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Computation of biological 
conductance with Liouville 
quantum master equation
Eszter Papp * & Gábor Vattay 

Recent experiments have revealed that single proteins can display high conductivity, which stays 
finite for low temperatures, decays slowly with distance, and exhibits a rich spatial structure featuring 
highly conducting and strongly insulating domains. Here, we intruduce a new formula by combining 
the density matrix of the Liouville-Master Equation simulating quantum transport in nanoscale 
devices, and the phenomenological model of electronic conductance through molecules, that can 
account for the observed distance- and temperature dependence of conductance in proteins. We 
demonstrate its efficacy on experimentally highly conductive extracellular cytochrome nanowires, 
which are good candidates to illustrate our new approach by calculating and visualizing their 
electronic wiring, given the interest in the arrangement of their conducting and insulating parts. As 
proteins and protein nanowires exhibit significant potential for diverse applications, including energy 
production and sensing, our computational technique can accelerate the design of nano-bioelectronic 
devices.

Protein electron transport measurements exhibit unique properties, making them excellent subjects for in-depth 
study and  exploration1,2. When electrodes are attached to protein structures, the measured conductance is sur-
prisingly high, reaching nanoSiemens even over several nanometers of  distance3–5. It is also noteworthy that the 
conductance remains stable even when the temperature changes from tens of Kelvins to ambient  temperatures6–8 
and does not show significant decay with increasing protein size between the  electrodes4,5,8. In bioelectronic 
measurements, where metallic contacts are chemically bound to molecules, molecular junctions are formed. The 
Landauer-Büttiker formula is a theoretical tool that accurately describes coherent elastic quantum transport, 
expressing the conductance in terms of the scattering matrix elements between metallic  leads9. However, this 
formula is not applicable at high temperatures, and electron transfer is typically addressed through the semiclas-
sical Marcus  theory10. It is important to note that both theories are only limiting cases, and electron-vibrational 
(electron-phonon) interactions should be treated with care in the intermediate regime.

Here, we introduce a new, computationally accessible phenomenological approach that enables us to deter-
mine the conductance between atomic orbitals even in the intermediate temperature ranges and can pinpoint 
areas of high conductivity and insulation in any protein. We build on previous  results11,12, where a quantum mas-
ter equation has been used to calculate the electron transfer rate. The novelty is that using the approach developed 
in Refs.13,14 for the electric current in molecules, we derive a new formula connecting the master equation and the 
conductance. We then use the Liouville master equation introduced by Gebauer and  Car15–17 for the reduced den-
sity matrix of electrons to describe electron transport in nanoscale systems. Its main advantage compared to other 
quantum master equations, such as the Lindblad and the Redfield  equations18, is that in the absence of external 
perturbations, it drives the system toward the correct Fermi-Dirac distribution F(E,µ) = 1/(1+ e(E−µ)/kT ) . 
This feature makes the Liouville master equation a more appropriate starting point for calculating conductance 
in molecules. The result is a formula where the conductance is given in terms of the matrix elements of the single 
electron Hamiltonian, the couplings to the contacts, and the spectral density of the phonon bath.

Following Refs.11,12, the reduced density matrix ρnm of an electron in a molecule can be described with the 
quantum master equation, which includes the Hamiltonian Hnm of the molecule in atomic orbital site basis, the 
escape rate Ŵm/� from the site m, the external current Jm at the site m and the operator Rnm(ρ) , which is the 
phenomenological descriptor of the interaction with the phonon bath. This approach neglects cotunneling and 
is valid in the linear-response regime. The site-based quantum master equation can be transformed into the 
energy representation

OPEN

Department of Physics of Complex Systems, Eötvös Loránd University, Egyetem tér 1-3., Budapest 1053, Hungary. 
*email: eszter.papp@ttk.elte.hu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-70348-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19571  | https://doi.org/10.1038/s41598-024-70348-z

www.nature.com/scientificreports/

with transformed matrix elements in the energy basis ρij =
∑

nm � i
nρnm�

j
m , Ŵij =

∑

n �
i
nŴn�

j
n , 

J ij =
∑

n �
i
nJn�

j
n and Rij =

∑

nm � i
n�

j
mRnm(ρ) , where � i

n and Ei are the eigenfunctions and the egienvalues 
Ei�

i
n =

∑

m Hnm�
i
m of the Hamiltonian. Please, see Supplementary Information S1 for details. We assume 

that the Hamiltonian is an N × N real symmetric matrix with real eigenvalues and eigenvectors, where N is the 
number of atomic orbitals. The operator R(ρ) describes the interaction with the environment and ensures the 
correct equilibrium properties of the electron distribution. In the framework of the single electron picture, the 
following Liouville master equation has been  introduced15,19 to describe electron transport in nanoscale systems

where γ ij are the transition rates between the energy levels. This equation can account for the exclusion princi-
ple, and in the absence of external currents and escape, its equilibrium solution is the Fermi-Dirac distribution 
ρ
ij
eq = δijF(Ei ,µ) , where µ is the chemical potential of the system. Transition rates between the electron levels are

where ωij = (Ei − Ej)/� is the transition frequency and γ (ω) is the spectral density of the phonon bath, that 
obeys the Boltzmann-type detailed balance equation γ (ω)/γ (−ω) = e−�ω/kT . The spectral density of proteins 
can be modeled effectively by the Ohmic oscillator bath with  cutoff20 γ (ω) = η�ωe−|ω|/ωc/(e�ω/kT − 1). The con-
crete form and parameters will not be used in this paper. For reference, the typical cutoff energy is �ωc ≈ 0.0185 
eV, and the parameter η = 2πER/�ωc ≈ 1.46 where ER is the reorganization  energy20. Note that in order to 
maintain the validity of the Master equation under conditions of weak coupling between the electrons and pho-
nons, the couplings γ ij should be small in comparison to the energies of the electrons and phonons. Conversely, 
the couplings Ŵij describe the electrons leaking from the molecule to the electrodes and are not subject to the 
same limitations.

Conductance
One can couple contacts to two atomic orbital sites called left (L) and right (R) and calculate the conductance 
between them. For the derivation, please see the Supplementary Information S2; here, we summarize only the 
main steps. We switch on a small voltage difference U between the contacts with escape rates ŴL/� and ŴR/� , 
and their chemical potential shifts slightly to µL/R = µ± eU/2 . According to the theory developed in Refs.13,14, 
the occupancy of energy Ei in the left and right contacts changes to

where Di(µ) =
∫

dEf (E,µ)di(E) , and f (E,µ) = ∂µF(E,µ) is the derivative of the Fermi-Dirac distribution. 
The density of states di(E) = 1
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R)[D

j(µ)+ Di(µ)] that should be coun-
tered by a slight change in the density matrix δρij = ρij − ρ

ij
eq of the molecule to achieve a stationary state. In 

leading order, the change of the stationary density matrix satisfies the equation 0 = 1
�

∑

pq L
ijpqδρpq + J ij , where 

the operator L is the evolution operator of the density matrix, and the Liouville term is linearized around the 
equilibrium Fermi-Dirac distribution. In the expression of the linearized operator,

new transition rates appear, which are related to the old ones by γ̃ ij = γ ij(1− F(Ei ,µ))/(1− F(Ej ,µ) . Finally, the 
conductance is given in terms of the inverse of the linearized evolution operator, the escape rates of the contacts, 
and the molecular orbitals at the contact points

which is a new formula and our main theoretical result here. An earlier version of this formula with more 
restrictive approximations has been introduced in Ref.21 and has successfully been applied to understand the 
temperature dependence of the current flowing through protein monolayer  junctions22.

Conductance calculations
Inverting the N2 × N2 dimensional matrix of the evolution operator for macromolecules like extracellular 
cytochrome nanowires with N ∼ 104 atomic orbitals is an elusive task. The eigendecomposition of the inverse 
of the matrix is dominated by the reciprocal of its smallest eigenvalue, and in Ref.11, it has been shown that in 
donor-bridge-acceptor molecular systems, it is a good approximation. The underlying physical assumption is 
that the relaxation to equilibrium is faster than the escape of the electrons from the system. In Supplementary 
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Information S3, we calculated the conductance in this approximation. The result consists of three terms describ-
ing three distinct mechanisms of the total conductance G = GLB + GT + GM , where

The first term GLB is temperature independent and gives the Landauer-Büttiker formula, where the transmission 
between the left and right contacts T =

∑

k ŴLŴR|�
k
L |

2|�k
R|

2/((µ− Ek)
2 + (Ŵk/2)2) is in the Breit-Wigner 

 approximation9. It describes coherent elastic processes. This term is suppressed by tunneling in protein structures 
since the product is exponentially small |�k

L |
2|�k

R|
2 ∼ e−lLR/lT , where lLR is the distance of contacts and lT ∼ 1 Å 

is the tunneling length. The second term GT describes thermal excitation-based conductance, where the terms 
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2/4kT cosh
2((µ− Ek)/2kT) are proportional with the probability for an electron to get 

from contact L or R excited to one of the levels of the molecule. The ratio ZL/R/(ZL + ZR) is the equilibrium 
probability that an electron from the molecule ends up in contact L or R. The combination ZLZR/(ZL + ZR) is the 
probability that an electron from contact L gets via thermal excitation into the molecule and then from the mol-
ecule to contact R. The third term, GM , is new and describes the mixed process when the electron tunnels from 
the contact into the molecule described by the transmission TL/R =

∑

k Ŵ
2
L/R|�

k
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and ends up in the other contact via a thermal process.
The conductance depends on the position of the contacts and the strengths ŴL and ŴR . High conductance is 

achieved potentially when the contacts are on sites with a high T or Z value. We can visualize the structure by 
introducing the spatially continuous versions of T and Z

where �k(r) are the molecular orbitals in space, and the ŴL/R dependence has been removed in order to make 
them independent of the coupling strengths and the position of a second electrode. Highly conducting parts of 
the molecule are those where Z(r) and T (r) take on high values.

Extracellular cytochrome nanowires
Certain bacterial species can synthesize conductive protein filaments, also known as bacterial nanowires, to 
facilitate electron export into extracellular environments for respiration purposes and interspecies electron 
exchange. One of the extensively studied bacteria is Geobacter sulfurreducens, a soil bacterium that produces 
various types of extracellular cytochrome nanowires (ECNs)23–26 that are composed of cytochrome monomers 
with either 4 (OmcE), 6 (OmcS), or 8 (OmcZ) hemes placed inside the protein, allowing the bacteria to transport 
electrons over micrometers. OmcE plays a crucial role in extracellular respiration and is also involved in extracel-
lular  conductivity26. OmcS is essential at the early stages of biofilm growth, direct electron transfer between co-
cultures, and Fe(III) oxide  reduction24. OmcZ nanowires can form a thick conductive biofilm network, possibly 
because of the branched heme arrangement that leads to one solvent-exposed heme per  subunit27.

A very recent discovery has brought to light the existence of ECNs in two species of hyperthermophilic 
archaea, namely Pyrobaculum calidifontis (PcECN) and Archaeoglobus veneficus (AvECN)28. These ECNs also 
serve as mediators for long-range extracellular electron transfer. Although the subunits of ECNs don’t show 
similarities in their folds, the hemes’ arrangement is common, indicating an evolutionarily optimized  structure28. 
It was previously thought that the metal ions were responsible for the long-range electron transport in heme-
containing proteins, but recent research indicates that this process is actually dictated by the porphyrin  rings29. 
An experimental study combined with density functional theory calculations on a gold-small tetraheme protein-
gold junction also reached the same  conclusion30. While cryo-electron microscopy has enabled the determination 
of atomic-level structures of these filaments, offering new avenues for theoretical and computational studies, 
the layout of the conducting and insulating components of ECNs has yet to be determined and visualized. 
Considering the large size of ECNs, numerical studies that involve entire molecules or oligomers are quite chal-
lenging. However, due to their diverse  applications31–35 and similar structure, ECNs are excellent candidates for 
investigating the underlying mechanism of electron transport across long biological nanowires. Additionally, 
measurements display a thousand-fold higher conductivity in OmcZ nanowires compared to OmcS  ones25, 
offering a valuable opportunity to assess how well our calculations capture this significant relative difference.

Employing Eqs. (11) and (11), we can visualize the highly conductive regions within the five ECNs intro-
duced here. To represent these regions, we constructed a 3D rectangular grid with 1.5 Å resolution for each 
ECN structure and computed the values of the functions Z(r) and T (r) on the grid points at room temperature 

(7)GLB =
2e2

h
T ,

(8)GT =
2e2

�

ZLZR

ZL + ZR
,

(9)GM =
e2

h

[

ZL

ZL + ZR
TR +

ZR

ZL + ZR
TL

]

.

(10)Z(r) =
∑

k

|�k(r)|2

cosh
2((µ− Ek)/2kT )

,

(11)T (r) =
∑

k

|�k(r)|4

(µ− Ek)2
,



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19571  | https://doi.org/10.1038/s41598-024-70348-z

www.nature.com/scientificreports/

kT = 25meV  . (See details of the calculations in Methods.) Subsequently, we selected all non-zero values for 
each function and determined the highest five percent for the function Z(r) and the highest twenty percent 
for the function T (r) . These percentiles serve as the isovalues for the isosurfaces presented in Figs. 1 and 2e–h.

Consistent resemblances in both Z(r) and T (r) for all ECNs supports the existence of a common mechanism 
governing long-range electron  transport28. Z(r) and T (r) have similar structures, with the most conductive parts 
located inside the proteins, spanning across the porphyrin rings, in agreement with previous studies of heme-
containing  proteins29,30. In the case of PcECN (Fig. 1c,f), one can also observe highly conductive regions on the 
intra-subunit disulfide bonds. The functionality of these additional high-conducting areas is an open question.

Our model also allows us to calculate the conductance between any two atomic orbitals of the ECNs, facilitat-
ing a comparison of the conductance values for OmcZ and OmcS. Utilizing Eqs. (7–9), we computed each term 
( GLB , GT and GM ) of the total conductance G between 100, 000 pairs of randomly selected atomic orbitals for both 
OmcZ and OmcS at T = 300 K with parameters ŴL = ŴR = 0.1 eV. In addition, we only considered orbitals that 
are 30–35 Å apart, and do not belong to hydrogen atoms. We show the distributions of the calculated values of 
G, GLB , GT and GM for both OmcS and OmcZ in Fig. 2a–d. Notably, all of the distributions are lognormal-like.

While a detailed quantitative comparison between experimentally measured and computed values is not 
within the scope of this paper, our calculations reveal several orders of magnitude differences in the conduct-
ance of OmcZ and OmcS, consistent with the experimental observation of significantly higher values for OmcZ 
compared to OmcS. The potential explanation for this difference in the level of structure lies in the distinct 
heme-heme interactions due to the closer stacking of the hemes in  OmcZ25. Given the significant reliance of our 
calculations on individual structures, we arrive at a similar conclusion, that these structural differences are the 
primary contributors to the observed disparity.

Distance- and temperature dependence
Using Eqs. (7–9), one can study the temperature and distance dependencies of conductance by evaluating it 
between atomic orbitals positioned at specified distances from each other and at varying temperatures. (See 
details of the calculations in Methods.) To investigate the distance dependence, the conductance was computed 
between 400, 000 randomly selected pairs of atomic orbitals belonging to the hemes, which are the most highly 
conducting parts of the ECNs. The calculation excluded atomic orbitals associated with hydrogen atoms. Then, 
the mean of the logarithmic conductance values was calculated for each specific distance with a tolerance of ± 0.1 
Å. The results are presented in Fig. 3a–d. As Fig. 3a shows, the total conductance G fluctuates in the 0.1− 1 nS 
range without a clear decreasing trend. A similar pattern is also observed for GT and GM fluctuating in various 
ranges. This reflects the fact that the ratio ZL/R/(ZL + ZR) associated with the thermal exit probability does 
not depend on the distance on average. The GLB conductance, which is associated with pure tunneling, decays 

Figure 1.  Visualization of the functions Z(r) (a–c) and T (r) (d–f). Highly conductive regions of the molecules 
are located where both of these functions have high values. On (a–c), the orange wireframe meshes show the 
regions where Z(r) takes on high values in AvECN (PDB ID: 8E5G), OmcE (PDB ID: 7TFS) and PcECN (PDB 
ID: 8E5F). (d–f) shows the same ECNs as on the left side. The green wireframe meshes indicate the regions 
where T (r) takes on high values. Lines represent the amino acids, and the heme molecules are depicted using 
the ball-stick model. Hydrogen atoms are omitted for simplicity.

https://www.rcsb.org/structure/8E5G
https://www.rcsb.org/structure/7TFS
https://www.rcsb.org/structure/8E5F
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exponentially with the distance d between the two atomic orbitals GLB ∝ exp(−βd) , where the distance decay 
constant β ≈ 0.25− 0.66 Å −1 . In Ref.36, other multiheme cytochrome proteins were investigated, demonstrating 
a similar result with β = 0.2 Å −1.

Concerning the temperature dependence, a set of 10, 000 pairs of randomly selected atomic orbitals of 
atoms from the hemes, positioned at distances within the range of 30–35 Å, was considered. Atomic orbitals 
belonging to hydrogen atoms were excluded from this analysis. Conductance values between these pairs were 
computed across a temperature range of 10–360 K. The mean of the obtained logarithmic values was calculated 
for each temperature as shown in Fig. 3e–h. At high temperatures, the transport is clearly thermally activated, 
and the term GT dominates the conductance for all ECNs presented here at high temperatures. Interestingly, the 
dominance shifts to the mixed term GM in the case of OmcS and OmcE below temperatures ≈ 42 K and ≈ 67 K, 
respectively. As expected, the Landauer-Büttiker term GLB is temperature independent. The mixed tunneling-
thermal term GM falls off with temperature considerably slower than GT and reaches a finite plateau value at 
very low temperatures. This is in line with experimental results for several other  proteins6–8,22,37,38, whereupon 
cooling, the current through a protein layer exponentially decreases at high temperatures and then reaches a 
constant value at low temperatures.

In summary, through the integration of the Liouville-Master Equation’s density matrix and a phenomenologi-
cal model of electronic conductance in molecular systems, we successfully computed and visually represented 
the conductance attributes of ECNs. Our findings reveal that ECNs resemble insulated cables, characterized by a 
highly conductive inner core spanning the chain of porphyrin rings within the proteins. This observation aligns 

Figure 2.  Distributions of the logarithm of the conductance G as defined by Eqs. (7–9) for OmcZ and OmcS, 
calculated with ŴR = ŴL = 0.1 eV  and T = 300K (a–d), and visualization of the functions Z(r) (e, f) and T (r) 
(g, h) for OmcZ (PDB ID: 7LQ5) and OmcS (PDB ID: 6EF8). The total conductance G and all its terms follow a 
lognormal-like distribution. For both structures, the Landauer-Büttiker term GLB of the conductance (b) is the 
smallest, the dominating term is the thermal excitation-based conductance GT (c), and the last term GM (d) that 
describes a mixed process, is in between the two. There are several orders of magnitude differences between the 
means of the total conductance G distributions, aligning with experimental observations that show significantly 
higher values for OmcZ compared to  OmcS25. On (e, f), the orange wireframe meshes show the regions where 
Z(r) takes on high values in OmcZ and OmcS. On (g, h), the green wireframe meshes show the regions where 
T (r) takes on high values in OmcZ and OmcS, respectively. Highly conductive regions are located where both 
functions have high values. Lines represent the amino acids, and the heme molecules are depicted using the ball-
stick model. Hydrogen atoms are omitted for simplicity.

https://www.rcsb.org/structure/7LQ5
https://www.rcsb.org/structure/6ef8
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with recent experimental findings emphasizing the significance of porphyrin rings within these  filaments29 and 
lends support to the proposition that ECN structures have undergone evolutionary optimization for an optimal 
heme  arrangement28. We explored the conductance’s and its components’ distance and temperature dependence, 
finding that the conductance of the studied ECNs falls within the range of 0.1–1 nS with fluctuations but lacks a 
clear decrease with distance. However, the Landauer-Büttiker term of the total conductance exhibits exponen-
tial decay with a decay length of 1/β ≈ 1.5–4 Å, resembling the decay length of 1/β = 5 Å observed in other 
multiheme  cytochromes36. Moreover, the simulated temperature-dependence of the conductance in the studied 
ECNs is consistent with the typical behavior displayed by other  proteins6–8,22,37,38.

Our newly developed formula possesses the capability to model the conductance of diverse proteins, thereby 
contributing significantly to the field of nano-bioelectronics. Notably, this formulation incorporates the electron-
phonon interaction in the intermediate temperature range, addressing a critical aspect given the non-isolated 
nature of proteins. This approach enhances the applicability and relevance of our results in advancing the under-
standing and application of protein electron transport in varied bioelectronic contexts.

Methods
Structure preparation
First, we downloaded the cryo-EM structures from the Protein Data Bank (PDB) with PDB IDs 7TFS, 6EF8, 
7LQ5, 8E5G and 8E5F for  OmcE26,  OmcS24,  OmcZ39,  AvECN28 and  PcECN28, respectively. We created dimers 
and a trimer from the biological assemblies in the case of AvECN. In Maestro (Schrödinger Release 2023-4: 
Maestro, Schrödinger, LLC, New York, NY, 2023., https:// www. schro dinger. com/ platf orm/ produ cts/ maest ro/), 
we connected the appropriate cysteines to the hemes and conducted a force-field minimization procedure only 
on the side chains of those cysteines to optimize the spatial arrangement of the atoms. Then, C-terminal oxygen 
atoms and missing hydrogen atoms were added to the protein structures.

Quantum chemistry calculations
After preparing the structures, the Hamiltonian and overlap matrices were calculated. Due to the large size of the 
proteins, we opted for the Extended Hückel method instead of the more common DFT calculations, which can 
consider the redox state of each cofactor. Nevertheless, we took the redox states into account by considering the 
total charge of the protein. The YAeHMOP software (version 3.0.1, https:// yaehm op. sourc eforge. net) was used 
for performing the extended Hückel calculations on the molecules, and it requires the positions of the atoms as 
an input. In the semi-empirical extended Hückel method, the total valence electron wavefunction is described 
as the product of one-electron wavefunctions:

where k and n denote the molecular orbital and the number of the electron, respectively. Each molecular orbital 
is constructed by Linear Combination of Atomic Orbitals (LCAO):

(12)�valence = �1(1)�2(2)�3(3) · · ·�k(n),

Figure 3.  Distance- and temperature dependence of the conductance calculated between atomic orbitals 
of the ECNs, with coupling strengths ŴL = ŴR = 0.1 eV . (a–d) shows the distance dependence of the total 
conductance G, the Landauer-Büttiker term GLB , the thermal term GT and the mixed term GM . On (e–h), the 
temperature dependence of the conductance is presented. On (b), the two black lines serve as visual guides and 
follow the form exp(−βd) , where d is the distance between the two atomic orbitals and 1/β is the decay length 
of the conductance.

https://www.rcsb.org/structure/7TFS
https://www.rcsb.org/structure/6ef8
https://www.rcsb.org/structure/7LQ5
https://www.rcsb.org/structure/8E5G
https://www.rcsb.org/structure/8E5F
https://www.schrodinger.com/platform/products/maestro/
https://yaehmop.sourceforge.net/
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here ϕr -s are the valence electrons’ Slater-type atomic orbitals, that form the basis set. The Wk
r  coefficient is the 

weight of the rth atomic orbital in the kth molecular orbital. To calculate the coefficients and the spectrum of a 
molecule, one needs to solve the following generalized eigenvalue problem:

where S is the overlap matrix, H is the Hamiltonian  matrix40, E is the diagonal matrix of molecular orbital energies 
(energy eigenvalues), and W is the matrix of the eigenvectors containing the linear combination coefficients used 
in the LCAO method. The Hamiltonian and overlap matrices are the outputs of YAeHMOP, and the eigenvalue 
problem was solved using the SciPy  package41 in Python. The Highest Occupied Molecular Orbital (HOMO) 
and the Lowest Unoccupied Molecular Orbital (LUMO) for all structures have been determined automatically 
based on the total charge of the molecule calculated by the Maestro software (Schrödinger Release 2023-4: Maestro, 
Schrödinger, LLC, New York, NY, 2023., https:// www. schro dinger. com/ platf orm/ produ cts/ maest ro/) at neutral 
pH. In the case of the OmcS dimer, the HOMO level has been positioned two levels above the automatic value 
due to the presence of two redundant hydrogen atoms within the structure.

Visualization
To visualize the coupling strength-independent functions Z(r) and T (r) , it is sufficient to consider molecular 
orbitals only within 5 kT from HOMO and LUMO. Molecular orbitals were calculated with the presented LCAO 
method in Python on grids with 1.5 Å resolution. We used the gridData module of the MDAnalysis  package42 
in Python to write input files for the Visual Molecular Dynamics (VMD) molecular visualization  program43,44.

Conductance calculation
To calculate the conductance G, we performed a Löwdin orthogonalization H̃ = S−1/2HS−1/2 first. Subsequently, 
we computed the conductance between any pair of atomic orbitals in the Löwdin basis using Eqs. (7–9), where 
�k

L/R is the kth molecular orbital at the Löwdin atomic orbital L/R. To enhance precision, we considered a larger 
set of molecular orbitals than utilized in the visualization process, specifically ±20 energy levels above and below 
the HOMO and LUMO. Molecular orbitals beyond this range have negligible influence on T, TL/R , and ZL/R.

A code workflow chart is provided in the Supplementary Information S4.

Data availability
The data generated and analyzed during the current study are available from the corresponding author upon 
request.

Code availability
The codes that support the results within this paper are available from the corresponding author upon request.

Received: 13 March 2024; Accepted: 14 August 2024

References
 1. Amdursky, N. et al. Electronic transport via proteins. Adv. Mater. 26, 7142–7161 (2014).
 2. Bostick, C. D. et al. Protein bioelectronics: A review of what we do and do not know. Rep. Prog. Phys. 81, 026601 (2018).
 3. Zhang, B. et al. Observation of giant conductance fluctuations in a protein. Nano Futures 1, 035002 (2017).
 4. Zhang, B. & Lindsay, S. Electronic decay length in a protein molecule. Nano Lett. 19, 4017–4022 (2019).
 5. Zhang, B. et al. Role of contacts in long-range protein conductance. Proc. Natl. Acad. Sci. 116, 5886–5891 (2019).
 6. Kayser, B. et al. Solid-state electron transport via the protein azurin is temperature-independent down to 4 k. J. Phys. Chem. Lett. 

11, 144–151 (2019).
 7. Sepunaru, L., Pecht, I., Sheves, M. & Cahen, D. Solid-state electron transport across azurin: From a temperature-independent to 

a temperature-activated mechanism. J. Am. Chem. Soc. 133, 2421–2423 (2011).
 8. Bera, S. et al. Near-temperature-independent electron transport well beyond expected quantum tunneling range via bacteriorho-

dopsin multilayers. J. Am. Chem. Soc. 145, 24820–24835 (2023).
 9. Lambert, C. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 44, 

875–888 (2015).
 10. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. i. J. Chem. Phys. 24, 966–978 (1956).
 11. Segal, D., Nitzan, A., Davis, W. B., Wasielewski, M. R. & Ratner, M. A. Electron transfer rates in bridged molecular systems 2. A 

steady-state analysis of coherent tunneling and thermal transitions. J. Phys. Chem. B 104, 3817–3829 (2000).
 12. Davis, W. B., Wasielewski, M. R., Ratner, M. A., Mujica, V. & Nitzan, A. Electron transfer rates in bridged molecular systems: A 

phenomenological approach to relaxation. J. Phys. Chem. A 101, 6158–6164 (1997).
 13. Zahid, F., Paulsson, M. & Datta, S. Electrical conduction through molecules, in Advanced Semiconductor and Organic Nano-

Techniques, 1–41 (Elsevier, 2003).
 14. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge University Press, 1997).
 15. Gebauer, R. & Car, R. Kinetic theory of quantum transport at the nanoscale. Phys. Rev. B 70, 125324 (2004).
 16. Fischetti, M. Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59, 4901 

(1999).
 17. Gebauer, R. & Car, R. Current in open quantum systems. Phys. Rev. Lett. 93, 160404 (2004).
 18. Breuer, H.-P. et al. The Theory of Open Quantum Systems (Oxford University Press on Demand, 2002).
 19. Gebauer, R., Burke, K. & Car, R. Kohn-sham master equation approach to transport through single molecules, in Time-Dependent 

Density Functional Theory, 463–477 (Springer, 2006).

(13)�k =

N
∑

r=1

Wk
r ϕr . k = 1, 2, 3, . . .N .

(14)HW = ESW ,

https://www.schrodinger.com/platform/products/maestro/


8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19571  | https://doi.org/10.1038/s41598-024-70348-z

www.nature.com/scientificreports/

 20. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. 
J. Chem. Phys. 129, 11B603 (2008).

 21. Papp, E., Jelenfi, D. P., Veszeli, M. T. & Vattay, G. A landauer formula for bioelectronic applications. Biomolecules 9, 599 (2019).
 22. Papp, E. et al. Experimental data confirm carrier-cascade model for solid-state conductance across proteins. J. Phys. Chem. B 127, 

1728–1734 (2023).
 23. Filman, D. J. et al. Cryo-em reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. 

Commun. Biol. 2, 219 (2019).
 24. Wang, F. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177, 361–369 

(2019).
 25. Yalcin, S. E. et al. Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nat. Chem. Biol. 16, 

1136–1142 (2020).
 26. Wang, F. et al. Cryo-em structure of an extracellular geobacter omce cytochrome filament reveals tetrahaem packing. Nat. Microbiol. 

7, 1291–1300 (2022).
 27. Wang, F. et al. Structure of Geobacter OmcZ filaments suggests extracellular cytochrome polymers evolved independently multiple 

times. eLife 11, e81551. https:// doi. org/ 10. 7554/ eLife. 81551 (2022).
 28. Baquero, D. P. et al. Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell 186(13), 2853–2864 (2023).
 29. Agam, Y., Nandi, R., Kaushansky, A., Peskin, U. & Amdursky, N. The porphyrin ring rather than the metal ion dictates long-range 

electron transport across proteins suggesting coherence-assisted mechanism. Proc. Natl. Acad. Sci. 117, 32260–32266 (2020).
 30. Futera, Z. et al. Coherent electron transport across a 3 nm bioelectronic junction made of multi-heme proteins. J. Phys. Chem. 

Lett. 11, 9766–9774 (2020).
 31. Malvankar, N. S. & Lovley, D. R. Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol. 27, 88–95 (2014).
 32. Liu, X. et al. Power generation from ambient humidity using protein nanowires. Nature 578, 550–554 (2020).
 33. Bond, D. R. & Lovley, D. R. Electricity production by geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 

69, 1548–1555 (2003).
 34. Smith, A. F. et al. Bioelectronic protein nanowire sensors for ammonia detection. Nano Res. 13, 1479–1484 (2020).
 35. Liu, X. et al. Multifunctional protein nanowire humidity sensors for green wearable electronics. Adv. Electron. Mater. 6, 2000721 

(2020).
 36. Futera, Z., Wu, X. & Blumberger, J. Tunneling-to-hopping transition in multiheme cytochrome bioelectronic junctions. J. Phys. 

Chem. Lett. 14, 445–452 (2023).
 37. Garg, K. et al. Interface electrostatics dictates the electron transport via bioelectronic junctions. ACS Appl. Mater. Interfaces 10, 

41599–41607 (2018).
 38. Fereiro, J. A. et al. A solid-state protein junction serves as a bias-induced current switch. Angew. Chem. 131, 11978–11985 (2019).
 39. Gu, Y. et al. Structure of geobacter cytochrome OmcZ identifies mechanism of nanowire assembly and conductivity. Nat. Microbiol. 

8, 284–298 (2023).
 40. Lowe, J. P. & Peterson, K. Quantum Chemistry (Elsevier, 2011).
 41. Virtanen, P. et al. Fundamental algorithms for scientific computing in python. SciPy 1.0.. Nat. Methods 17, 261–272. https:// doi. 

org/ 10. 1038/ s41592- 019- 0686-2 (2020).
 42. Beckstein, O. et al. Mdanalysis/griddataformats: Release 1.0.1. https:// doi. org/ 10. 5281/ zenodo. 65823 43 (2022).
 43. Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
 44. Stone, J. An Efficient Library for Parallel Ray Tracing and Animation. Master’s thesis (Computer Science Department, University 

of Missouri-Rolla, 1998).

Acknowledgements
This research was supported by the Hungarian National Research, Development and Innovation Office within 
the Quantum Information National Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004). E.P. received 
sponsorship from the Gedeon Richter Talentum Foundation in the framework of the Gedeon Richter Excellence 
Ph.D. Scholarship of Gedeon Richter. The authors thank Dóra K. Menyhárd for her valuable assistance during 
structure preparation. We acknowledge her affiliation at HUN-REN-ELTE Protein Modeling Research Group 
ELTE Eötvös Loránd University, supported by project no. 2018-1.2.1-NKP-2018-00005 (HunProtExc) of the 
NRDI Office, financed under the 2018-1.2.1-NKP funding scheme.

Author contributions
G.V. designed and directed the project. E.P. conducted the simulations and generated visualizations. All authors 
contributed in preparing the manuscript.

Funding
Open access funding provided by Eötvös Loránd University.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 70348-z.

Correspondence and requests for materials should be addressed to E.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.7554/eLife.81551
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.6582343
https://doi.org/10.1038/s41598-024-70348-z
https://doi.org/10.1038/s41598-024-70348-z
www.nature.com/reprints


9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19571  | https://doi.org/10.1038/s41598-024-70348-z

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Computation of biological conductance with Liouville quantum master equation
	Conductance
	Conductance calculations
	Extracellular cytochrome nanowires
	Distance- and temperature dependence
	Methods
	Structure preparation
	Quantum chemistry calculations
	Visualization
	Conductance calculation

	References
	Acknowledgements


