrid genome assembly
Supplementary Fig. S7 summarizes the pipeline we employed to create a de novo assembly for the genome of A. 
rufa, using a hybrid approach. The raw ONT long-reads were assembled de novo with  Flye59,  Canu60,  Wtdbg261, 
and NextDenovo v2.2.462. In order to select the best primary assembly for further procedures we compared 
the performance of the four assemblers. We used QUAST v5.2.063 to calculate the contiguity statistics of each 
assembly statistics and the aves_odb10 dataset of Benchmarking Universal Single-Copy Orthologs (BUSCO) 
v.5.4.328 to assessed their completeness. Based on these numbers, we chose the NextDenovo contig-level assembly 
for further improvement.

We combined long and short read information to improve the contig-level assembly. This hybrid approach 
comprised two main steps to enhance the assembly quality. First, we mapped the subset of long-read ONT with 
40X and min length size of 15 kb, to the contig-level assembly using  minimap264. This alignment was then input 
into RACON v.1.5.165 for one polishing iteration, improving the contiguity of the contig-level assembly by cor-
recting several structural assembly errors. Then, we aligned the short reads from the sixty A. rufa individuals 
to the RACON-improved assembly using BWA-mem2 v2.2.166. This alignment was the input for Polypolish 
v0.5.067, which we used to polish the RACON-improved draft and fix small SNPs and indels, leveraging the high 
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coverage of short-reads to generate a high-quality consensus assembly that represents the genetic diversity of A. 
rufa’s genome. We completed the scaffolding of the assembly using the REDUNDANS  pipeline68. We ran this 
pipeline using the "–non-reduction –nogapclosing" parameters to enhance genome scaffolding, using a subset 
of both long and short reads in combination from the original raw reads. We combined the subset of accurate 
long-read ONT with 20X sequencing depth and the short reads of the two animals with the highest genome 
coverage, aiming at improving scaffold accuracy. The final scaffold-level assembly served as the foundation for 
downstream genome annotation and comparative analysis.

Genome screening for contamination sequences
Before annotating the assembled genome, we conducted a thorough screening process to identify and eliminate 
any sequences that might be contaminants related to the assembled genome of A. rufa. To do this, we employed 
NCBI’s Foreign Contamination Screening (FCS)  tools69 FCS-adapter and FCS-GX. We used FCS-adapter to 
detect adaptors and vectors. We used FCS-GX to identify foreign DNA contamination sequences by aligning 
our assembly against the NCBI database of genomes. We ran each of these tools independently using default 
settings, except for the taxonomic identifier, which was set to be that of A. rufa (NCBI: txid 9079). This rigorous 
screening process helped ensure the integrity of our assembled genome data before proceeding with annotation.

Genome annotation
Annotation of transposable elements
We used EDTA v2.1.170 to annotate the DNA transposable elements (TEs) in our assembled genome. EDTA 
integrates a set of open-source programs for TE annotation based on homology and/or ab initio search methods. 
We used two independent data sets to increase the accuracy of EDTA annotation. First, we downloaded a curated 
library from the gold-standard database of repetitive sequences  msRepDB71. This library contained DNA trans-
posable sequences for six closely related bird species (Alectoris barbara, Alectoris philbyi, Alectoris melanocephala, 
Coturnix japonica, Meleagris gallopavo, and Gallus gallus; Supplementary Table S10). Then, the CDS sequences 
of G. gallus were downloaded from ENSEMBL release  10972, to remove gene-related sequences. In parallel, we 
used RepeatModeler V2.0.373 with default parameters for additional ab initio annotation of repetitive elements. 
Finally, we combined the results from EDTA and RepeatModeler to build a non-redundant library of repetitive 
elements using our in-house scripts. This custom TEs library was used as input to the RepeatMasker v4.1.421,74 
for soft masking of the A. rufa genome. We ran RepeatMasker using the following parameters: “-e ncbi -gff -s -a 
-inv -no_is -norna -xsmall -nolow -div 40”, against the  Dfam75 and RepBase update 18. We then used the soft-
masked genome for further annotation.

Divergence distribution of transposable element
We analyzed RepeatMasker’s alignment output file using the parseRM.pl script v5.8.2 available  at74. We deter-
mined the percentage of divergence from the consensus for each TE fragment, considering the elevated mutation 
rate at CpG sites and employing the Kimura 2-Parameter divergence metric. This divergence percentage serves 
as a measure of the age of the TE fragments, as older TE invasions accumulate more mutations. We further 
categorized TE fragments by age, organizing them into bins of 1 million years, based on the substitution rate 
calculated by parseRM.pl. We then plotted the distribution landscape of TE using a custom R script.

Gene structure annotation
We combined three strategies to annotate the protein coding genes in the soft-masked genome: homology-based, 
transcriptome-based, and ab initio predictions:

1- We ran Miniprot v.0.10-r22576 for homology-based gene prediction. A dataset comprising 3,044,546 protein 
sequences was generated. These sequences were obtained from the NCBI reference sequence of proteins 
(accessed on April 15, 2023). Specifically, we focused on the Aves NCBI:txid8782 lineage to ensure retrieval 
of only avian proteins. Additional details about this dataset can be found in Supplementary Table S11.

2- We ran PASApipeline v.2.5.377 to perform gene prediction based on the transcriptional evidence provided 
by the transcriptome assembly of A. rufa published in  201736.

3- For ab initio gene prediction, we ran BRAKER2 v.2.1.678, training it with the same dataset we used for Mini-
prot.

The annotation results of the three approaches were then combined using EVidenceModeler v.2.1.077 to 
produce a consensus gene set model of the assembled A.rufa genome. The pipeline is summarized in Supple-
mentary Fig. S8.

We then took the annotated proteome of A. rufa and BLASTed it against the annotated proteome of G. gallus, 
to identify all pairs of orthologs, filtering by e-values ≤  10–30, mutual best BLAST result, and mutual alignments 
over more than 80% of query and target proteins. Finally, we mapped each ortholog to its corresponding genome, 
to compare intron structures between orthologous genes. We repeated this comparison between A. rufa and C. 
japonica.

Non‑coding RNA gene annotation
We also annotated non-coding RNA genes (ncRNAs) in our genome assembly. We used tRNAscan-SE2 v.2.0.1179 
to identify transfer RNAs (tRNAs). Infernal v.1.1.480 was run to identify microRNAs (miRNAs), ribosomal RNAs 
(rRNAs) and small nuclear RNAs (snRNAs), based on the Rfam database (release 14.0)81.
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Functional annotation
We assigned functions to the predicted gene models combining various approaches. A standard e-value cutoff 
of 1e-6 was applied for sequence comparisons, unless otherwise specified. Initially, we utilized eggnog-mapper 
v.2.1.1082 against the eggNOG  database83 to assign Gene Ontology terms. Subsequently, Blastp v2.12.0 + was 
employed against SwissProt,  TrEMBL84, and NCBI  NR85 databases for homology-based functional annotation 
(all the public protein databases mentioned above were downloaded on April 15, 2023). Priority was given to 
matches with over 95% identity from SwissProt and TrEMBL, as annotation of proteins in these databases is more 
reliable because of manual curation. The resulting functional annotations were combined with InterProScan 
v5.64.-96.086. InterProScan identified protein domains, families, and superfamilies in annotated protein-coding 
genes using specified parameters “-m diamond –sensmode fast –go_evidence non-electronic”. KofamKOALA 
v1.3.087 assigned KEGG orthologs (KO)88 and pathways with an e-value cutoff of 1e-9. Functional annotations 
from the Uniprot database (minimum Blastp homologue identity match of 95%) were integrated into the final 
genome annotation file using the GAG tool v2.0.189.

Quality assessment of genome assembly and annotation
We used QUAST v5.2.0 to calculate correctness and contiguity metrics for the genome assembly. We used BUSCO 
against the aves_odb10 v2019-11-20 database to assess both the completeness of the assembly and of the annota-
tion of structurally predicted protein-coding genes.

Furthermore, to assess the accuracy of the genome, Merqury v1.390 was used. This involved comparing the 
original ONT raw reads to the final version of the genome assembly, which had been polished using high-quality 
data from 60 partridge samples. This analysis provided insights into the QV metric and the accuracy of the 
consensus sequence.

Quality assessment of the genome annotation using RNA sequencing
As part of evaluating the accuracy of gene model annotations, we downloaded a set of RNA sequencing tran-
scriptome from the spleen and the skin of the red-legged partridge (A. rufa) that are deposited in the NCBI 
SRA database (Supplementary Table S12). We employed the STAR aligner tool v2.7.10b91 for mapping these 
reads to the soft-masked assembly version. Subsequently, each sample underwent transcript-assembly guided 
using Stringtie v2.2.1 reference-guided assembler of transcripts. The spliced transcripts from all samples were 
combined using Stringtie into a one master list of transcripts, the output of Stringtie was retrieved in the GFF 
file format for suitable downstream analysis. Next, we used the GffCompare v2.12.6  tool92 to compare this list 
of annotated transcripts with respect to the final annotated gene set model. This comparison helped determine 
the number of new spliced transcripts that were not previously identified in our gene set, contributing to our 
assessment of gene annotation quality.

Comparison to the reference genomes of C. japonica and G. gallus
We used MUMMER v.493 to perform whole-genome alignment between our assembly and the fully sequenced 
genomes of C. japonica and G. gallus. The genome pairwise alignment results and synteny blocks of 10 kb were 
visualized with DOT-PLOT  viewer94 and Circos v.0.69-895.

Gene family analysis
We used the OrthoVenn3  pipeline96 to compare gene families between A. rufa, C. japonica, G. gallus, and G. pavo. 
In brief,  Orthofinder97 was used to compute the orthologs between the species of interest and to cluster gene 
families based on GO functional annotation categories. Additionally, we also used the pipeline to automatically 
conduct GO terms enrichment analysis by considering the evolutionary relationship between the four species.

Phylogenomic analysis and divergence time tree building
We performed phylogenetic analysis to infer the divergence time of A. rufa with respect to other birds with fully 
sequenced genomes within the Galliformes order, in a way that is similar to previous  reports14,98,99. We included 
all Galliformes reference genomes available at the NCBI RefSeq database at the time of submission. In addition to 
A. rufa, we included 8 genome protein sequences of Galliformes species, of which 7 species belong to Phasianidae 
family and one to Numididae family (Numida meleagris). We also included one genome from the Anseriformes 
order (Anas platyrhynchos), and another bird species for the Falconiformes order (Falco cherrug). As an outgroup 
we used Anolis carolinensis100 from the Reptilia class.

Genome assemblies for the birds and outgroup (Anolis carolinensis) from Reptilia were downloaded from 
the NCBI. Detailed information about those species can be found in Supplementary Table S3. We started by 
using the aves_odb10 database of the BUSCO  tool28 to identify shared single-copy genes in the twelve analyzed 
genomes. The aves_odb10 database contains 8338 genes. We used the custom Python script available at https:// 
github. com/ jamie mcg/ BUSCO_ phylo genom ics. git to extract the 8212 shared single-copy orthologs common to 
all species. We independently created multiple alignments for each of the orthologs common to all species, using 
 MUSCLE101. We concatenated the resulting multiple alignments to create a supermatrix alignment. To ensure 
alignment quality, we applied  trimAI102 and removed unreliable aligned sites and gaps.

Subsequently, a phylogenetic tree was constructed using IQTREE  v103, incorporating 1000 bootstrap repli-
cates. The best model for tree construction was determined using the ModelFinder  package99 from the IQTREE 
suite. Then we used ASTRAL v5.7.3104 to handle the possibility of incomplete lineage sorting that might impact 
gene-based trees. Finally, to estimate the divergence time of A. rufa in relation to the other birds, we used the 
MCMCtree tool from the PAML  package105. MCMCtree used the phylogenetic tree generated by IQTREE and the 

https://github.com/jamiemcg/BUSCO_phylogenomics.git
https://github.com/jamiemcg/BUSCO_phylogenomics.git
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alignment file to achieve reliable divergence time estimation, minimizing potential outliers. Three fossil calibra-
tion times from the  TimeTree5106 were employed for divergence estimation: G. gallus–C. japonica (≈ 32.9–46.1 
Mya), Numida-Mallards (≈ 72.5–85.4 Mya), and the divergence time between birds and reptiles (≈300–250 
Mya)107. We ran MCMCTREE on protein-coding sequences, sampling 20,000 times with a sampling frequency 
of 10, following a burn-in of 2000 iterations. We used default parameter for the other settings.

Supplementary Table S13 summarizes all bioinformatics pipelines, tools versions, and settings used during 
the genome assembly and annotation process and other related analysis used in this work.

Ethics approval and consent to participate
The study was conducted in full compliance with Spanish laws and regulations, including the licence of “Las 
Ensanchas” for sampling shot partridges. The protocol was approved by the Committee on the Ethics of Animal 
Experiments of the University of Lleida (Ref. 1998–2012/05). The ten essential ARIVE guidelines were followed 
in designing and reporting this study.

Data availability
Data Availability This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the 
accession JBCGZB000000000. The version described in this paper is version JBCGZB010000000. The Nanopore 
raw read data are available via ENA (Bioproject accession PRJEB67643, Biosample: ERS16499794, ERS16499793, 
ERS16499792, ERS16499791, ERS16499790). The sixty Illumina sample of the partridge sequencing raw reads 
used for polishing have been deposited in the NCBI database under BioProject PRJNA824288. The high con-
fidence gene annotation dataset is available at https:// figsh are. com/ artic les/ datas et/ Filte red_ gene_ set_ model_ 
of_ the_i_ Alect oris_ rufa_i_ genome/ 25982 689. The complete annotation dataset is available as supplementary 
material. The source code and relevant data files used to generate each figure in this manuscript are available on 
the GitHub repository page of the Systems Biology and Statistical Methods Group at https:// github. com/ BioMo 
delLab/ A. rufa_ genome. git This work was performed under the scope of the Catalan Biogenome Project (CBP).

Code availability
The source code and relevant data files used to generate each figure in this manuscript are available on the GitHub 
repository page of the Systems Biology and Statistical Methods Group at https:// github. com/ BioMo delLab/ A. 
rufa_ genome. git
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