Skip to main content
. 2024 Aug 8;26:e57830. doi: 10.2196/57830

Table 6.

The top 10 locally cited articles on the application of artificial intelligence in dementia biomarkers.

Rank Article title Study LCSa (n=2157), n (%) GCSb (n=23,842), n (%) NLCSc NGCSd PYe
1 Multimodal classification of Alzheimer’s disease and mild cognitive impairment Zhang et al [77] 109 (5.05) 883 (3.7) 7.6 6.0 2011
2 Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects Moradi et al [78] 52 (2.41) 421 (1.77) 7.7 5.2 2015
3 Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease Zhang and Shen [79] 40 (1.85) 453 (1.9) 6.2 4.0 2012
4 Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data Jo et al [11] 35 (1.62) 229 (0.96) 9.3 6.9 2019
5 Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment Young et al [80] 31 (1.44) 183 (0.77) 6.4 3.2 2013
6 Predicting Alzheimer’s disease progression using multi-modal deep learning approach Lee et al [81] 29 (1.34) 158 (0.66) 7.7 4.8 2019
7 Random forest–based similarity measures for multi-modal classification of Alzheimer’s disease Gray et al [82] 25 (1.16) 306 (1.28) 5.1 5.4 2013
8 Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease Liu et al [83] 25 (1.16) 323 (1.35) 3.7 4.0 2015
9 Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset Hinrichs et al [84] 23 (1.07) 157 (0.66) 2.0 1.7 2009
10 Early detection of Alzheimer’s disease using MRI hippocampal texture Sorensen et al [85] 23 (1.07) 120 (0.5) 6.4 2.9 2016

aLCS: local citation score.

bGCS: global citation score.

cNLCS: normalized local citation score.

dNGCS: normalized global citation score.

ePY: publication year.