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Abstract

The problem of image restoration in cryo-EM entails correcting for the effects of the Contrast 

Transfer Function (CTF) and noise. Popular methods for image restoration include ‘phase 

flipping’, which corrects only for the Fourier phases but not amplitudes, and Wiener filtering, 

which requires the spectral signal to noise ratio. We propose a new image restoration method 

which we call ‘Covariance Wiener Filtering (CWF). In CWF, the covariance matrix of the 

projection images is used within the classical Wiener filtering framework for solving the image 

restoration deconvolution problem. Our estimation procedure for the covariance matrix is new and 

successfully corrects for the CTF. We demonstrate the efficacy of CWF by applying it to restore 

both simulated and experimental cryo-EM images. Results with experimental datasets demonstrate 

that CWF provides a good way to evaluate the particle images and to see what the dataset contains 

even without 2D classification and averaging.
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1. Introduction

Single particle reconstruction (SPR) using cryo-electron microscopy (cryo-EM) is a rapidly 

advancing technique for determining the structure of biological macromolecules at near-

atomic resolution directly in their native state, without any need for crystallization (Bai 

et al., 2015; Milne et al., 2013; Nogales, 2016; Sigworth; Kühlbrandt, 2014). In SPR, 3D 

reconstructions are estimated by combining multiple noisy 2 D tomographic projections of 

macromolecules in different unknown orientations.
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The acquired data consists of multiple micrographs from which particle images are extracted 

in the first step of the computational pipeline. Next, the images are grouped together by 

similarity in the 2D classification and averaging step (Zhao and Singer, 2014; Park and 

Chirikjian, 2014). Class averages can be used to inspect the underlying particles, and to 

estimate viewing angles and form a low resolution ab initio 3D model. Subsequently, this 3D 

model is refined to high resolution, and 3D classification might be performed as well.

In this paper we propose an image restoration method that provides a way for visualizing the 

particle images without performing any 2D classification. While noise reduction is achieved 

in 2D classification by averaging together different particle images, our method operates 

on each image separately, and performs Contrast Transfer Function (CTF) correction and 

denoising in a single step.

Existing image restoration techniques (for denoising and CTF correction) can be broadly 

categorized into two kinds of approaches (Penczek, 2010). The first is an approach known as 

‘phase flipping’, which involves flipping the sign of the Fourier coefficients at frequencies 

for which the CTF is negative. Consequently, phase flipping restores the correct phases 

of the Fourier coefficients, but ignores the effect of the CTF on the amplitudes. Phase 

flipping preserves the noise statistics and is easy to implement, leading to its widespread 

usage in several cryo-EM software packages. However, it is suboptimal because it does not 

restore the correct Fourier amplitudes of the images. The second commonly used approach 

is Wiener filter based restoration, to which we refer here as traditional Wiener filtering 

(TWF). Wiener filtering takes into account both the phases and amplitudes of the Fourier 

coefficients, unlike phase flipping. However, calculation of the Wiener filter coefficients 

requires prior estimation of the spectral signal to noise ratio (SSNR) of the signal, which 

by itself is a challenging problem. It is therefore customary to either treat the SSNR as a 

precomputed constant as in the software package SPIDER (Frank et al., 1996), or to apply 

Wiener filtering only at later stages of the 3D reconstruction pipeline when the noise level 

is sufficiently low, such as in EMAN2 (Tang et al., 2007). It is also possible to use a 

combination of the two approaches, by first phase flipping the 2D images, and later correct 

only for the amplitudes in the 3D reconstruction step, as in IMAGIC (van Heel et al., 1996; 

van Heel et al., 2000). Despite its simplicity, there are several drawbacks to TWF. First, it 

cannot restore information at the zero crossings of the CTF. Second, it requires estimation of 

the SSNR. Third, it is restrictive to the Fourier basis which is a fixed basis not adaptive to 

the image dataset.

We refer to our proposed method as Covariance Wiener Filtering (CWF). CWF consists of 

first estimating the CTF-corrected covariance matrix of the underlying clean 2D projection 

images, followed by application of the Wiener filter to denoise the images. Unlike 

phase flipping, CWF takes into account both the phases and magnitudes of the images. 

Moreover, unlike TWF that always operates in the data-independent Fourier domain, CWF 

is performed in the data-dependent basis of principal components (i.e., eigenimages). 

Crucially, CWF can be applied at preliminary stages of data processing on raw 2D particle 

images. The resulting denoised images can be used for an early inspection of the dataset, 

to identify the associated symmetry, and to eliminate ‘bad’ particle images prior to 2D 

classification and 3D reconstruction. Additionally, the estimation of the 2D covariance 
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matrix is itself of interest, for example, in Kam’s approach for 3D reconstruction (Kam, 

1980; Bhamre et al., 2015).

The paper is organized as follows: Sections 2.1 and 2.2 detail the estimation of the 

covariance matrix for two different noise models, first for the simpler model of white 

noise, and second for the more realistic model of colored noise. In Section 2.3 we discuss 

the steerability property of the covariance matrix (Zhao et al., 2016). The associated 

deconvolution problem is solved to obtain denoised images using the estimated covariance 

matrix in Section 2.4. Finally in Section 3, we demonstrate CWF in a number of numerical 

experiments, with both simulated and experimental datasets. We obtain encouraging results 

for experimental datasets, in particular, those acquired with the modern direct electron 

detectors. Image features are clearly observed after CWF denoising. For reproducibility, the 

MATLAB code for CWF and its dependencies are available in the open source cryo-EM 

toolbox ASPIRE at www.spr.math.princeton.edu. The script cwf_script.m, calls the main 

function cwf.m

2. Methods

The first step of CWF is estimation of the covariance matrix of the underlying clean 

images, to which we refer as the population covariance. The second step of CWF is 

solving a deconvolution problem to recover the underlying clean images using the estimated 

covariance. In the rest of this section, we describe these steps in detail.

2.1. The model

The image formation model in cryo-EM under the linear, weak phase approximation (Frank, 

1996) is given by

yi = ai*xi + ϵi, i = 1,2, …, n,

(1)

where n is the number of images, * denotes the convolution operation, yi is the noisy, CTF 

filtered ith image in real space, xi is the underlying clean projection image in real space, ai

is the point spread function of the microscope that convolves with the clean image in real 

space, and ϵi is additive Gaussian noise that corrupts the image, for each i. Taking the Fourier 

transform of Eq. (1) gives

Y i = AiXi + ξi, i = 1,2, …, n,

(2)

where Y i, Xi and ξi are now in Fourier space. Ai is a diagonal operator, whose diagonal 

consists of the Fourier transform of the point spread function, and is also commonly known 

as the CTF. The CTF modulates the phases and the amplitudes of the Fourier coefficients 

of the image, and contains numerous zero crossings that correspond to frequencies at which 

no information is obtained. Any image restoration technique that aims to completely correct 

for the CTF must therefore correctly restore both the phases and the amplitudes. The 
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zero crossings make CTF correction challenging since it cannot be trivially inverted. In 

experiments, different groups of images are acquired at different defocus values, in the hope 

that information that is lost from one group could be recovered from another group that 

has different zero crossings. In the experimental datasets used in this paper, the number of 

images per defocus group typically ranges from 50 to 1000.

In our statistical model, the Fourier transformed clean images X1, …, Xn (viewed, for 

mathematical convenience, as vectors in ℂp, where p is the number of pixels) are assumed 

to be independent, identically distributed (i.i.d.) samples from a distribution with mean 

E X = μ and covariance E X − μ X − μ T = Σ. Since the clean images are two-dimensional 

projections of the three-dimensional molecule in different orientations, the distribution 

of X in our model is determined by the three-dimensional structure, the distribution of 

orientations, the varying contrast due to changes in ice thickness, and structural variability, 

all of course unknown at this stage. The covariance matrix Σ therefore represents the 

overall image variability due to these determinants. While these model assumptions do not 

necessarily hold in reality (Sorzano et al., 2007; Sorzano et al., 2015), they simplify the 

analysis and, as will be shown later lead to excellent denoising. Quoting George Box, “All 

models are wrong but some are useful” (Box, 1976).

Our denoising scheme requires μ and Σ. Since these quantities are not readily given, we 

estimate them from the noisy images themselves as follows. For simplicity, we first assume 

that the noise in our model is additive white Gaussian noise such that ξi N 0, σ2Ip × p  in 

Eq. (2) are i.i.d. The white noise assumption is later replaced by that of the more realistic 

colored noise. First, notice from Eq. 2 it follows that

E Yi = AiE Xi , i = 1,2, …, n .

(3)

So,

E Yi − E Yi Yi − E Yi
T = E Ai Xi − μ Xi − μ TAi

T + σ2I
= AiΣAi

T + σ2I .

(4)

Eq. (4) relates the second order statistics of the noisy images with the population covariance 

Σ of the clean images, based on which we can estimate Σ.

Next, we construct estimators for the mean μ and population covariance Σ using Eqs. (3) and 

(4). The mean μ of the dataset can be estimated as the solution to a least squares problem

μ = argmin
μ

∑
i = 1

n
Y i − Aiμ 2

2 + λ ∥ μ ∥2
2 ,

(5)
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where λ ⩾ 0 is a regularization parameter. The solution to 5 is explicitly

μ = ∑
i = 1

n
Ai

TAi + λI
−1

∑
i = 1

n
Ai

TY i .

(6)

The population covariance Σ can be estimated as

Σ = argmin
Σ

∑
i = 1

n
Y i − E Yi Y i − E Yi

T − AiΣAi
T + σ2I

F

2

= argmin
Σ

∑
i = 1

n
AiΣAi

T + σ2I − Ci F
2
,

(7)

where Ci = Y i − Aiμ Y i − Aiμ T  and ∥ ⋅ ∥F is the Frobenius matrix norm. The estimators μ̂
and Σ̂ can be shown to be consistent in the large sample limit n ∞, similar to the result in 

Appendix B of Katsevich et al. (2015).

To ensure that the estimated covariance is positive semidefinite (PSD), we project it onto 

the space of PSD matrices by computing its spectral decomposition and retaining only 

the non negative eigenvalues (and their corresponding eigenvectors). To solve Eq. (7), we 

differentiate the objective function with respect to Σ and set the derivative to zero. This 

yields

∑
i = 1

n
Ai

TAiΣAi
TAi = ∑

i = 1

n
Ai

TCiA − ∑
i = 1

n
σ2Ai

TAi .

(8)

Eq. (8) defines a system of linear equations for the elements of the matrix Σ̂. However, direct 

inversion of this linear system is slow and computationally impractical for large image sizes. 

Notice that Eq. (8) can be written as

L Σ = B,

(9)

where L:ℝp × p ℝp × p is the linear operator acting on Σ̂ defined by the left hand side of 

Eq. (8), and B is the right hand side. Since applying L only involves matrix multiplications, 

it can be computed fast, and the conjugate gradient method is employed to efficiently 

compute Σ̂ instead of direct inversion, similar to how it is used in Andén et al. (2015).

Notice that L Σ̂  is a PSD matrix whenever Σ̂ is PSD (as a sum of PSD matrices), while 

B may not necessarily be PSD due to finite sample fluctuations (i.e., n is finite). It is 
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therefore natural to project B onto the cone of PSD matrices. This amounts to computing the 

spectral decomposition of B and setting all negative eigenvalues to 0, which is an instance of 

eigenvalue thresholding.

We now describe an alternate eigenvalue thresholding procedure, better suited to cases in 

which the number of images n is not exceedingly large. To that end, we first analyze the 

matrix B when Xi = 0 for all i, i.e., the input images are white noise images containing no 

signal. Let

M = ∑
i = 1

n
Ai

TCiAi = ∑
i = 1

n
Ai

TY iY i
TAi .

(10)

Then, E M = σ2∑i = 1
n Ai

TAi and B = M − E M . Let S = E M 1/2, i.e. S is PSD and 

E M = S2. Then multiplying both sides of Eq. (9) with S−1 we get

S−1L Σ S−1 = S−1 M − E M S−1 = S−1MS−1 − I .

(11)

S−1MS−1 can be viewed as a sample covariance matrix of n vectors in ℝp whose population 

covariance is the identity matrix. When p is fixed and n goes to infinity, all eigenvalues 

of S−1MS−1 converge to 1. In practice, however, n and p are often comparable. In the 

limit p, n ∞ and p/n γ with 0 < γ < ∞, the limiting spectral density of the eigenvalues 

converges to the Marčenko Pastur (MP) distribution (Marčenko and Pastur, 1967), given by

MP x = 1
2π

γ+ − x x − γ−
γx 1 γ−, γ+ , γ± = 1 ± γ

2
,

(12)

for γ ⩽ 1. It is therefore expected that S−1MS−1 would have eigenvalues (considerably) 

larger than 1, even in the pure white noise case. These large eigenvalues should not 

be mistakingly attributed to signal. In the case of images containing signal (plus noise), 

eigenvalues corresponding to the signal can only be detected if they reside outside of the 

support of the MP distribution. We use the method of Kritchman and Nadler (2008) to 

determine the number of eigenvalues corresponding to the signal. We then apply the operator 

norm eigenvalue shrinkage procedure (see Donoho et al.) to those eigenvalues, while setting 

all other eigenvalues to 0. We then use the conjugate gradient method1 to solve Eq. (11) for 

Σ̂, with the right hand side replaced with its shrinkage version. We observed in numerical 

1While L in Eq. (9) is PSD, the new effective operator in the LHS of Eq. (11) is not necessarily PSD in general. In order to use 

conjugate gradient, we solve the system S−1L S−1ΣSS−1 S−1 = S−1MS−1 − I, where ΣS = SΣS, in which the operator 

acting on ΣS in the LHS is PSD. Σ is then obtained from the estimated ΣS.
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simulations (see Fig. 3) that this procedure typically out-performs other shrinkage methods 

in terms of the accuracy of the estimated covariance matrix.

2.2. Covariance estimation with colored noise

So far, we assumed additive white Gaussian noise in the image formation process. In 

reality, the noise in experimental images is colored. That is, in the image formation model 

in Eq. (2), ξi is additive colored Gaussian noise. We preprocess the images in order to 

“whiten” the noise. The noise power spectrum can be estimated, for example, using the 

pixels in the corners of the noisy projection images. To do this, we first estimate using 

correlograms the 2D autocorrelation of the corner pixels of the images which contain mostly 

noise and no signal. These corner pixels are used to estimate the 1 D autocorrelation, 

which is then extended to populate the 2D isotropic autocorrelation. We then calculate the 

Fourier transform of the 2D autocorrelation, which is the 2D power spectrum of noise. The 

noisy projection images in Fourier space are multiplied element-wise by the inverse of the 

estimated power spectral density, also called the whitening filter, so that the noise in the 

resulting images is approximately white. Let W  be the “whitening” filter, such that

W Y i = W AiXi + W ξi, i = 1,2, …, n,

(13)

and W ξi N 0, σ2I .

Eq. (13) is reminiscent of Eq. (2). It is tempting to define a new “effective” CTF as W Ai

and estimate Σ following the same procedure as in the case of white noise. However, the 

linear system akin to Eq. (8) for this case is ill-conditioned due to the product of W  with 

the CTF, and it takes a large number of iterations for conjugate gradient to converge to 

the desired solution. Instead, we seek an approach in which the linear system to solve is 

well conditioned as that in the case of white noise. Since the CTF’s Ai, i = 1,2, …n and the 

whitening filter W  are diagonal operators in the Fourier basis, they commute, and Eq. (13) 

becomes

W Y i = AiW Xi + W ξi, i = 1,2, …, n .

(14)

We therefore absorb W  into Xi, and estimate the matrix ΣW = W ΣW T  (the population 

covariance of W X) using the same procedure as before. The population covariance Σ is then 

estimated as

Σ̂ = W −1Σ̂W W T −1 .

(15)
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2.3. Fourier-Bessel steerable PCA

The population covariance matrix Σ must be invariant under inplane rotation of the 

projection images, therefore it is block diagonal in any steerable basis in which the basis 

elements are outer products of radial functions and angular Fourier modes. Following (Zhao 

et al., 2016), we choose to represent the images in a Fourier-Bessel basis and it suffices 

to estimate each diagonal block Σ k , corresponding to the angular frequency k, separately. 

The Fourier-Bessel basis (Zhao et al., 2016) consists of pk basis functions (that satisfy the 

sampling criterion) for each angular frequency k, where pk decreases with increasing k. The 

matrix Σ k  is thus of size pk × pk.

An important property of the CTF’s Ai and the whitening filter W  is that they are radially 

isotropic.2 Therefore, the CTF’s and the whitening filter are also block diagonal in the 

Fourier Bessel basis. Eq. (8) (and its analog in the case of colored noise) is hence solved 

separately for each k to estimate Σ k .

2.4. Wiener filtering

The estimated covariance is further used to solve the associated deconvolution problem in 

Eq. (2) using Wiener filtering. The result is a denoised, CTF corrected image for each noisy, 

CTF affected measurement Y i for i = 1,2, …n. We estimate Xi in the white noise model using 

the Wiener filtering procedure as

Xi = I − HiAi μ + HiY i,

(16)

where Hi = Σ̂Ai
T AiΣ̂Ai

T + σ2I −1 is the linear Wiener filter (MacKay, 2004). In the case of 

colored noise,

Xi = I − HiW Ai μ + HiY i,

(17)

with Hi = Σ̂Ai
TW T W AiΣ̂Ai

TW T + σ2I −1
. Since the estimated covariance is block-diagonal 

in the Fourier Bessel basis, the Wiener filtering procedure is applied to the Fourier Bessel 

coefficients of the noisy images Y i for each angular frequency k separately. The denoised 

Fourier Bessel expansion coefficients are used to reconstruct denoised images in Fourier 

space that are inverse Fourier transformed to acquire images in real space on a Cartesian 

grid.

2In the case of astigmatism, where the CTF deviates slightly from radial isotropy this is a good approximation to obtain low resolution 
denoised images
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2.5. Computational complexity

In practice, instead of each image being affected by a distinct CTF, all images 

within a given defocus group have the same CTF. So, given D defocus groups 

with di images in group i, one can equivalently minimize the objective function 

∑i = 1
D di ∥ AiΣAi

T + σ2I − ∑j = 1
di 1

di
Y ij − E Yij Y ij − E Yij

T ∥F
2  in Eq. (7) (here Ai denotes the 

CTF of the i’th defocus group, and ij index images in that group). As a result, the sums 

in Eq. (8) range from 1 to D instead of from 1 to n, thereby reducing the computational 

cost of some operations. For images of size L × L, estimating the mean using Eq. (6) takes 

O nL2  (since Ai is diagonal in the Fourier basis for each i). Computing the Fourier Bessel 

expansion coefficients takes O nL3 , as detailed in Zhao et al. (2016). When solving the 

linear system in Eq. (8) to estimate each Σ k  separately, the matrices in Eq. (8) are of size 

pk × pk. It is shown in Zhao et al. (2016) that ∑k pk = O L2 , ∑k pk
2 = O L3 , and ∑k pk

3 = O L4 . 

While solving Eq. (9) using conjugate gradient for a given angular frequency, computing 

the action of the linear operation L on Σ k  takes O Dpk
3  per iteration, while computing 

B takes O Dpk
3 + npk

2 . Thus, each iteration of conjugate gradient takes O D∑k pk
3 , that is, 

O DL4  and there is also a one time computation of O nL3 . Wiener filtering the Fourier 

Bessel coefficients of an image for a given angular frequency k takes O pk
2 . So the overall 

complexity for Wiener filtering the coefficients of all images is O nL3 . In summary, the 

overall complexity for CWF is O TDL4 + nL3 , where T  is the number of conjugate gradient 

iterations.

3. Results

In this section, we apply our algorithm to synthetic and experimental datasets to obtain 

denoised images. All algorithms are implemented in the UNIX environment, on a machine 

with 60 cores, running at 2.3 GHz, with total RAM of 1.5 TB. We perform numerical 

experiments with (i) a synthetic dataset with additive white and colored Gaussian noise 

and (ii) four experimental datasets, two of which were acquired with older detectors, 

and the other two with state-of-the-art direct electron detectors. For all the experimental 

datasets, the corresponding estimated CTF parameters were provided with the dataset. For 

all simulations, we use centered projection images. The algorithm does not require centered 

images. However, having non-centered images would result in an additional ‘blurring’ effect 

in the denoised images.

3.1. Simulated noisy dataset with white noise

For the first experiment with simulated data, we construct a synthetic dataset by modeling 

the image formation process in cryo-EM. The synthetic dataset is prepared from the 3D 

structure of the Plasmodium falciparum 80S ribosome bound to E-tRNA, available on the 

Electron Microscopy Data Bank (EMDB) as EMDB-6454. We first generate clean 2D 

projection images starting from a 3D volume, at directions sampled uniformly over the 

sphere, and then corrupt the generated clean projection images with different CTF’s and 
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additive white Gaussian noise. The projection images are divided into 10 defocus groups, 

with the defocus value ranging from 1μm to 4μm. The B-factor of the decay envelope was 

chosen as 10 Å2, the amplitude contrast as 7%, the voltage as 300 kV, and the spherical 

aberration as 2 mm. To ensure that the denoising quality of CWF is robust to the mean 

estimation of the dataset, the regularization parameter λ in the least squares mean estimation 

in Eq. (6) was fixed at 1 for all the experiments described here.

Fig. 1 shows the results of denoising raw, CTF-affected noisy images with CWF and TWF 

at various levels of the SNR. We have used the EMAN2 (Tang et al., 2007) implementation 

of TWF (note that we perform phase flipping followed by TWF only on the raw images 

in EMAN2, and not on averages). The SNR used here is defined relative to the CTF 

affected images that constitute the clean signal, and is calculated as an average value for 

the entire dataset. Using 20 cores, calculating the Fourier Bessel coefficients took 79 s 

while covariance estimation and Wiener filtering together took 6 s in the experiment with 

SNR=1/60.

It is seen that TWF works very well at high SNR (⩾ 1), but deteriorates at lower SNR’s as 

expected. Note that the denoising results of TWF depend strongly on the defocus value. The 

location of the zeros in the CTF is such that images corresponding to high defocus values 

preserve low frequency information, while images corresponding to low defocus values 

retain more high frequency information. With CWF, there is no such strong dependence 

on the defocus value, since the covariance matrix is estimated using information from all 

defocus groups.

Fig. 2a shows the relative MSE of denoised images as a function of the SNR of the dataset. 

The MSE (norm of the difference between the denoised image and the original, clean image) 

shown here corresponds to the same range of SNR’s (from 1/60 to 1) as in Fig. 1. Fig. 

2b shows the relative MSE of the denoised images as a function of the number of images 

used to estimate the covariance in the experiment. The covariance estimation improves as the 

number of images in the dataset increases, and so the denoising is also expected to improve, 

as seen from Fig. 2b.

The importance of the eigenvalue shrinkage procedure is elucidated in Fig. 3. Here, we 

compare the error in the estimated covariance with and without eigenvalue shrinkage, for 

varying number of images used in the experiment. The relative MSE of the estimated 

covariance Σ̂ is defined as

MSErel = ∥ Σ − Σ ∥F
2

∥ Σ ∥F
2 .

(18)

3.2. Simulated noisy dataset with colored noise

The noise that corrupts images in cryo-EM is not perfectly white, but often colored. To 

simulate this, we perform experiments with synthetic data generated from EMDB-6454 

as described in 3.1, this time adding colored Gaussian noise with the noise response 
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f k = 1
1 + k2 k is the radial frequency) to each clean, CTF-affected projection image. Fig. 

4 shows the denoised images for this case.

3.3. Experimental dataset - TRPV1

We apply CWF to an experimental dataset of the TRPV1 ion channel, taken using a K2 

direct electron detector. It is available on the public database Electron Microscope Pilot 

Image Archive (EMPIAR) as EMPIAR-10005, and the 3D reconstruction is available on 

EMDB as EMDB-5778, courtesy of Liao et al. (Liao et al., 2013). The dataset consists of 

35,645 motion corrected, picked particle images of size 256 × 256 pixels with a pixel size 

of 1.2156 Å. Using 20 cores, calculating the Fourier Bessel coefficients took 312 s while 

covariance estimation and Wiener filtering together took 574 s. The result is shown in Fig. 5. 

CWF retains 384 eigenvalues of Σ.

3.4. Experimental dataset - 80S ribosome

We apply CWF to an experimental dataset of the Plasmodium falciparum 80S ribosome 

bound to the anti-protozoan drug emetine, taken using a FEI FALCON II 4k × 4k direct 

electron detector. The raw micrographs and picked particles are available on the public 

database EMPIAR as EMPIAR-10028, and the 3D reconstruction is available on EMDB as 

EMDB-2660, courtesy of Wong et al. (2014). The dataset we used was provided by Dr. Sjors 

Scheres, and consists of 105,247 motion corrected, picked particle images of size 360 × 360 

with a pixel size of 1.34 Å. Using 20 cores, calculating the Fourier Bessel coefficients took 

731 s while covariance estimation and Wiener filtering together took 385 s. The result is 

shown in Fig. 6. CWF retains 962 eigenvalues of Σ.

3.5. Experimental dataset - IP3R1
We apply CWF to an experimental dataset of the Inositol 1, 4, 5-triphosphate receptor 

1(IP3R1) provided by Dr. Irina Serysheva, obtained using the older Gatan 4k × 4k CCD 

camera (Ludtke et al., 2011). The 3D reconstruction obtained from this dataset is available 

on EMDB as EMDB-5278. The dataset consists of 37,382 images of size 256 × 256 pixels 

with a pixel size of 1.81 Å. Using 20 cores, calculating the Fourier Bessel coefficients took 

429 s while covariance estimation and Wiener filtering together took 589 s. The result is 

shown in Fig. 7. CWF retains 290 eigenvalues of Σ.

3.6. Experimental dataset −70 S ribosome

We apply CWF to an experimental dataset of the 70S ribosome provided by Dr. Joachim 

Frank’s group (Agirrezabala et al., 2012). This heterogeneous dataset consists of 216,517 

images of size 250 × 250 pixels with a pixel size of 1.5 Å, obtained using the older 

TVIPS TEMCAM-F415 (4k × 4k) CCD detector. The 3D reconstruction obtained from this 

dataset is available on EMDB as EMDB5360. Using 20 cores, calculating the Fourier Bessel 

coefficients took 1174 s while covariance estimation and Wiener filtering together took 113 

s. The result is shown in Fig. 8. CWF retains 219 eigenvalues of Σ.
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3.7. Outlier detection

In the cryo-EM pipeline, a significant amount of time is spent on discarding outliers by 

visual inspection after the particle picking step. CWF provides an automatic way to classify 

picked particles into “good” particles and outliers. The classifier uses the contrast of a 

denoised image to determine if it is an outlier.

The specimen particles can be at various depths in the ice layer at the time of imaging, so 

the acquired projection images can have different contrasts. The contrast can be modeled 

as an additional scalar parameter α for each acquired noisy projection image as in Eq. (19), 

typically as a uniformly distributed random variable spread about its mean at 1.

Y i = αiAiXi + ξi, i = 1,2, …, n .

(19)

We absorb the contrast α into X and estimate αiXi in this case, using the same procedure as 

before. We perform an experiment with synthetic data generated using EMDB-6454 with 

additive colored Gaussian noise at SNR = 1/20, and α ∈ 0.75,1.5 . 10% of the projection 

images are replaced by “outliers”, that is, pure noise images containing no signal. Fig. 9c 

shows the estimated mean image μ, and Fig. 9d shows the top 6 principal components of 

the estimated covariance Σ̂, also known as eigenimages. Fig. 9a and b show a sample of 

raw and denoised images respectively. High contrast images enjoy a higher SNR and are 

thus of interest for subsequent steps of the pipeline. On the other hand, outlier images, 

which typically have low contrast after denoising, can be automatically detected by a linear 

classifier after CWF and discarded from the dataset. In the experiment shown in Fig. 9a and 

b, a classifier with a threshold of 0.95 for the contrast discards 95% of the outliers, while 3% 

of the inliers are also discarded in the process.

One can also use a different classifier based on features like the relative energy of the 

image before and after denoising, etc. However, outliers that look like particles, for 

example, images belonging to a different class of a heterogeneous dataset which act as 

“contaminants”, are difficult to detect using this method.

4. Conclusion

In this paper we presented a new approach for image restoration of cryo-EM images, CWF, 

whose main algorithmic components are covariance estimation and deconvolution using 

Wiener filtering. CWF performs both CTF correction, by correcting the Fourier phases and 

amplitudes of the images, as well as denoising, by eliminating the noise thereby improving 

the SNR of the resulting images. In particular, since CWF applies Wiener filtering in the 

data-dependent basis of principal components (“eigenimages”), while TWF applies Wiener 

filtering in the data-independent Fourier basis, we see in numerical experiments that CWF 

performs better than TWF, and considerably better at high noise levels. We demonstrated the 

ability of CWF to restore images for several experimental datasets, acquired with both CCD 

detectors and the state-of-the-art direct electron detectors.
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Due to the high noise level typical in cryo-EM images, 2D classification is performed 

before estimating a 3D ab initio model. Class averages enjoy a higher SNR and are used to 

estimate viewing angles and obtain an initial model. For future work, it remains to be seen 

whether the resulting denoised images from CWF can be directly used to estimate viewing 

angles, without performing classification and averaging. Another possible future direction is 

integration of CWF into existing 2D class averaging procedures in order to improve their 

performance.
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Fig. 1. 
Synthetic white noise: A comparison of the denoising results of traditional Wiener filtering 

(TWF) and CWF for the synthetic dataset prepared from EMDB-6454, the P. falciparum 80S 

ribosome bound to E-tRNA. The dataset consists of 10,000 images of size 105 × 105, which 

are divided into 10 defocus groups, with the defocus value ranging from 1μm to 4μm. The 

two rows in each subfigure correspond to two clean images belonging to different defocus 

groups; the first one belongs to the group with the smallest defocus value of 1μm, while the 

second image belongs to the group with the largest defocus value of 4μm.
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Fig. 2. 
(a) Relative MSE versus the SNR, for a fixed number of images: The relative MSE of the 

denoised images as a function of the SNR, for synthetic data generated using EMDB-6454. 

The MSE reported here is averaged over all images. n denotes the number of images used 

in the experiment. (b) Relative MSE versus the number of images, for a fixed SNR: The 

relative MSE of the denoised images as a function of the number of images, for synthetic 

data generated using EMDB-6454. The MSE reported here is averaged over all images.
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Fig. 3. 
Relative MSE of the estimated covariance versus the number of images: The relative MSE 

of the estimated covariance Σ̂, with and without using eigenvalue shrinkage, as a function of 

number of images, for synthetic data generated using EMDB-6454.
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Fig. 4. 
Synthetic colored noise: Denoising results of CWF for the synthetic dataset with additive 

colored Gaussian noise, prepared from EMDB-6454, the P. falciparum 80S ribosome bound 

to E-tRNA, as detailed in the caption of Fig. 1.
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Fig. 5. 
Denoising an experimental dataset of TRPV1 (Liao et al., 2013): Here we show, for three 

images in the dataset, the raw image, the closest true projection image generated from the 

3D reconstruction of the molecule (EMDB 5778), the denoised image obtained using TWF, 

and the denoised image obtained using CWF. In this experiment, 35,645 images of size 

256 × 256 belonging to 935 defocus groups were used. The amplitude contrast is 10%, the 

spherical aberration is 2 mm, and the voltage is 300 kV.
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Fig. 6. 
Denoising an experimental dataset of the 80S ribosome (Wong et al., 2014): Here we show, 

for three images in the dataset, the raw image, the closest true projection image generated 

from the 3D reconstruction of the molecule (EMDB 2660), the denoised image obtained 

using TWF, and the denoised image obtained using CWF. In this experiment, the first 30000 

images out of the 105,247 images in the dataset were used for covariance estimation. The 

images are of size 360 × 360 and belong to 290 defocus groups. The amplitude contrast is 

10%, the spherical aberration is 2mm, and the voltage is 300 kV.
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Fig. 7. 
Denoising an experimental dataset of IP3R1 (Ludtke et al., 2011): Here we show, for three 

images in the dataset, the raw image, the closest true projection image generated from the 

3D reconstruction of the molecule (EMDB 5278), the denoised image obtained using TWF, 

and the denoised image obtained using CWF. In this experiment, 37,382 images of size 

256 × 256 belonging to 851 defocus groups were used. The amplitude contrast is 15%, the 

spherical aberration is 2 mm, and the voltage is 200 kV.
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Fig. 8. 
Denoising an experimental dataset of 70S (Agirrezabala et al., 2012): Here we show, for 

three images in the dataset, the raw image, the closest true projection image generated from 

the 3D reconstruction of the molecule (EMDB 5360), the denoised image obtained using 

TWF, and the denoised image obtained using CWF. In this experiment, the first 99,979 

images out of the 216,517 images in the dataset were used for covariance estimation. The 

images are of size 250 × 250 and belong to 38 defocus groups. The amplitude contrast is 

10%, the spherical aberration is 2.26 mm, and the voltage is 300 kV.
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Fig. 9. 
(a) Raw images: A sample of synthetic data generated using EMDB-6454 with additive 

colored Gaussian noise at SNR = 1/20.10% of the projection images are replaced by pure 

noise. The contrast parameter α ranges from 0.75 to 1.5. The outliers are shown in the 

last column. Inset in a yellow box is the contrast of each image. (b) Denoised images: 

The denoised images using CWF. Notice the low contrast outliers in the last column. (c) 

Estimated mean image. (d) Top 6 eigenimages: Inset in a yellow box is the corresponding 

eigenvalue.
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