Table 6.
The top 10 locally cited articles on the application of artificial intelligence in dementia biomarkers.
Rank | Article title | Study | LCSa (n=2157), n (%) | GCSb (n=23,842), n (%) | NLCSc | NGCSd | PYe |
1 | Multimodal classification of Alzheimer’s disease and mild cognitive impairment | Zhang et al [77] | 109 (5.05) | 883 (3.7) | 7.6 | 6.0 | 2011 |
2 | Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects | Moradi et al [78] | 52 (2.41) | 421 (1.77) | 7.7 | 5.2 | 2015 |
3 | Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease | Zhang and Shen [79] | 40 (1.85) | 453 (1.9) | 6.2 | 4.0 | 2012 |
4 | Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data | Jo et al [11] | 35 (1.62) | 229 (0.96) | 9.3 | 6.9 | 2019 |
5 | Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment | Young et al [80] | 31 (1.44) | 183 (0.77) | 6.4 | 3.2 | 2013 |
6 | Predicting Alzheimer’s disease progression using multi-modal deep learning approach | Lee et al [81] | 29 (1.34) | 158 (0.66) | 7.7 | 4.8 | 2019 |
7 | Random forest–based similarity measures for multi-modal classification of Alzheimer’s disease | Gray et al [82] | 25 (1.16) | 306 (1.28) | 5.1 | 5.4 | 2013 |
8 | Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease | Liu et al [83] | 25 (1.16) | 323 (1.35) | 3.7 | 4.0 | 2015 |
9 | Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset | Hinrichs et al [84] | 23 (1.07) | 157 (0.66) | 2.0 | 1.7 | 2009 |
10 | Early detection of Alzheimer’s disease using MRI hippocampal texture | Sorensen et al [85] | 23 (1.07) | 120 (0.5) | 6.4 | 2.9 | 2016 |
aLCS: local citation score.
bGCS: global citation score.
cNLCS: normalized local citation score.
dNGCS: normalized global citation score.
ePY: publication year.