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Abstract 

Objective Inhibition and knockdown of GPR68 negatively affects glioblastoma cell survival in vitro by inducing fer-
roptosis. Herein, we aimed to demonstrate that inhibition of GPR68 reduces the survival of glioblastoma cells in vivo 
using two orthotopic larval xenograft models in Danio rerio, using GBM cell lines U87-MG and U138-MG. In vivo 
survival of the cancer cells was assessed in the setting of GPR68 inhibition or knockdown.

Results In vitro, shRNA-mediated knockdown of GPR68 inhibition demonstrated potent cytotoxic effects against U87 
and U138 glioblastoma cell lines. This effect was associated with increased intracellular lipid peroxidation, suggest-
ing ferroptosis as the underlying mechanism of cell death. Translating these findings in vivo, we established a novel 
xenograft model in zebrafish by successfully grafting fluorescently labeled human glioblastoma cells, which were 
previously shown to overexpress GPR68. shRNA knockdown of GPR68 significantly reduced the viability of grafted 
GBM cells within this model. Additionally, treatment with ogremorphin (OGM), a highly specific small molecule inhibi-
tor of GPR68, also reduced the viability of grafted GBM cells with limited toxicity to the developing zebrafish embryos. 
This study suggests that therapeutic targeting of GPR68 with small molecules like OGM represents a promising 
approach for the treatment of GBM.
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Introduction
Glioblastoma multiforme (GBM) is the deadliest and 
most prevalent primary brain tumor in adult patients [1]. 
The average survival for patients with GBM is 14 months 
with near universal recurrence [2]. Standard of care relies 
on the alkylating agent temozolomide (TMZ) and radio-
therapy following maximal surgical resection [2]. How-
ever, recurrent GBM presents with nearly ubiquitous 
resistance to TMZ and radiotherapy [3–5]. Furthermore, 
GBM tumors have high molecular heterogeneity and 

plasticity, rendering many potentially therapeutic agents 
ineffective and presenting a significant barrier to identi-
fying a universal therapeutic target [6, 7]. The severity of 
the disease and the dearth of therapeutic options under-
scores the critical need for the development of new ther-
apeutic targets for GBM.

A hallmark of cancer is the Warburg effect in which 
cancer cells favor aerobic glycolysis, resulting in acidifica-
tion of the extracellular tumor microenvironment (TME). 
The acidic TME promotes malignant clonal selection, 
metastasis, pro-oncogenic transcriptional responses, 
and immune escape [8–16]. Williams et al., developed a 
novel small molecule inhibitor of proton sensing G-pro-
tein coupled receptor GPR68, Ogremorphin (OGM), and 
demonstrated that GBMs utilize GPR68 to protect from 
ferroptosis in an ATF4-dependent manner. The authors 
suggest that GPR68 is a key sensor of these extracellu-
lar pH changes and a regulator of the tumor’s response. 
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While significant in vitro data is presented detailing the 
ability of OGM to induce ferroptosis, Williams et al., lack 
in vivo efficacy studies [17].

Larval zebrafish xenograft models have been developed 
for many cancers including GBM. These models are use-
ful for early proof of principle studies and early stages of 
drug development due to low cost, short study duration, 
and permissive dosing requirements. We established two 
xenograft models using Green CMFDA stained U87MG 
and U138MG injected intracranially in zebrafish. These 
orthotopic xenograft models were then used to dem-
onstrate that OGM kills GBM in vivo. We further show 
genetically, using shRNAs, that this effect is due to on-
target inhibition of GPR68 in the GBMs. Taken together, 
we show the GPR68 is an attractive therapeutic target for 
inhibiting GBM in vivo.

Main text
Methods
Cell staining
U87 and U138 cells were grown in DMEM with high 
glucose, GlutaMAX, and hepes containing 10% FBS, 
100 units/ml penicillin, and 100  µg/mL streptomycin at 
37  °C and 5%  CO2 (ThermoFisher; catalogs: 10564011, 
26140079, 15140122). Media was replaced with fresh 
media containing 2.5  µM CellTracker Green CMFDA 
Dye (ThermoFisher; catalog: C7025). Cells were then 
incubated for 45 min at 37 °C and 5%  CO2. Samples were 
subsequently washed with Dulbecco Phosphate Buffered 
Saline (DPBS) and fresh media added. For imaging, cells 
were washed with DPBS and FluoroBrite DMEM with 
10% FBS and penicillin/streptomycin was added (Ther-
moFisher; catalog: A1896701). Cells were then imaged 
and analyzed on a Lionheart FX (Agilent BioTek). Cells 
were grown in 6-well plates and treated with DMSO or 
OGM. Alternatively, cells were reverse transfected with 5 
µgs of plasmid per well.

GPR68 shRNA knockdowns
shRNAs for knockdown were obtained from Vector-
Builder. shRNA #1 targets 5ʹ-CCA CCG TTG TCA CAG 
ACA ATG-3ʹ (plasmid: VB221221-1234czj) and shRNA 
#2 targets 5ʹ-GAG CTG TAC CAT CGA CCA TAC-3ʹ 
(plasmid: VB221221-1235jft). For control we used the 
non-targeting shRNA 5ʹ-CCT AAG GTT AAG TCG CCC 
TCG-3ʹ (plasmid: VB010000-9259tcf ). Plasmids were 
reverse transfected using lipofectamine 3000 (Ther-
moFisher; catalog: L3000001).

Liperfluo
Experiments were run as previously described [17] 
with the following two changes. shRNA samples were 

transfected with 20 µgs plasmid per 100 mm cell culture 
dish. 30,000 events were recorded instead of 10,000.

Cell viability assay
Cells where reverse transfected with 0.25 µgs plasmid per 
well in a 24-well plate. Cells were incubated for 3  days 
before being lysed in 1 × Passive Lysis Buffer and assayed 
with CellTiter-Glo on a GloMax-Multi Detection System 
(Promega; catalogs: E1941, G7570, and TM297).

qRT‑PCR experiments
Cells were reverse transfected with 0.25  µgs plasmid 
per well in a 24-well plate. Cells were incubated for 
3  days before being lysed in TRIzol (ThermoFisher; 
catalog: 15596026) and RNA extracted. cDNA was gen-
erated using the high-capacity cDNA reverse transcrip-
tion kit with RNase Inhibitor (Applied Biosystems; 
catalog:4374966). Samples were run on a QuantStudio 
5 (ThermoFisher) using the TaqMan primers: GAPDH 
(Hs02786624_g1) and GPR68 (Hs00268858_s1).

Xenograft experiments
Casper zebrafish were grown at 28.5  °C in E3 media. At 
2 days post fertilization (dpf) embryos were briefly tric-
ained (0.15 mg/ml) and then transferred to a fresh plate 
for injection. Fish were held with Dumont #5 Forceps 
(Fine Science Tools) and injected with a FemtoJet 4i 
(Eppendorf; catalog 5252000021). Micro-needles were 
made from capillaries (World Precision Instruments; 
catalog TW100F-4) using a P-97 Flaming/Brown micro-
pipette puller (Sutter Instrument; Heat: 590, Pull: 30, 
Velocity: 70, Time: 90). Fish were injected posterior to the 
hypothalamus in the midbrain halfway between the mid-
line and medial edge of the retina with 50 cells in 3 nl. For 
cell preparations, cells were stained as described above, 
trypsinized for 5  min, centrifuged, washed with DPBS, 
and re-centrifuged. Cells were quantified on a TC20 
Automated Cell Counter (Bio-Rad) with trypan blue. 
Samples with < 90% cell viability were discarded. For all 
experiments cells were resuspended, diluted to the work-
ing concentration, and injected in FluoroBrite DMEM 
with 10% FBS and penicillin/streptomycin, except for 
the test of injection medias which also used E3 embryo 
media and PBS. Except for the 6 hpi DMSO/OGM treat-
ment test, injected fish were allowed to recover for 24 h 
in fresh E3 media at 28.5  °C. At 24 hpi fish were evalu-
ated for successful grafting on an EVOS fl Fluorescence 
Microscope (ThermoFisher). Un-injected, poorly 
injected, over-injected, and off-target injected samples 
were discarded.

A stock of 20 mM OGM was added to E3 media for a 
final concentration of 2  µM. shRNA-transfected cells 
were reverse-transfected for 24  h before staining and 
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injection. For the DMSO/OGM studies samples were 
then randomly and blindly assigned to treatment groups. 
Fish were grown for an additional 48 h to 5 dpf at 28.5 °C 
and imaged on a Lionheart FX in tricaine. Sagittal images 
were analyzed using a plug over the entire head of the 
zebrafish while excluding the yolk. Samples with the 
migration of cells into the trunk were excluded from 
the analysis. Alternatively, fish were mounted in 2% low 
melting point agarose and z-stack images were taken on a 
Nikon Eclipse Ti2 spinning disk confocal.

Statistical analysis
All statistics were performed in R 4.3.1 and multiple t-test 
comparisons were analyzed post-hoc with Bonferroni 
correction. Graphs were made in RStudio 2023.09.0 + 463 
and edited with Inkscape 1.3.2.

Results
hGPR68 shRNAs kill U87MG and U138MG cells 
without affecting dye uptake
Prior to in vivo use, we optimized and characterized rea-
gent efficacy and methodology. To visualize cancer cells 
upon transplantation, we used cell tracker dye CMFDA 
(excitation/emission: 492/517  nm), which is widely uti-
lized to stain and monitor cells. It offers advantages such 
as bright fluorescence, good photostability, and the ability 
to transform into a highly fluorescent form once inside 
the cell’s cytosol due to the cleavage of acetate groups 
by intracellular esterases, producing a bright fluorescein 
derivative (CMF) that becomes confined within the cell. 
These factors together allow for the persistence of sig-
nal and minimal effect on cell health. We evaluated the 
ability of both GBM cell lines (U87MG and U138MG) to 
take up and retain the dye for 72 h (Fig. 1A, B). Variability 
and total fluorescence decreased over time and the dye 
had no noticeable effect on cell viability (Fig.  1B) mak-
ing the dye ideal for use in our xenograft experiments. 
Next, we validated the efficacies of two shRNAs against 
human GPR68, resulting in robust knockdown of the tar-
get (Fig.  1C). Furthermore, both shRNAs increase lipid 
peroxidation and cause comparable levels of cell death 
to OGM (Fig.  1D, E). However, the change in expres-
sion, lipid peroxidation, and cell death did not affect the 
uptake of the dye (Fig.  1F, G). These data establish the 
CMFDA dye is a suitable dye for labeling U87MG and 
U138MG cells and demonstrate that loss of GPR68 activ-
ity does not affect dye uptake or retention.

U87 and U138 successfully graft when intracranially injected
Numerous Zebrafish glioblastoma xenograft protocols 
vary broadly in methodology ranging from differences in 
the number of cells injected to injection sites (reviewed 
in [18]). To our knowledge, the vast majority of these use 

U87MG, while the U138MG line has not yet been used 
in zebrafish xenografts [18]. Early inhibition of GPR68 in 
zebrafish causes teratogenic effects such as a wavy noto-
chord, reminiscent of a copper deficiency or knockout 
of lysyl oxidases in zebrafish embryos [19–21]. However, 
OGM treatment of later-stage embryos had normal mor-
phology and did not result in neurotoxicity. Therefore, 
we decided to inject tumor cells into 2-day post fertili-
zation (dpf) embryos. To avoid the use of 1-phenyl-
2-thiourea (PTU), which can cause off-target toxicity 
and teratogenicity, to inhibit melanophore formation, we 
used the Casper line of zebrafish (which harbors muta-
tions in mitfa and nacre), to prevent pigmentation of the 
zebrafish [22–29]. Furthermore, intercranial injections 
were chosen to provide a neural context for the GBM and 
to minimize noise from yolk autofluorescence in the GFP 
channel (Fig. 2A) [30].

Both U87MG and U138MG cells successfully grafted 
into the Casper embryos (Fig.  2B, C), showing minimal 
invasion beyond the brain tissue (Fig.  2D). The success 
rate of U87MG grafting was comparable to previous 
reports in wildtype zebrafish (Fig. 2B) [31, 32]. While var-
ious medias have been used for cell resuspension before 
injection [33–36], we found the use of cell culture media 
(Fluorobrite) provided maximal grafting success (Fig. 2E). 
Silencing hGPR68 with shRNA did not significantly affect 
the grafting efficiency of either cell line (Fig.  2F). Addi-
tionally, no significant decrease in survival was observed 
at 24- or 72-hpi, suggesting good tolerance of U87MG 
and U138MG grafted cells (Fig. 2G). However, treatment 
with DMSO or OGM at 6 hpi significantly decreased 
survival, but this effect was alleviated by extending the 
recovery period to 24 hpi (Fig. 2H, I). These data establish 
a robust U87MG and U138MG xenograft model using 
intercranial injection of labeled cells resuspended in cell 
media, followed by a 24-h recovery period before treat-
ment with DMSO-containing compounds.

Inhibition of GPR68 kills glioblastoma in vivo
In our xenograft model, inhibiting GPR68 signifi-
cantly reduced tumor burden for both U87MG and 
U138MG cells in the zebrafish brain after 48 h of treat-
ment (Fig.  3A). OGM treatment had a significant effect 
on xenografts. It decreased the overall tumor cell area, 
indicating a reduction in the number and tumor vol-
ume. Secondly, it substantially lowered the total fluores-
cence intensity of the remaining cells (Fig.  3B, C). The 
decreased ratio of total fluorescence intensity to total 
tumor cell area (Fig. 3C) suggests that OGM did not just 
inhibit the growth of the tumor but induced cell death in 
the surviving population. Silencing hGPR68 with shRNA 
#1 and #2 in both U87MG and U138MG xenografts rep-
licated these findings (Fig.  3D, E), further supporting 
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the conclusion that inhibiting GPR68 specifically kills 
U87MG and U138MG cells in  vivo without off-target 
toxicity.

Discussion
Zebrafish xenograft models are powerful in vivo tools, 
however, there is a lack of consistent methodology for 
establishing glioblastomas (reviewed in [18]). Here, 
we established that CellTracker Green CMFDA Dye is 
appropriate for tracking U87MG and U138MG cancer 
cell lines for up to 3 days. shRNA transfection did not 
affect the uptake of dye or the ability of the cells to graft 
into the zebrafish. Xenograft models most commonly 

use the glioblastoma cell line U87. Consistent with 
this, we found that U87MG cancer cells successfully 
grafted in about half of injected samples. Conversely, 
the U138MG cancer cell line was not a robust xenograft 
model, as it grafted at a low rate. Neither line invaded 
the trunk of the animal at an appreciable level when 
injected intracranially. However, the successful grafting 
of both cell lines was heavily dependent on the media 
in which they were suspended at the time of injection. 
Cells resuspended and injected in cell culture media 
grafted at a significantly higher rate than cells in PBS 
or E3 media. Furthermore, intercranial injections had 
minimal effects on sample survival. However, injected 

Fig. 1 shRNA mediated ferroptosis does not inhibit dye uptake. A Stained U87 cells immediately after staining (n = 762) show more variability 
than at 72 h post stain (hps) (n = 1311). This pattern is recapitulated by U138 cells at 0 hps (n = 841) and 72 hps (n = 861). Data aggregated from n > 6 
repeats. B Representative images of U87 and U138 cells at 0 hps and 72 hps (10 × magnification). C qRT-PCR shows significant knockdown of GPR68 
mediated by shRNAs in U87 and U138 cells (n = 3 biological repeats). D Flow cytometry using Liperfluo demonstrates a significant increase in lipid 
peroxides with shRNA mediated knockdown of GPR68. This is consistent with the 2 µM OGM positive control in both U87 and U138 cells (n = 30,000 
events). E Representative graph of CellTiter-Glo mediated assessment of cell survival 3 days post-transfection of U87s and U138s (n = 6 technical 
repeats; n = 3 biological repeats). F Stained shRNA #1 (n = 754) and shRNA #2 (n = 796) cells show no significant change in dye uptake from control 
shRNA treated U87 cells (n = 765). U138 cells recapitulate this data with shRNA #1 (n = 575) and shRNA #2 (n = 491) cells showing no significant 
change in dye uptake from control shRNA (n = 487). (Data aggregated from n > 6 repeats). G Representative images of control shRNA, shRNA 
#1, or shRNA #2 transfected U87 and U138 cells (10 × magnification). A, E, and F are relative units (R.U.). A Is normalized to 0 hps. C, E, and F are 
normalized to control shRNA. C, D, E Multiple two-tailed, equal variance, t-tests. A, C, E, and F mean ± SD C Bonferroni Correction of α-level of 0.05 
is p < 0.025 and 0.01 is p < 0.005. D Bonferroni Correction of α-level of 0.001 is p < 0.00033. E Bonferroni Correction of α-level of 0.001 is p < 0.0005
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samples required a 24-h recovery period prior to drug 
treatment. Treatment 6  h after injection led to large 
amounts of variability in the DMSO controls and very 
low survival in the OGM-treated samples. This data 
suggests staining untreated or shRNA transfected glio-
blastoma cancer cells before resuspension in cell media 
and intercranial injection followed by a 24-h recovery 
period before treatment with small molecules is an 
appropriate and robust xenograft model in zebrafish.

Building on the extensive in vitro evidence of GPR68-
mediated ferroptosis in GBM cells from Williams et  al., 
we provide further support using both their small mole-
cule inhibitor, OGM, and targeted shRNAs. First, we rep-
licated their findings on cell survival and Liperfluo data, 
confirming ferroptosis induction by OGM and shRNA 
knockdown. Next, we established a robust U87MG and 
U138MG xenograft model in zebrafish and demonstrated 
OGM’s ability to inhibit tumor growth in  vivo. This 

Fig. 2 U87 and U138 cells successfully xenograft in zebrafish in the forebrain-midbrain region. A Cartoon of injection strategy. B Representative 
samples were injected with stained cells 24 hpi. Red arrows indicate successfully xenografted Green CMFDA labeled cells (2.5× magnification). C 
Xenograft success rates at 72 h post injection (hpi) (U87: n = 246; U138: n = 285; Data aggregated from n = 5 repeats). D Migration of cells from brain 
into trunk tissues by 72 hpi (U87: n = 132; U138: n = 109; Data aggregated from n = 3 repeats; 4 × magnification). An example photo is trunk tissues 
invasion at 72 hpi. * Indicates yolk, arrow indicates U138 cell. E Xenograft success rates at 24 hpi of cells resuspended and injected in E3 (U87: 
n = 126; U138: n = 117), PBS (U87: n = 120; U138: n = 113), or FluoroBrite media (U87: n = 132; U138: n = 109) (Data aggregated from n = 3 repeats). F 
No difference in xenograft success rates between control (U87: n = 324; U138: n = 339), shRNA #1 (U87: n = 209; U138: n = 249), or shRNA #2 (U87: 
n = 239; U138: n = 220) transfected cells at 24 hpi was observed in U87 or U138 cells (Data aggregated from n = 5 repeats). G Injections of labeled 
cells did not affect acute (24 hpi) or short-term survival (72 hpi) of zebrafish (U87: n = 157; U138: n = 148; Data aggregated from n = 5 repeats). 
H Zebrafish injected with labeled cells and treated 6 hpi with DMSO (U87: n = 153; U138: n = 159) or OGM (U87: n = 162; U138: n = 175) show 
a significant decrease in survival. (Data aggregated from n = 5 repeats). I Treatment of zebrafish injected with labeled cells at 24 hpi with DMSO (U87: 
n = 151; U138: n = 151) or OGM (U87: n = 160; U138: n = 166) did not impact zebrafish survival. (Data aggregated from n = 5 repeats). C–I mean ± SD. E 
and F Multiple two-tailed, equal variance, t-tests; Bonferroni Correction of α-level of 0.05 is p < 0.025, 0.01 is p < 0.005, and 0.001 is p < 0.0005
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finding was further validated genetically through shRNA 
mediated GPR68 knockdown in the xenografts. Our data 
not only supports previous observations but also bridges 
a critical gap by demonstrating OGM’s efficacy in  vivo. 
Importantly, Williams et al. found OGM to be non-toxic 
to healthy neural tissue in zebrafish. Together, these 
results strongly suggest OGM as a promising, non-toxic 
therapeutic approach for glioblastoma.

Limitations
Dye retention and dilution limits experimental length 
to 3  days. Furthermore, post-injection recovery limits 
small molecule treatments to 2 days. Long-term treat-
ment with OGM may differ and/or increase toxicity.

Abbreviations
dpf  Days post fertilization
GBM  Glioblastoma multiforme
hpi  Hours post injection
hps  Hours post stain
OGM  Ogremorphin
PTU  1-Phenyl-2-thiourea
TME  Tumor microenvironment
TMZ  Temozolomide
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Fig. 3 Knockdown of GPR68 inhibit U87 and U138 Xenografts growth in zebrafish. A Schematic of xenograft testing in zebrafish. B Representative 
confocal (flattened z-stack) images of zebrafish head 72 hpi in 5 days post fertilization (dpf ) zebrafish of DMSO or 2 µM OGM treated embryos (20× 
magnification). C The total fluorescent intensity and total area of Green CMFDA labeled cells in the zebrafish brain at 72 hpi treated with DMSO 
(U87: n = 50; U138: n = 62) or 2 µM OGM (U87: n = 51; U138: n = 54) is significantly decreased for U87 (Top) and U138 (bottom) cells. The ratio 
of intensity/area is also significantly decreased (Data aggregated from n = 5 repeats). D Representative confocal (flattened z-stack) images 
of zebrafish head 72 hpi in 5 dpf injected with control, shRNA #1, or shRNA #2 transfected cells (20 × magnification). E The total fluorescent intensity, 
total area, and ratio of intensity/area of Green CMFDA labeled cells in the zebrafish brain at 72 hpi transfected with shRNA #1 (U87: n = 55; U138: 
n = 51) or shRNA #2 (U87: n = 51; U138: n = 57) is significantly decreased for U87 (Top) and U138 (bottom) cells when compared to the control 
shRNA (U87: n = 50; U138: n = 50) (Data aggregated from n = 5 repeats). C and E mean ± SEM. C and E are relative units (R.U.). C Is normalized 
to DMSO control and E is normalized to control shRNA. C Two-tailed, equal variance, t-tests. E Multiple two-tailed, equal variance, t-tests; Bonferroni 
Correction of α-level of 0.05 is p < 0.025, 0.01 is p < 0.005, and 0.001 is p < 0.0005
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