Skip to main content
. 2024 Aug 8;26:e57830. doi: 10.2196/57830

Table 7.

Artificial intelligence classifiers and biomarker input features for highly cited local literature.

Study PYa Database Classifier Input features
Hinrichs et al [84] 2009 ADNIb Spatially augmented LPboostingc MRId+FDG-PETe
Zhang et al [77] 2011 ADNI Multiple-kernel SVMf MRI+PET+CSFg
Zhang and Shen [79] 2012 ADNI M3Th MRI+PET+CSF
Young et al [80] 2013 ADNI SVM+GPi MRI+FDG-PET+CSF+APOEj
Gray et al [82] 2013 ADNI Random forest MRI+FDG-PET+CSF+APOE
Moradi et al [78] 2015 ADNI LDSk+random forest MRI+aggregate biomarker
Liu et al [83] 2015 ADNI SAEl+softmax regression+SVM MRI+FDG-PET
Sorensen et al [85] 2016 ADNI+AIBLm+Metropolit SVM+logistic regression MRI+CSF
Lee et al [81] 2019 ADNI CNNn MRI+CSF+APOE

aPY: publication year.

bADNI: Alzheimer’s Disease Neuroimaging Initiative.

cLPboosting: linear programming boosting.

dMRI: magnetic resonance imaging.

eFDG-PET: fluorodeoxyglucose positron emission tomography.

fSVM: support vector machine.

gCSF: cerebrospinal fluid.

hM3T: multimodal multitask.

iGP: Gaussian process.

jAPOE: apolipoprotein E.

kLDS: low density separation.

lSAE: stacked autoencoder.

mAIBL: Australian Imaging, Biomarker & Lifestyle.

nCNN: convolutional neural network.