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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the 

third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early 

metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective 

biomarkers for early detection of PDAC and development of new therapeutic strategies. It has 

long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, 

tumor-associated glycans and their cognate glycosylating enzymes have received insufficient 

attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that 

underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the 

prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans 

including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated 

O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous 

cell surface receptors, which collectively impart malignant characteristics typified by enhanced 

cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor 

cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further 

promoting cancer progression. The goal of this review is to summarize the predominant changes 

in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in 

cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in 

cancer therapeutics.

1. Introduction

Pancreatic cancer is one of the most aggressive epithelial malignancies. The most common 

and deadly form, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival 

rate of less than 10% (Siegel, Miller, Fuchs, & Jemal, 2021). The high mortality of patients 

is due to the early invasion of tumor cells into adjacent tissue, early metastasis, and late 

diagnosis; together these features limit the only potential curative treatment for PDAC, 

surgical resection (Kabashi, Dedushi, Ramadani, Mucaj, Hoxhaj, & Jerliu, 2016; Rahib, 

Smith, Aizenberg, Rosenzweig, Fleshman, & Matrisian, 2014). Current treatments including 

*Corresponding author. bellis@uab.edu. 

HHS Public Access
Author manuscript
Adv Cancer Res. Author manuscript; available in PMC 2024 August 23.

Published in final edited form as:
Adv Cancer Res. 2023 ; 157: 123–155. doi:10.1016/bs.acr.2022.07.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemotherapies, targeted therapies, and immunotherapies have failed to substantially 

improve PDAC patient survival, therefore new avenues for treatment must be considered. 

One of the areas of pancreatic cancer biology that has received limited attention is the 

role of cell surface glycans in tumor cell behavior. Aberrant glycosylation was one of the 

earliest observed characteristics of a cancer cell (Almeida & Kolarich, 2016; Helenius 

& Aebi, 2001; Reis, Osorio, Silva, Gomes, & David, 2010; Rudd, Woods, Wormald, 

Opdenakker, Downing, & Campbell, 1995; Vajaria & Patel, 2017) and surface glycans have 

been implicated in chemoresistance, tumor aggressiveness and metastasis (Laubli & Borsig, 

2019; Munkley & Elliott, 2016).

Abnormal sialylation is one of the predominant glycan alterations observed during 

carcinogenesis, and is associated with malignant properties including invasion and 

metastasis (Shah, Telang, Shah, & Patel, 2008). Sialic acid, a negatively-charged 

monosaccharide, is added to the non-reducing terminal position of glycoconjugates. Sialic 

acids are linked through either α2,3 or α2,6 bonds to galactose or an α2,6 bond to 

N-acetylgalactose (GalNAc). Sialic acid can also be added in an α2,8 linkage to another 

sialic acid, forming polysialic acid. To date, twenty different sialyltransferases have 

been identified in humans (Harduin-Lepers, Krzewinski-Recchi, Colomb, Foulquier, Groux-

Degroote, & Delannoy, 2012). These enzymes add sialic acid to either glycolipids or to 

the N- or O-linked sugar chains of glycoproteins. Sialyltransferases are subdivided into 

four general families: (1) the ST3Gal enzymes, ST3Gal1-6, which add α2,3-linked sialic 

acid to galactose; (2) ST6Gal1 and 2, which add α2,6-linked sialic acid to galactose; (3) 

ST6GalNAc1-6, which add α2,6 sialic acid to GalNAc, and (4) ST8Sia1-6, which generate 

the polysialic acid structure. While α2,8-linked polysialylation is increased in some types of 

cancer (e.g., neuroblastoma) (Pietrobono & Stecca, 2021; Sato & Kitajima, 2021), malignant 

epithelial cells more commonly exhibit an enrichment in α2,3 and α2,6 sialic acids (Bellis, 

Reis, Varki, Kannagi, & Stanley, 2022). The hypersialylation of tumor cells can be caused 

by the upregulation of select sialyltransferases, increased availability of CMP-sialic acid, or 

decreased neuraminidase levels in the cell (Bhide & Colley, 2017; Bull, Stoel, den Brok, 

& Adema, 2014; Rodrigues & Macauley, 2018). An extensive literature has underscored 

the importance of sialoglycans in fundamental processes such as cell-cell communication, 

cell-extracellular matrix communication and intracellular signaling induced by cell surface 

receptors.

Dysregulated sialylation is a hallmark feature of pancreatic and other malignancies. 

Examples of tumor-associated sialoglycans found on glycoproteins include hypersialylated 

N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans (sialyl-Tn and 

sialyl-T antigens) (Bellis et al., 2022; Christiansen, Chik, Lee, Anugraham, Abrahams, & 

Packer, 2014; Dall’Olio, Malagolini, Trinchera, & Chiricolo, 2014; Dobie & Skropeta, 2021; 

Munkley, 2019). Changes in the sialylation of gangliosides are also common in cancer, 

however these have been described elsewhere (Kannagi, Cai, Huang, Chao, & Sakuma, 

2018; Kasprowicz, Sophie, Lagadec, & Delannoy, 2022), and will not be a focus of this 

review. Sialoglycans play a critical role in regulating tumor cell phenotype by modulating 

the activity of transmembrane and secreted glycoproteins. Additionally, the hypersialylation 

of tumor cells can dampen the immune response through sialic acid binding to Siglecs 

(Sialic acid-binding immunoglobulin-type lectins) on the surface of various immune cells. 
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The presence of sialic acids on tumor cells has been associated with a Siglec-mediated 

reduction in effector T cells, an increase in regulatory T cells (Perdicchio, Cornelissen, 

Streng-Ouwehand, Engels, Verstege, & Boon, 2016), and differentiation of monocytes into 

macrophages with an immunosuppressive phenotype (Rodriguez, Boelaars, Brown, Eveline 

Li, Kruijssen & Bruijns, 2021). Together these effects facilitate tumor escape from immune 

surveillance.

The lack of effective treatments for pancreatic cancer underscores the need for a better 

understanding of the molecular mechanisms that drive cancer initiation and progression. 

Elucidating the mechanisms by which sialoglycans promote carcinogenesis may reveal 

important new targets for therapeutic intervention or biomarkers that can be used to 

track disease advancement or recurrence. In this review, we summarize the changes in 

sialylation occurring in pancreatic cancer, the functional contribution of aberrantly-sialylated 

glycoproteins to pathogenesis, and the corresponding role of Siglec receptors in directing 

immunosuppression in response to hypersialylation.

2. Hypersialylation of N-glycosylated proteins

An increase in highly-sialylated, branched N-glycans (Fig. 1A) is one of the prevalent 

glycan alterations observed in epithelial cancers including PDAC (Bellis et al., 2022). 

Hypersialylation of tumor cells has been reported for decades, however more recent glycan 

profiling studies have provided important insights into the overall structure of tumor 

sialoglycans. Comprehensive glycomics analyses using mass spectrometry approaches have 

confirmed that N-glycans expressed by cancer cells carry elevated levels of both α2,3 and 

α2,6 sialylation. For example, analyses of PDAC patient tissues using MALDI imaging 

mass spectrometry indicated that α2,3 and α2,6 sialylated N-glycans were enriched in the 

malignant, compared to healthy, pancreas (McDowell, Klamer, Hall, West, Wisniewski & 

Powers, 2020). Interestingly, while α2,3 sialylation was more abundant than α2,6 sialylation 

in cancer tissues, α2,6 sialylation appeared to be more specific for adenocarcinoma cells 

(McDowell, Klamer, Hall, West, Wisniewski, & Powers, 2020). The N-glycans on serum 

glycoproteins isolated from PDAC patients also displayed increased levels of sialic acid 

(Zhao, Qiu, Simeone, & Lubman, 2007), and the ratio of α2,6 sialylation versus α2,3 

sialylation on the serum glycoproteins was higher for patient samples than for healthy 

controls (Vreeker, Hanna-Sawires, Mohammed, Bladergroen, Nicolardi, & Dotz, 2020). 

Studies of N-glycan composition are reinforced by lectin microarray results (Kurz, Chen, 

Vucic, Baptiste, Loomis & Agrawal, 2021; Rodriguez, Boelaars, Brown, Eveline Li, 

Kruijssen, & Bruijns, 2021; Wagatsuma, Nagai-Okatani, Matsuda, Masugi, Imaoka, & 

Yamazaki, 2020). In a microarray incorporating lectins for numerous glycan structures, 

an increase in α2,3 and α2,6 sialylation was one of the dominant modifications identified 

in tissues from PDAC patients as well as the “KC” PDAC mouse model (Kurz, Chen, 

Vucic, Baptiste, Loomis, & Agrawal, 2021). The KC model, which expresses oncogenic 

KRas (KRasG12D) (Hingorani, Petricoin, Maitra, Rajapakse, King, & Jacobetz, 2003), 

recapitulates human PDAC in that more than 90% of PDAC patients have activating 

mutations in KRas (Wood & Hruban, 2012). These collective studies showing cancer-related 

enrichment in α2,3 and α2,6 sialylated N-glycans are consistent with a wealth of literature 

high-lighting functional roles for these sialoglycans in cancer pathogenesis.
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The α2,3-linked sialylation of N-glycans is elaborated by three main sialyltransferases, 

ST3Gal3, ST3Gal4 and ST6Gal6 (Chung, Yin, Wang, Chuang, Chu, & Betenbaugh, 2015). 

Of these, ST3Gal3 and ST3Gal4 are reportedly overexpressed in pancreatic cancer (Perez-

Garay, Arteta, Llop, Cobler, Pages & Ortiz, 2013; Perez-Garay, Arteta, Pages, de Llorens, 

de Bolos & Vidal-Vanaclocha, 2010; Rodriguez et al., 2021). The expression of ST3Gal3 

and ST3Gal4 is increased by TGFβ (Zhang, Zhang, Holst, Blochl, Madunic, & Wuhrer, 

2022), a well-known inducer of epithelial to mesenchymal transition (EMT), as well as 

pro-inflammatory cytokines found within the tumor microenvironment including TNFα and 

IL-1β (Bassaganas, Allende, Cobler, Ortiz, Llop, & de Bolos, 2015). The high expression 

of ST3Gal4 in combination with ST3Gal1 correlates with significantly lower survival rates 

for PDAC patients (Rodriguez et al., 2021). Heightened activity of ST3Gal3 and ST3Gal4 

is associated with enhanced pancreatic cancer cell migration, invasion and metastasis 

(Bassaganas, Carvalho, Dias, Perez-Garay, Ortiz, & Figueras, 2014; Guerrero, Miro, Wong, 

Massaguer, Martinez-Bosch, & Llorens, 2020; Perez-Garay, Arteta, Llop, Cobler, Pages, 

& Ortiz, 2013; Perez-Garay, Arteta, Pages, de Llorens, de Bolos, & Vidal-Vanaclocha, 

2010). Some of these behaviors may relate to the increased production of sialyl Lewis X 

structures, given that sialoglycans generated by ST3Gal3 and ST3Gal4 serve as substrates 

for subsequent fucosylation (as discussed in the next section). The forced overexpression of 

ST3Gal3 and ST3Gal4 in MDAPanc-28 pancreatic cancer cells was shown to promote cell 

adhesion and motility (Perez-Garay et al., 2010, 2013), whereas knockdown of ST3Gal3 or 

ST3Gal4 in the BxPC-3 and Capan-1 PDAC lines inhibited migratory capacity (Guerrero, 

Miro, Wong, Massaguer, Martinez-Bosch, & Llorens, 2020). These enzymes were further 

implicated in metastasis in studies utilizing the splenic injection metastasis model. Mice 

injected intrasplenically with MDAPanc-28 cells engineered with ST3Gal3 or ST3Gal4 

overexpression developed more metastatic tumors in the liver and other organs, and had 

decreased survival (Perez-Garay et al., 2010, 2013). Surface levels of α2,3 sialylation on 

tumor cells were similarly correlated with metastasis. N-glycan profiling of four different 

pancreatic cancer cell lines showed that lines with higher α2,3 sialylation had more 

metastatic potential compared to cells with low α2,3 sialylation (Holst, Belo, Giovannetti, 

van Die, & Wuhrer, 2017).

The α2,6 sialic acid linkage on N-glycans is directed primarily by the ST6Gal1 

sialyltransferase. ST6Gal2 can also sialylate N-glycans in an α2,6 linkage, however, 

ST6Gal2 expression is either embryonic or largely confined to the brain after birth 

(Takashima et al., 2003). ST6Gal1 expression is upregulated in numerous malignancies 

including pancreatic cancer (Dorsett, Marciel, Hwang, Ankenbauer, Bhalerao, & Bellis, 

2021; Garnham, Scott, Livermore & Munkley, 2019; Lu & Gu, 2015). Upregulation 

occurs, in part, through transcriptional activation of ST6GAL1 by oncogenic forms of ras 

(Dalziel, Dall’Olio, Mungul, Piller, & Piller, 2004; Seales, Jurado, Singhal, & Bellis, 2003). 

Increased ST6Gal1-mediated sialylation has widespread effects on tumor cell phenotype. 

High expression of ST6Gal1 in cancer cells promotes cell migration and invasion (Britain, 

Bhalerao, Silva, Chakraborty, Buchsbaum, & Crowley, 2021; Hait, Maiti, Wu, Andersen, 

Hsu, & Wu, 2022; Isaji, Im, Gu, Wang, Hang, & Lu, 2014; Lin, Kemmner, Grigull, & 

Schlag, 2002; Ranjan & Kalraiya, 2013; Rao, Beggs, Ankenbauer, Hwang, Ma, & Salaita, 

2022; Seales, Jurado, Brunson, Wakefield, Frost, & Bellis, 2005; Zhu, Srivatana, Ullah, 
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Gagneja, Berenson, & Lance, 2001) as well as resistance to apoptosis induced by various 

forms of cell stress including hypoxia and serum growth factor deprivation (Britain et al., 

2017; Jones, Dorsett, Hjelmeland, & Bellis, 2018). ST6Gal1 activity also facilitates tumor 

resistance to chemotherapy and radiotherapy (Chakraborty, Dorsett, Trummell, Yang, Oliver, 

& Bonner, 2018; Lee, Lee, Bae, & Lee, 2008; Lee, Lee, Seo, Park, & Lee, 2010; Schultz, 

Holdbrooks, Chakraborty, Grizzle, Landen, & Buchsbaum, 2016; Schultz, Swindall, Wright, 

Sztul, Landen, & Bellis, 2013; Smithson, Irwin, Williams, Alexander, Smythies, & Nearing, 

2022). For instance, high expression of ST6Gal1 in MiaPaCa2 and BxPC3 PDAC cells 

protects cells from DNA damage induced by gemcitabine (Chakraborty, Dorsett, Trummell, 

Yang, Oliver, & Bonner, 2018), which is a frontline treatment for pancreatic cancer. One 

of the mechanisms by which ST6Gal1 enables cells to withstand cytotoxic stimuli may be 

through promoting cancer stem cell (CSC) characteristics. CSCs are notoriously resistant 

to apoptosis (Garcia-Mayea, Mir, Masson, Paciucci, & ME, 2020; Najafi et al., 2019; 

Safa, 2016). Increased ST6Gal1 activity endows cancer cells with all of the key features 

of a CSC including upregulation of CSC surface markers, enhanced spheroid growth, and 

increased expression of stem cell transcription factors such as Sox9 (Schultz, Holdbrooks, 

Chakraborty, Grizzle, Landen, & Buchsbaum, 2016; Swindall, Londoño-Joshi, Schultz, 

Fineberg, Buchsbaum, & Bellis, 2013). Moreover, knockdown of ST6Gal1 in MiaPaCa2 

PDAC cells impairs tumor-initiating potential in in vivo limiting dilution assays (Schultz et 

al., 2016), the gold standard assay for establishing CSC status. Consistent with a role in 

imparting stem-like features, ST6Gal1 activity promotes EMT in the Suit2 and S2-LM7AA 

pancreatic cancer cell lines (Britain, Bhalerao, Silva, Chakraborty, Buchsbaum, & Crowley, 

2021). Recent studies in mouse models strongly support a role for ST6Gal1 in pancreatic 

cancer progression.

In the KC PDAC model, deletion of St6gal1 impeded the formation of early neoplastic 

lesions known as PanINs (Pancreatic intraepithelial neo-plasias) (Kurz et al., 2021). 

Additionally, Hsieh et al. reported that ST6Gal1 contributed to the transition between 

pancreatitis and PDAC development (Hsieh, Shyr, Liao, Chen, Wang, & Lu, 2017). 

Specifically, the administration of fructose to KC mice with cerulein-induced pancreatitis 

accelerated invasive PDAC, and ST6Gal1 activity was central to this process.

The mechanism by which enhanced α2,3 and α2,6 sialylation regulates tumor cell behavior 

depends, in large part, upon sialylation-induced changes in the activity of cell surface 

receptor glycoproteins. The hypersialylation of N-glycans can influence many aspects of 

glycoprotein structure and/or localization including conformation, oligomerization and cell 

surface retention. In turn, altered receptor sialylation modulates intracellular signaling 

cascades and gene expression. It is noteworthy that receptor tyrosine kinases (RTKs) 

seem to be particularly affected by modifications in sialylation (Duarte et al., 2022; Gao, 

Luan, Melamed, & Brockhausen, 2021). Some of the RTKs known to be activated by 

α2,3 sialylation include the Insulin Receptor and the oncogenic RTKs, MET and RON 

(Balmana, Diniz, Feijao, Barrias, Mereiter, & Reis, 2020; Gomes, Osorio, Pinto, Campos, 

Oliveira, & Reis, 2013; Mereiter, Magalhaes, Adamczyk, Jin, Almeida, & Drici, 2016). 

Reis and colleagues demonstrated that increased α2,3 sialylation of MET resulting from 

the overexpression of ST3Gal4 stimulated receptor activation, cell invasion and resistance 

to the tyrosine kinase inhibitor, crizotinib (Balmana et al., 2020; Gomes et al., 2013). RTKs 
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are similarly affected by alterations in α2,6 sialylation. An activating role for ST6Gal1-

mediated α2,6 sialylation has been reported for EGFR, MET and ERBB2 (Her2) (Britain 

et al., 2021; Britain, Holdbrooks, Anderson, Willey, & Bellis, 2018; Liu, Liu, Pan, Huang, 

Qi, & Li, 2019; Liu, Zhu, Linhai, Song, Gui, & Tan, 2018; Qian, Zhu, Tang, Shen, Ai, & 

Li, 2009; Rao, Beggs, Ankenbauer, Hwang, Ma, & Salaita, 2022). In pancreatic cancer cells, 

the α2,6 sialylation of EGFR promoted cell invasiveness and EMT (Britain et al., 2021), 

and protected against the EGFR inhibitor, gefitinib (Britain et al., 2018). Along with RTKs, 

the pro-survival function of ST6Gal1 is mediated through the α2,6 sialylation of the TNFR1 

and Fas death receptors. The α2,6 sialylation of TNFR1 and Fas blocks ligand-induced 

internalization of these receptors, thereby preventing apoptotic signaling (Holdbrooks et al., 

2018; Swindall & Bellis, 2011). Finally, integrin cell adhesion receptors represent another 

key target for sialylation by ST6Gal1. Indeed, many of ST6Gal1’s effects on tumor cell 

migration and invasion are driven by sialylation of the β1 integrin subunit (Christie, Shaikh, 

Lucas, Lucas, & Bellis, 2008; Hou, Hang, Isaji, Lu, Fukuda, & Gu, 2016; Seales et al., 

2005; Shaikh, Seales, Clem, Hennessy, Zhuo, & Bellis, 2008). Taken together, these studies 

point to the importance of receptor sialylation in tumor cell growth, apoptosis-resistance, 

migration and invasiveness.

In conjunction with well-established functional roles for receptor sialylation, emerging 

evidence suggests that the sialylation of N-glycans may be a pivotal determinant for the 

efficacy of therapeutic monoclonal anti-bodies (Duarte et al., 2022). Duarte et al. showed 

that the α2,6 sialylation of N-glycans on ERBB2 blocked the binding of Trastuzumab, 

and it was further suggested that high ST6Gal1 levels may be predictive of a poor patient 

response to Trastuzumab therapy (Duarte, Rodrigues, Gomes, Hensbergen, Ederveen, & de 

Ru, 2021). Likewise, the α2,6 sialylation of EGFR protected against cytotoxicity induced 

by Cetuximab (Rodrigues, Duarte, Gomes, Balmana, Martins, & Hensbergen, 2021). In light 

of the growing use of tumor-targeting therapeutic antibodies, these studies have significant 

implications for cancer treatment.

3. Sialyl Lewis antigens

A common feature of pancreatic tumors is an increase in expression of sialyl Lewis antigens 

(Fig. 1B) (Satomura, Sawabu, Takemori, Ohta, Watanabe, & Okai, 1991; Singh, Pal, Yadav, 

Tang, Partyka, & Kletter, 2015; Zhang, Yang, Li, Wu, Zhang, & Chen, 2015). Sialyl Lewis 

structures can be found on N- and O-linked glycans on glycoproteins, or on glycolipids 

(Trinchera et al., 2017). The Lewis X (LeX) antigen is generated by the addition of an 

α1,3-linked fucose to GlcNAc on type 2N-acetyllactosamine (LacNAc). The sialyl Lewis 

X (sLeX) structure contains both an α1,3-linked fucose and an α2,3-linked sialic acid 

on type 2 LacNAc. Alternatively, α1,4 fucosylation occurs on type 1 LacNAc, leading 

to Lewis A (LeA). The sialyl LeA (sLeA) tetrasaccharide includes the α1,4-linked fucose 

and an α2,3-linked sialic acid on type 1 LacNAc. Multiple glycosyltransferases contribute 

to the synthesis of sialyl Lewis antigens, including various α1,3 fucosyl-transferases 

and α1,4 fucosyltransferases, which transfer fucose to type 2 and type 1 LacNAcs, 

respectively. Additionally, several α2,3 sialyltransferases direct the sialylation of type 1 

and type 2 LacNAcs. Increased sialyl Lewis expression is one of the main changes to 

the glycome in pancreatic cancer, and functionally, sialyl Lewis antigens play a seminal 
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role in hematogenous metastasis (Natoni et al., 2016; Satomura, Sawabu, Takemori, Ohta, 

Watanabe, & Okai, 1991; Sozzani, Arisio, Porpiglia, & Benedetto, 2008). Sialyl Lewis 

antigens are preferentially expressed on the surface of metastatic adenocarcinoma cells 

(Hanski, Hanski, Zimmer, Ogorek, Devine, & Riecken, 1995). These structures mediate 

tumor cell interactions with the vascular endothelium, facilitating tumor cell extravasation 

and metastasis (Lowe, Stoolman, Nair, Larsen, Berhend, & Marks, 1990; Takada, Ohmori, 

Yoneda, Tsuyuoka, Hasegawa, & Kiso, 1993; Walz, Aruffo, Kolanus, Bevilacqua, & Seed, 

1990).

The sLeA antigen is highly expressed in embryonic tissues, down-regulated in adult 

tissues, and then re-expressed in malignant lesions (Goonetilleke & Siriwardena, 2007; 

Lahdenne, Pitkanen, Rajantie, Kuusela, Siimes, & Lanning, 1995). FUT3 is the primary 

fucosyltransferase involved in generating sLeA, along with the ST3Gal3 sialyltransferase 

(Dall’Olio et al., 2021; Trinchera et al., 2017). FUT3 overexpression is associated with 

a poor patient prognosis in breast (do Nascimento et al., 2020) and renal carcinoma 

(Meng, Xu, Yang, Zhou, Chang, & Shi, 2017) and knockdown of FUT3 inhibits pancreatic 

cancer cell proliferation and invasion in vivo (Zhan et al., 2018). The sLeA antigen has 

been identified on a variety of proteins including carcinoembryonic antigen, circulating 

apo-lipoproteins, and mucins (Tang, Hsueh, Kletter, Bern, & Haab, 2015). The binding of 

tumor cell sLeA antigens to E-selectin on endothelial cells promotes tumor cell rolling, 

an event necessary for the subsequent arrest of tumor cells and exit from the vasculature 

(Kannagi, 2007; Takada, Ohmori, Takahashi, Tsuyuoka, Yago, & Zenita, 1991). Supporting 

a pro-metastatic role for sLeA, treatment with function-blocking antibodies against sLeA 

inhibited the development of liver metastases after intraperitoneal transplantation of 

SW1990 pancreatic cancer cells (Hosono, Narita, Kimura, Sato, Nakashio, & Kasai, 1998). 

Moreover, high sLeA expression on SUIT2 pancreatic cancer cells increased their adherence 

to endothelial cells after TNFα stimulation, and the sLeA-expressing SUIT2 cells more 

readily developed liver metastasis when implanted into nude mice after inflammatory 

insult (Nozawa, Hirota, Okabe, Shibata, Iwamura, & Haga, 2000). Levels of sLeA have 

been consistently correlated with metastasis across multiple pancreatic cancer cell lines. In 

carcinoma cell lines generated from 9 pancreatic cancer patients, the expression of sLeA was 

significantly associated with metastasis and strikingly, the intensity of surface sLeA on each 

cell line directly correlated with the number of metastatic colonies in the liver (Kishimoto, 

Ishikura, Kimura, Takahashi, Kato, & Yoshiki, 1996). Definitive evidence that sLeA antigens 

play a causal role in pancreatic cancer progression was provided by the Tuveson laboratory. 

This group generated a genetically-engineered mouse model that expressed sLeA antigens in 

the pancreas via the transgenic expression of the FUT3 and β3GALT5 glycosyltransferases 

(Engle, Tiriac, Rivera, Pommier, Whalen & Oni, 2019). Mice expressing sLeA antigens 

developed severe pancreatitis that, in the presence of oncogenic Kras, led to accelerated 

pancreatic cancer initiation and reduced survival when compared with mice expressing Kras 

alone (Engle, Tiriac, Rivera, Pommier, Whalen, & Oni, 2019). In the aggregate, these results 

implicate the sLeA antigen as an attractive target for immunotherapeutic treatment of PDAC, 

and fully humanized sLeA antibodies have passed phase 1 A clinical trials for pancreatic 

cancer (Sawada, Sun, Wu, Hong, Ragupathi, & Livingston, 2011).
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The sLeA structure is the epitope of the CA19-9 antigen, which was discovered in 

1979 and has been widely used as a clinical biomarker for pancreatic cancer (Herlyn, 

Sears, Steplewski, & Koprowski, 1982; Herlyn, Steplewski, Herlyn & Koprowski, 1979; 

Koprowski, Steplewski, Mitchell, Herlyn, Herlyn, & Fuhrer, 1979; Magnani, Brockhaus, 

Smith, Ginsburg, Blaszczyk, & Mitchell, 1981; Magnani, Nilsson, Brockhaus, Zopf, 

Steplewski, & Koprowski, 1982; Magnani, Steplewski, Koprowski, & Ginsburg, 1983; Yue, 

Partyka, Maupin, Hurley, Andrews, & Kaul, 2011). CA19-9 is useful for monitoring patient 

response to cancer treatment but has limited utility in terms of diagnosis (Galli et al., 

2013; Goonetilleke & Siriwardena, 2007; Tempero, Uchida, Takasaki, Burnett, Steplewski, 

& Pour, 1987; Yue, Maupin, Fallon, Li, Partyka, & Anderson, 2011). However, monitoring 

CA19-9 antigen on specific proteins, such as mucins, may improve the performance of 

the CA19-9 assay (Partyka, Maupin, Brand, & Haab, 2012; Tang, Partyka, Hsueh, Sinha, 

Kletter, & Zeh, 2016; Yue, Maupin, Fallon, Li, Partyka, & Anderson, 2011). CA19-9 antigen 

has been reported to be carried by MUC1, MUC5AC, and MUC16 in pancreatic cancer 

(Yue, Goldstein, Hollingsworth, Kaul, Brand, & Haab, 2009; Yue, Maupin, et al., 2011), and 

the presence of sialyl Lewis epitopes on MUC16 enhances the ability of circulating tumor 

cells to adhere to E and L-selectins (Chen, Dallas, Balzer, & Konstantopoulos, 2012).

As with sLeA, the sLeX antigen is overexpressed in both PDAC cell lines and tissues 

(Hosono, Narita, Kimura, Sato, Nakashio, & Kasai, 1998; Kim, Itzkowitz, Yuan, Chung, 

Satake, & Umeyama, 1988; Peracaula, Tabares, Lopez-Ferrer, Brossmer, de Bolos, & de 

Llorens, 2005; Satomura et al., 1991; Sinn, Brown, Oberle, & Thompson, 1992). A variety 

of α1,4 fucosyltransferases can participate in the biosynthesis of sLeX antigens including 

FUT4,5,6 and 7 (Dall’Olio et al., 2021; Trinchera et al., 2017). Of these, FUT6 is known 

to be upregulated in pancreatic cancer (Mas, Pasqualini, Caillol, El Battari, Crotte, & 

Lombardo, 1998). FUT3 can also generate sLeX, as this enzyme has both α1,3 and α1,4 

fucosyltransferase activity (Kukowska-Latallo, Larsen, Nair, & Lowe, 1990; Trinchera et al., 

2017).

The sialylation of sLeX is mainly elaborated by ST3Gal3,4 or 6 (Carvalho, Harduin-Lepers, 

Magalhaes, Machado, Mendes, & Costa, 2010). Elevated sLeX levels were documented 

in approximately 30% of pancreatic cancer tissues (Pour, Tempero, Takasaki, Uchida, 

Takiyama, & Burnett, 1988) and select proteins with enriched sLeX showed increased 

expression in PDAC patients compared to healthy controls (Balmana, Sarrats, Llop, 

Barrabes, Saldova, & Ferri, 2015; Sarrats, Saldova, Pla, Fort, Harvey, & Struwe, 2010). 

Numerous proteins implicated in pancreatic cancer, including Wnt7b and SPARC, express 

the sLeX antigen (Rho, Mead, Wright, Brenner, Stave, & Gildersleeve, 2014). Increased 

expression of sLeX is an efficient marker for predicting the postoperative progression of 

hepatic metastasis, where PDAC patients with high sLeX have a poor prognosis (Takahashi, 

Oda, Hasebe, Sasaki, Kinoshita, & Konishi, 2001a, 2001b). In one study, sLeX was found 

to be upregulated in only 13 of 69 pancreatic cancers, but co-expression of sLeA and sLeX 

enhanced the ability to differentiate pancreatic cancers from benign pancreatic diseases 

(Tang, Singh, Partyka, Kletter, Hsueh, & Yadav, 2015).

Interestingly, the expression of sLeX and sLeA antigens may be influenced by the activity 

of the α1,2 fucosyltransferases, FUT1 and FUT2, which add fucose to galactose (Abrantes, 
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Posada, Guillon, Esteves, & Le Pendu, 2009; Blanas, Sahasrabudhe, Rodriguez, van Kooyk, 

& van Vliet, 2018). Because FUT1/2 compete with α2,3 sialyltransferases for the galactose 

on LacNAc, high levels of FUT1/2 can inhibit the production of sialyl Lewis structures 

(Gorelik, Xu, Henion, Anaraki, & Galili, 1997; Goupille, Hallouin, Meflah, & Le Pendu, 

1997; Prieto, Larsen, Cho, Rivera, Shilatifard, & Lowe, 1997). For example, the ectopic 

expression of FUT1 in pancreatic cancer cells suppressed the expression of sLeA and sLeX, 

which concomitantly attenuated E selectin-mediated cell adhesion as well as metastatic 

properties in vivo (Aubert, Panicot, Crotte, Gibier, Lombardo, & Sadoulet, 2000a,2000b). 

In another study, FUT1 overexpression in pancreatic (BxPC3), hepatic (HepG2), and colon 

(HT-29) cancer cell lines reduced sLeX, but not sLeA, expression. The FUT1-transduced 

HT-29 and HepG2 cells, but not BxPC3 cells, failed to bind to E-selectin or to activated 

endothelial cells (Mathieu, Prorok, Benoliel, Uch, Langlet, & Bongrand, 2004).

The bioavailability of particular sialyltransferases can also regulate sLeA and sLeX 

expression levels. Peracaula and colleagues examined sialyltransferases in the established 

PDAC cell lines, Capan-1, MDAPanc-3, MDAPanc-28 and Panc-1 (Perez-Garay et al., 

2013). MDAPanc-28 cells had the lowest expression of ST3Gal3 and ST3Gal4 while the 

other lines had comparable transcript levels of both enzymes. ST3Gal6 was undetectable 

in all cell lines examined. All cell lines, with the exception of MDAPanc-28, demonstrated 

high ST3Gal3 and ST3Gal4 expression, which correlated with high α2,3 sialyltransferase 

activity. Accordingly, greater cell surface levels of sLeA and sLeX were noted in all cell 

lines except MDAPanc-28. The overexpression of ST3Gal4 in MDAPanc-28 cells resulted in 

heightened E-selectin-dependent cell adhesion and migration and a heterogeneous increase 

in sLeX levels. In another study, Capan-1 and MDAPanc-28 cells with forced overexpression 

of ST3Gal3 displayed upregulated surface sLeX expression and enhanced E-selectin binding 

capacity and cell migration (Perez-Garay et al., 2010). Conversely, knockdown of ST3Gal3 

and ST3Gal4 expression in BxPC3 and Capan-1 cells led to significantly lower levels of 

sLeX, leading to inefficient binding to E-selectin as well as decreased cell migration and 

invasion (Guerrero et al., 2020).

Further underscoring the functional importance of sLeA and sLeX antigens, the 

establishment and growth of metastatic colonies of the human pancreatic carcinoma cell 

line, PCI-6, were reduced after antibody blockade of sLeA and sLeX (Kawarada, Ishikura, 

Kishimoto, Kato, Yano, & Kato, 2000). Consistent with this work, Aubert et al. knocked-

down FUT3 expression in BxPC3 pancreatic cancer cells and found that this diminished 

the expression of sLeA and sLeX, and prevented cancer cell adhesion to E-selectin with 

a resultant decrease in metastasis (Aubert, Panicot-Dubois, Crotte, Sbarra, Lombardo, 

& Sadoulet, 2000a, 2000b). On the other hand, some data suggest a unique role for 

Lewis-negative pancreatic tumor cells. In a study including 853 patients with pancreatic 

cancer, 11.7% of patients were Lewis negative (Liu, Deng, Jin, Gong, Cheng, & Fan, 

2020). The Lewis‑negative patients had poorer outcomes and higher metastatic rates than 

Lewis‑positive patients. Although there is robust evidence for the pro-invasive phenotype 

conferred by sLeA and sLeX antigen expression, more investigation is needed to elucidate 

the molecular mechanisms that account for the aggressiveness of Lewis antigen-negative 

pancreatic cancer.
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4. Sialylated forms of truncated O-glycans

Another major alteration in the glycome of neoplastic cells is the expression of 

immature, truncated O-glycans, exemplified by the Tn, sialyl-Tn (sTn), T and sialyl-

T (sT) antigens (Fig. 1C). Truncated O-glycans arise from the disrupted elongation 

of mucin-type O-glycan chains. Mucin-type O-glycosylation is initiated by a family 

of N-acetylgalactosaminyltransferases (GALNTs) that transfer GalNAc to the hydroxyl 

group of serine or threonine residues to generate the Tn antigen (GalNAcα1-Ser/Thr). 

Galactose is then added to the Tn antigen by the T synthase enzyme (core 1 β1,3 

galactosyltransferase, C1GALT1) to produce the T antigen, specifically, the core 1 

disaccharide, Galβ1-3GalNAcα1. In normal tissues, the core 1 disaccharide is typically 

extended by an array of enzymes which together direct the synthesis of elongated, and 

often branched, O-glycan structures (Magalhaes et al., 2021). The dysregulated synthesis 

of O-glycans contributes to a number of pathologies including familial tumoral calcinosis 

(Ichikawa, Guigonis, Imel, Courouble, Heissat, & Henley, 2007; Kato, Jeanneau, Tarp, 

Benet-Pages, Lorenz-Depiereux, & Bennett, 2006; Topaz, Shurman, Bergman, Indelman, 

Ratajczak, & Mizrachi, 2004), Tn syndrome (Flores, Lemos, Rema, Taulescu, Seixas, & 

Reis, 2020; Ju & Cummings, 2005), IgA nephropathy (Allen, Bailey, Brenchley, Buck, 

Barratt, & Feehally, 2001), high-density lipoprotein metabolism (Kathiresan, Melander, 

Guiducci, Surti, Burtt, & Rieder, 2008; Wang, Mao, Narimatsu, Ye, Tian, & Goth, 2019) and 

cancer (Ju, Aryal, Kudelka, Wang, & Cummings, 2014; Kim & Varki, 1997; Kolbl et al., 

2015; Springer, 1997; Stowell et al., 2015).

The abnormal expression of immature, truncated O-glycans is a characteristic feature of 

nearly all epithelial cancers. One of the prime mechanisms underlying the synthesis of 

truncated O-glycans is a decrease in the activity of the T synthase, which leads to an 

accumulation in the Tn antigen. The Tn antigen can be sialylated by certain ST6GalNAc 

enzymes to produce the sTn disaccharide (α2,6 sialylated GalNAc), but cannot be further 

extended. The T synthase requires a molecular chaperone called COSMC (C1GALT1C1) 

for proper folding and export to the Golgi (Wang, Ju, Ding, Xia, Wang, & Xia, 2010). In 

the absence of COSMC, the T synthase is misfolded and targeted for degradation by the 

proteasome (Ju & Cummings, 2002). Indeed, knockdown of COSMC expression in Panc-1 

PDAC cells prevented O-glycan elongation beyond the initial GalNAc addition (Hofmann, 

Schluter, Lange, Mercanoglu, Ewald & Folster, 2015). The increased levels of Tn antigen in 

the COSMC knockdown cells were associated with enhanced cell migration and resistance 

to apoptosis (Hofmann, Schluter, Lange, Mercanoglu, Ewald, & Folster, 2015). In the 

T3M4 PDAC cell line, genetic deletion of C1GALT1C1 conferred oncogenic characteristics 

including cell invasiveness, apoptosis-resistance and EMT, along with enhanced tumor 

growth and invasion in xenograft models (Radhakrishnan, Dabelsteen, Madsen, Francavilla, 

Kopp & Steentoft, 2014; Thomas, Sagar, Caffrey, Grandgenett, & Radhakrishnan, 2019). A 

tumor-promoting function for COSMC was further confirmed in a genetically-engineered 

mouse model. Chugh et al. crossed the COSMC knockout mouse line to the “KPC” PDAC 

mouse model, which expresses oncogenic KRas (KrasG12D) and mutated p53 (Trp53R172H) 

(Chugh, Barkeer, Rachagani, Nimmakayala, Perumal & Pothuraju, 2018). KPC mice with 

COSMC knockout exhibited significantly accelerated PDAC progression, metastasis and 
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mortality. The more advanced malignancy noted in COSMC knock-out mice was attributed, 

at least in part, to the activation of the ERBB family receptors, EGFR and Her2.

The C1GALT1C1 gene is silenced in many types of cancers including PDAC through 

hypermethylation (Ju, Lanneau, Gautam, Wang, Xia & Stowell, 2008; Radhakrishnan, 

Dabelsteen, Madsen, Francavilla, Kopp, & Steentoft, 2014). Radhakrishnan el al. 

suggested that increased expression of Tn and sTn could be attributed to C1GALT1C1 
hypermethylation in 38% of PDAC tumors (Radhakrishnan et al., 2014). Loss-of-function 

mutations or deletions in C1GALT1C1 constitute another major conduit for increased 

expression of Tn/sTn (Ju, Lanneau, Gautam, Wang, Xia, & Stowell, 2008). Inactivating 

mutations in C1GALT1C1 have been documented in many human cancers and are 

consistently correlated with reduced expression of the T synthase and increased abundance 

of Tn and sTn (Sun et al., 2018). However, in one study of PDAC patient tissues, no 

mutations were detected in C1GALT1C1, whereas hypermethylation of C1GALT1C1 was 

prevalent (Radhakrishnan et al., 2014).

Truncations in O-glycan structure can also occur as a consequence of increased expression 

of ST6GalNAc1, which appears to be the principal enzyme responsible for generating 

sTn (Ogawa, Hirohashi, Murai, Nishidate, Okita, & Wang, 2017). The upregulation of 

ST6GalNAc1 in pancreatic and other cancers has been widely reported (Hruban, Goggins, 

Parsons, & Kern, 2000; Schuessler, Pintado, Welt, Real, Xu, & Melamed, 1991). Because 

ST6GalNAc1 and the T synthase both use Tn as a substrate, high levels of ST6GalNAc1 

may out-compete the T synthase, resulting in an enrichment in sTn. Tn and sTn antigens 

are not usually detected in the healthy pancreas, however, these O-glycan structures are 

markedly upregulated in PDAC tissues (Hofmann et al., 2015; Remmers, Anderson, Linde, 

DiMaio, Lazenby, & Wandall, 2013; Romer, Aasted, Dabelsteen, Groen, Schnabel & Tan, 

2021). The overexpression of Tn and sTn has been associated with enhanced PDAC growth 

and metastatic dissemination, as well as poor patient prognosis (Burchell et al., 2001; 

Hofmann et al., 2015; Mereiter, Balmana, Gomes, Magalhaes, & Reis, 2016; Radhakrishnan 

et al., 2014).

The sTn antigen has served as an important cancer biomarker for decades (Munkley, 2016). 

Elevated levels of sTn are detectable in tissue sections and sera from PDAC patients 

(Motoo, Kawakami, Watanabe, Satomura, Ohta, & Okai, 1991; Nanashima, Yamaguchi, 

Nakagoe, Matsuo, Sumida, & Tsuji, 1999; Thomas et al., 2019) and have both diagnostic 

and prognostic significance. Mucins are major carriers of sTn, and much of the sTn 

present in serum is present on shed forms of mucins such as MUC1 and MUC16 (Aithal, 

Rauth, Kshirsagar, Shah, Lakshmanan, & Junker, 2018; Chen, Zhang, Zhang, Zhu, Ko, 

& Yung, 2021; Rajesh, Sagar, Rathinavel, Chemparathy, Peng, & Yeh, 2022). In tandem 

with biomarker function, sTn is receiving increasing attention as a therapeutic target. 

Humanized antibodies are in development for use in antibody-drug conjugate treatments 

and other types of immunotherapy (Eavarone, Al-Alem, Lugovskoy, Prendergast, Nazer, & 

Stein, 2018; Loureiro, Sousa, Ferreira, Chai, Lima, & Pereira, 2018; Prendergast, Galvao 

da Silva, Eavarone, Ghaderi, Zhang, & Brady, 2017). Additionally, sTn is currently being 

investigated as a target molecule for vaccines (Ibrahim, Murray, Zhou, Mittendorf, Sample, 
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& Tautchin, 2013) and CAR-T cell therapies (Abrantes, Duarte, Gomes, Walchli, & Reis, 

2022; Loureiro, Feldmann, Bergmann, Koristka, Berndt, & Arndt, 2018).

Similar to Tn and sTn, the T antigen and sT antigen are frequently enriched in cancer 

cells (Cervoni, Cheng, Stackhouse, Heimburg-Molinaro, & Cummings, 2020; Munkley & 

Elliott, 2016). The sT antigen is elaborated primarily by the ST3Gal1 enzyme, which adds 

sialic acid in an α2,3 linkage to the galactose of the T antigen. Both ST3Gal1 and the sT 

antigen are overexpressed in an array of cancers, including pancreatic cancer (Hugonnet, 

Singh, Haas, & von Gunten, 2021; Rodriguez et al., 2021). However, the T antigen is 

also expressed in the healthy pancreas (albeit at lower levels) (Doi, Ino, Angata, Shimada, 

Narimatsu, & Hiraoka, 2020; Osako, Yonezawa, Siddiki, Huang, Ho, & Kim, 1993), which 

limits its usefulness as a cancer-specific biomarker. Furthermore, the expression of the 

T antigen in PDAC tissues is much lower than that of the Tn antigen (Chugh, Barkeer, 

Rachagani, Nimmakayala, Perumal, & Pothuraju, 2018).

Truncated O-glycans are frequently expressed in early stage, pre-malignant lesions that 

harbor potential to develop into adenocarcinomas (Burchell et al., 2001; Freitas, Campos, 

Gomes, Pinto, Macedo, & Matos, 2019; Ju et al., 2014; Ju, Wang, Aryal, Lehoux, Ding, & 

Kudelka, 2013; Julien et al., 2012; Radhakrishnan et al., 2014). Intriguingly, the expression 

of Tn and sTn is often reduced with increasing tumor progression (Romer, Aasted, 

Dabelsteen, Groen, Schnabel, & Tan, 2021). It has been suggested that the expression of 

Tn/sTn and T/sT antigens may be inversely correlated. Tn/sTn antigens are upregulated in 

premalignant cells, promoting early events in tumorigenesis, whereas the expression levels 

of T-synthase, and thus T antigen, appear to increase with tumor progression (Bergstrom, 

Liu, Zhao, Gao, Wu, & Song, 2016; Gao, Bergstrom, Fu, Xie, Chen, & Xia, 2016). 

Therefore, Tn and sTn may be useful biomarkers or therapeutic targets for early stages 

in neoplasia, while targeting T and sT antigen may be more effective in established tumors.

5. Activation of Siglec receptors by tumor sialoglycans

The sialylation of surface receptors has profound effects on tumor cell signaling and 

phenotype, however tumor sialylation also plays a major role in regulating the behavior 

of immune cells within the tumor microenvironment. Sialic acids present on the surface of 

tumor cells serve as ligands for the Siglec family of mammalian lectins (Fig. 1D) (Varki 

& Angata, 2006). Hypersialylated N-glycans, sialyl Lewis structures, and sTn antigens 

all serve as important ligands for Siglecs (Gonzalez-Gil & Schnaar, 2021). Siglecs are 

expressed by a diversity of immune cells including tumor-infiltrating T cells, B cells, 

NK cells, dendritic cells, and macrophages (Crocker & Varki, 2001; Duan & Paulson, 

2020; Gonzalez-Gil & Schnaar, 2021; Varki & Angata, 2006). Siglecs are categorized 

into two subtypes according to sequence homology, CD33-related Siglecs that show high 

sequence identity (50–99%) and the others (Siglec-1, Siglec-2, Siglec-4, and Siglec-15) 

sharing 25%–30% sequence identity (Gonzalez-Gil & Schnaar, 2021; Laubli, Kawanishi, 

George Vazhappilly, Matar, Merheb, & Sarwar Siddiqui, 2021; Lim et al., 2021). Fourteen 

Siglecs have been identified in humans (Gonzalez-Gil & Schnaar, 2021). Thirteen of these 

are found on overlapping immune cell types, and one (Siglec-4) on myelinated neurons. 

Structurally, Siglecs have an extra-cellular N-terminal V-set immunoglobulin (Ig) domain 
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with a conserved sialic acid-binding site, followed by varying numbers of C2-set Ig-like 

domains (Crocker, Clark, Filbin, Gordon, Jones, & Kehrl, 1998; Crocker et al., 2007; Duan 

& Paulson, 2020; Gonzalez-Gil & Schnaar, 2021). The extracellular domain is connected to 

a single membrane-spanning domain and a cytosolic domain containing multiple regulatory 

motifs. Based on the intracellular motifs, Siglecs can exert activating or inhibitory effects 

to modulate the immune system. Siglecs that carry intracellular immunoreceptor tyrosine-

based inhibitory (ITIM) motifs are major drivers of inhibitory immune responses (Gonzalez-

Gil & Schnaar, 2021; Jiang, Qi, Kang, & Wang, 2022). Immune cells infiltrating into the 

tumor bind to tumor sialic acids through their surface Siglecs; this interaction consequently 

suppresses the immune response leading to tumor escape from immune surveillance (Hudak 

et al., 2014; Laubli, Pearce, Schwarz, Siddiqui, Deng, & Stanczak, 2014). Hence, Siglecs 

serve as immune checkpoint molecules much like the well-known immunotherapy targets, 

programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 

4 (CTLA-4) (Fraschilla & Pillai, 2017; Macauley, Kawasaki, Peng, Wang, He, & Arlian, 

2015; Sharma & Allison, 2015). There is currently growing interest in exploiting the 

sialoglycan-Siglec axis as a novel avenue for immune checkpoint therapy (Adams, Stanczak, 

von Gunten, & Laubli, 2018; Bull, Heise, Adema, & Boltje, 2016; Daly et al., 2019), and 

several Siglec inhibitors have entered into clinical trials.

PDAC has an aggressive and complex tumor microenvironment (Dougan, 2017; Rodriguez 

et al., 2021) and anti-PD1 immunotherapy shows little effectiveness for treatment of this 

malignancy (Dougan, 2017; Feng, Xiong, Cao, Yang, Zheng, & Song, 2017). Recently, 

Rodriguez et al. uncovered a role for the inhibitory Siglecs, Siglec-7 and Siglec-9, in PDAC 

progression (Rodriguez et al., 2021). It was demonstrated that the engagement of Siglec-7 

and Siglec-9 on monocytic cells with sialic acids on PDAC cells induced the conversion 

of monocytes into immunosuppressive macrophages within the microenvironment. In this 

same report, the Siglec-dependent reprogramming of monocytes was associated with 

poor patient outcomes. This work established Siglec activation as a key mechanism 

underlying PDAC-mediated immunosuppression, and also identified Siglecs as promising 

new immunotherapy targets that could potentially serve as alternatives to PD1-targeting 

treatments. Notably, CAR-T cell therapies have been developed that incorporate Siglec-7 or 

Siglec-9 to enable targeting of sialic acid-expressing tumor cells. Siglec-7/9-based CAR-T 

cell therapy is currently being tested for potential treatment of melanoma (Meril, Harush, 

Reboh, Matikhina, Barliya, & Cohen, 2020), however there is hope that this strategy may 

have efficacy in PDAC. Humanized monoclonal antibodies against Siglecs also hold promise 

for treatments utilizing antibody-drug conjugates (Lim et al., 2021; Smith & Bertozzi, 

2021).

A role for Siglec-4 (also called Myelin Associated Glycoprotein or MAG) has been reported 

in the recurrence of PDAC after surgical resection (Lim et al., 2021; Swanson, McDermott, 

Singh, Eggers, Crocker, & Hollingsworth, 2007). Siglec-4 is mainly expressed in myelinated 

neurons and auto-antibodies against Siglec-4 have been observed in several neuropathic 

syndromes (Dougan, 2017). Apart from the brain, an interaction between Siglec-4 and 

MUC1 expressed on tumor cells is involved in pancreatic cancer perineural invasion 

(Swanson et al., 2007). Perineural invasion is a common pathologic manifestation in PDAC, 

whereby cancer cells invade the endoneurium of pancreatic nerves. This process leads to 
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significant lower back pain in PDAC patients and is a source of local recurrence after 

the resection of primary tumor masses (Liu, Ma, Xu, Lei, Li, & Wang, 2012; Swanson et 

al., 2007; Takahashi, Hasebe, Oda, Sasaki, Kinoshita, & Konishi, 2001a, 2001b). Swanson 

et al. showed that Siglec-4 binds to pancreatic cancer cells in a sialic acid–dependent 

manner and interacts with the MUC1 adhesive mucin (Swanson et al., 2007). MUC1 is 

overexpressed and aberrantly glycosylated in PDAC and is responsible for the adhesion of 

PDAC cells to Siglec-4-expressing pancreatic nerves. Future studies of the Siglec-4 and 

MUC1 interaction could provide new avenues for developing treatments for pancreatic 

cancer pain and recurrence.

More recently, Siglec-15 has been implicated in pancreatic cancer progression and 

prognosis. High Siglec-15 mRNA expression was associated with worse overall survival 

of PDAC patients (Li, Huang, Chen, Yao, Ke, & He, 2020). Siglec-15 has also been 

reported to promote PDAC immune evasion. Li et al. showed that sialic acids on PDAC 

cells interacted with Siglec-15 to potentiate the immunosuppressive properties of tumor-

associated macrophages within the PDAC microenvironment (Li, Jin, Li, Ye, Li, & 

Jiang, 2022). However, a separate study suggested that Siglec-15 was associated with 

favorable patient outcomes (Chen, Mo, Zhang, Ma, Lu, & Yu, 2022). In this latter report, 

Siglec-15 was primarily expressed by moderate to well-differentiated tumors, and was 

found to be a good prognostic indicator for PDAC. Further studies will be needed to 

resolve this discrepancy. Like Siglec-15, Siglec-10 has emerged as a potential mediator of 

immunosuppression in PDAC. In this case, Siglec-10 appears to exert its biological effects 

by binding to the CD24 surface receptor (Yin & Gao, 2020). The binding of Siglec-10 to 

sialylated forms of CD24 expressed by pancreatic cancer cells facilitated tumor cell escape 

from immune recognition. CD24 is a well-known marker for cancer stem cells, and is a 

major player in the malignant behavior of pancreatic cancer (Ikenaga, Ohuchida, Mizumoto, 

Yu, Kayashima, & Hayashi, 2010). The identification of a Siglec-10-CD24 interaction 

highlights a new glycosylation-dependent mechanism by which CD24 may promote tumor 

progression.

6. Concluding remarks

Despite advances in our understanding of the molecular mechanisms underlying pancreatic 

cancer, little progress has been made in the treatment of this cancer and the 5-year survival 

rate remains dismal. Although it is well-recognized that large scale changes in the glycome 

occur during pancreatic cancer, this knowledge has not been effectively utilized to develop 

new therapeutics to combat this disease. In this review, we have summarized the evidence 

supporting functional roles for tumor-associated sialoglycans in pancreatic cancer, with 

a particular focus on hypersialylated N-glycans, sialyl Lewis antigens, and sialylated, 

truncated O-glycans. These sialylated structures have a significant impact on tumor cell 

phenotype, and also contribute to immune suppression through the engagement of Siglec 

receptors. Although studies of tumor glycosylation have historically lagged behind other 

areas of cancer research, recent developments in the field are illuminating the enormous 

potential for glycans, including sialoglycans, to serve as cancer biomarkers and clinical 

targets. Targeting sialoglycans offers a novel approach for treating pancreatic cancer, 

providing an alternative to current therapeutic modalities which remain largely ineffective.
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Fig. 1. Sialoglycans enriched in tumor cells and their cognate receptors, Siglecs.
(A) N-linked, branched glycan terminating with either an α2,3 or α2,6 linked sialic 

acid. (B) Sialylated Lewis structures including sialyl Lewis A (left) and sialyl Lewis X 

(right). Dashed red box indicates the sialyl Lewis tetrasaccharide. (C) Sialylated forms of 

truncated O-glycans typified by sialyl Tn (left) and sialyl T (right) antigens. (D) Schematic 

demonstrating a hypersialylated pancreatic cancer cell and immune cells expressing various 

inhibitory Siglecs (Siglec-7, Siglec-9, and Siglec-10).
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