Skip to main content
. 2024 Aug 8;26:e51706. doi: 10.2196/51706

Table 2.

Architecture of the 3D convolutional neural network model.

Block and kernel inputs Settings
Convolution 1

Conv3Da (3,3,3,64)

MaxPooling3Db (2,2,2)

BatchNormalizationc
Convolution 2

Conv3D (3,3,3,64)

MaxPooling3D (2,2,2)

BatchNormalization
Convolution 3

Conv3D (3,3,3,128)

MaxPooling3D (2,2,2)

BatchNormalization
Convolution 4

Conv3D (3,3,3,256)

MaxPooling3D (2,2,2)

BatchNormalization

GlobalAveragePooling3Dd
Dense 1

Fully connected 64

Dropout 0.3
Output

Fully connected 2

aConv3D: 3D convolutional layer.

bMaxPooling3D: 3D max pooling layer.

cBatchNormalization: batch normalization layer.

dGlobalAveragePooling3D: layer performing global average pooling for 3D data.