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Background: Integrating complementary diagnostic data sources promises enhanced robustness in the predictive
performance of artificial intelligence (AI) models, a crucial requirement for future clinical validation/implementation.
In this study, we investigate the potential value of integrating data from noninvasive diagnostic modalities, including
chest computed tomography (CT) imaging, routine laboratory blood tests, and clinical parameters, to retrospectively
predict 1-year survival in a cohort of patients with advanced non-small-cell lung cancer, melanoma, and urothelial
cancer treated with immunotherapy.
Patients and methods: The study included 475 patients, of whom 444 had longitudinal CT scans and 475 had
longitudinal laboratory data. An ensemble of AI models was trained on data from each diagnostic modality, and
subsequently, a model-agnostic integration approach was adopted for combining the prediction probabilities of each
modality and producing an integrated decision.
Results: Integrating different diagnostic data demonstrated a modest increase in predictive performance. The highest
area under the curve (AUC) was achieved by CT and laboratory data integration (AUC of 0.83, 95% confidence interval
0.81-0.85, P < 0.001), whereas the performance of individual models trained on laboratory and CT data independently
yielded AUCs of 0.81 and 0.73, respectively.
Conclusions: In our retrospective cohort, integrating different noninvasive data modalities improved performance.
Key words: cancer survival prediction, artificial intelligence, machine learning, integrated diagnostics, immunotherapy,
longitudinal data
INTRODUCTION

With the digitization of medicine, ever-increasing volumes
of data are being generated by patients during their treat-
ment, including clinical data, tissue samples, scans of
pathological slides, blood tests, and radiological imaging.
These multimodal data collectively encode the patient’s
baseline characteristics and changes occurring during
treatment. Consequently, modern healthcare centers have
inadvertently become data repositories for expansive
medical data. The field of medical artificial intelligence (AI)
has emerged to harness these large stores of patient data
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and help address open needs/questions in the clinics/
research field.

A prominent open need exists in the domain of immu-
notherapy where, despite the revolutionary advances in
immune checkpoint inhibitors over the past decade, there is
not yet a single standardized tissue or blood-based
biomarker for the effective selection of good therapeutic
candidates.1 Effective patient stratification/selection would
prevent unnecessary exposure to ineffective therapy, miti-
gate the risk of side-effects for the patient, and save re-
sources for the healthcare center.1,2 Previous literature has
extensively explored the potential of harnessing AI methods
to unlock predictive and prognostic information for immu-
notherapy from computed tomography (CT) imaging,3-5 dig-
ital pathology imaging,6 genomic,7 and transcriptomic data.8

In routine practice, healthcare practitioners make use of
a combination of the available information for optimal pa-
tient treatment stratification and response assessment.9
https://doi.org/10.1016/j.iotech.2024.100723 1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:stefano.trebeschi@maastrichtuniversity.nl
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iotech.2024.100723&domain=pdf
https://doi.org/10.1016/j.iotech.2024.100723
https://doi.org/10.1016/j.iotech.2024.100723


Immuno-Oncology and Technology M. Yeghaian et al.
Just as humans perform better given more contextual in-
formation, the field of multimodal data integration is built
on the driving hypothesis that data from diverse sources
can potentially contain complementary information,
enhancing the performance of predictive models.

Multimodal data integration has yielded significant im-
provements in the predictive performance of AI models in
other fields of research, for example, autonomous driving
and video classification.9-11 Based on these early successes,
integrative approaches were also applied to the field of
medical AI,9 particularly in oncology.12 Integration of
different high-dimensional omics data, characterizing
cancer on different levels, has been widely explored in
literature,13-16 particularly given the availability of large
public multimodal datasets of molecular and histopatho-
logical data from The Cancer Genome Atlas (TCGA).

Combining multiple noninvasive sources of clinical data,
routinely acquired in large amounts during patient treat-
ment and follow-up, could potentially be a promising step
for precision medicine.9,17,18 In this study, we investigated
the potential benefits of integrating imaging (CT), blood-
based laboratory markers, and a few clinical parameters
to predict 1-year survival in a longitudinal, retrospective
cohort of patients with metastatic cancer [non-small-cell
lung cancer (NSCLC), melanoma, and urothelial cancer]
treated with immune checkpoint inhibition.
MATERIALS AND METHODS

Study cohort

We included a retrospective cohort of patients with stage IV
melanoma, NSCLC, and urothelial cancer who were treated
with anti-programmed cell death protein 1 (PD-1)/pro-
grammed death-ligand 1 (PD-L1) immune checkpoint
blockade as monotherapy at our institution between 2014
and 2016. Patient characteristics are provided in Table 1.
Radiological follow-up was carried out using contrast-
enhanced CT, with follow-up intervals of 8-12 weeks. Be-
sides CT imaging, data on blood-based routine laboratory
tests were retrieved. We included data on all available pre-
treatment and on-treatment examinations (CT scans and/or
laboratory tests) acquired between 3 months before the start
of the treatment and up to 1 year after. Imaging and
Table 1. Cohort characteristics

Characteristics Values

Age (years), median (range) 63 (28-93)
Sex, n (%)
Male 286 (60)
Female 189 (40)

Cancer type, n (%)
NSCLC 171 (36)
Melanoma 207 (44)
Urothelial cancer 97 (20)

Treatment, n (%)
Nivolumab 475 (100)

Outcome, n (%)
Death 361 (76)

NSCLC, non-small-cell lung cancer.
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laboratory tests were abundant at different frequencies along
the treatment timeline, therefore, they were paired based on
closeness in acquisition date [median 4 (interquartile range 0-
7)] days, allowing a maximum of a 2-month interval between
the two modalities in each pair when necessary. Clinical pa-
rameters of age, sex, and tumor type were also retrieved for
all patients at the start of the treatment. Death dates of
patients were acquired when applicable, and the survival
prediction is formulated as a binary classification task to
predict survival 1 year after the examination acquisition date.
This dataset represents a longitudinal and multimodal
expansion of the datasets previously described in 3,4,19
Data preprocessing, model training, and validation

All the CT scans were cropped to only include the thoracic
region using the method proposed by Zhang et al.20 The scans
were then resampled into 2-mm isotropic voxel size and
standardized. Missing laboratory data were discarded and/or
imputed with a multivariate iterative imputer with the
Bayesian Ridge regression estimator,21-24 as described in more
detail in Supplementary Material and Supplementary Table S7,
available at https://doi.org/10.1016/j.iotech.2024.100723.

AI models were used to predict the 1-year survival of
patients in a supervised manner. 3D ResNet18-like25 con-
volutional neural networks (CNNs) were trained with chest
CT scans, random forest (RF)26 models were trained with 33
laboratory parameters (listed in Supplementary Table S1,
available at https://doi.org/10.1016/j.iotech.2024.100723),
and support vector machines (SVMs)27 were trained with
three nonlongitudinal clinical parameters. All available
longitudinal, pre and on-treatment, examinations in the
train sets were used for training the AI models. To incor-
porate a temporal dimension into the models and distin-
guish the utilized longitudinal examinations along the
treatment timeline, the intervals between the acquisition of
the examination and the start of the treatment (in days)
were also included as additional input features in the lon-
gitudinal modalities. These intervals were represented as
normalized scalar values reflecting the position of the ex-
amination on the treatment timeline.

A total of 30 splits of Monte Carlo cross-validation
(MCCV) were used for the training and validation of the
AI models (Supplementary Figure S1, available at https://
doi.org/10.1016/j.iotech.2024.100723)28 The data were
split on a patient basis, with each patient having variable
numbers of examinations. At each MCCV split, 26% of pa-
tients having paired CT imaging and laboratory measure-
ments were randomly allocated for testing. The remaining
patients were randomly used to train and test modality-
specific AI models, (train set: 80%, train hold-out set:
20%). Validation was carried out using the entire dataset, as
well as various subsets grouped by early and late treatment
stages, and by cancer type. Moreover, we utilized Shapely
Additive exPlanation (SHAP) to explain the decisions made
by the RF model.29

Scikit-learn 0.24.1,30 Keras 2.2.4,31 and Tensorflow-gpu
1.1232 were used for the implementation of the models.
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Figure 1. Schematic representation of the model-agnostic late fusion integration strategy.
ALP, alkaline phosphatase; CNN, convolutional neural network; CRP, C-reactive protein; NSCLC, non-small cell lung cancer; SVM, support vector machine.
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Further details regarding preprocessing and model training
are provided in Supplementary Material, available at
https://doi.org/10.1016/j.iotech.2024.100723.
Multimodal integration strategy for survival prediction

Model-agnostic decision-based late fusion strategy10,33 was
adopted to integrate CT imaging, laboratory, and clinical
data: prediction probabilities of the single-modality classi-
fiers were first computed independently, then aggregated
by averaging (Figure 1). Only matching patient data were
used during testing. This approach allows the individual
training of medical datasets with the presence of missing
modalities or not-aligned modalities. It also handles missing
modalities at test time.
Table 2. The prognostic performance of individual and integrated modalities

Modality (n survival,
n death)

AUC (95% CI) Sensitivity
(95% CI)

Sp
(9

CT (942, 617) 0.73 (0.70-0.75) 0.60 (0.57-0.63) 0.
Laboratory (942, 617) 0.81 (0.79-0.83) 0.68 (0.65-0.71) 0.
Clinical (1099, 460) 0.54 (0.51-0.57) 0.52 (0.49-0.55) 0.
Integrated
longitudinal

(942, 617) 0.83 (0.81-0.85) 0.67 (0.64-0.70) 0.

Integrated all (942, 617) 0.82 (0.80-0.84) 0.68 (0.65-0.70) 0.

n indicates the number of examinations.
AUC, area under the curve; CI, confidence interval; CT, computed tomography.
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Statistical analysis

Prognostic performance was evaluated using the area
under the receiver operating curve (ROC-AUC). Sensitivity
and specificity scores were also calculated to support the
AUC. Confidence intervals were calculated using 1000-
times bootstrapping via repeated sampling with replace-
ment. The statistical significance of the classifiers was
tested using the ManneWhitney U test. McNemar’s test
was further used to compare the differences between the
classifications of different combinations of modalities. The
statistical significance of the changes in the AUCs of
different subsets of the longitudinal data was tested using
the Hanley and McNeil method. Clinical significance was
calculated with KaplaneMeier survival curves, the log-
rank test, and the difference in median survival time be-
ecificity
5% CI)

Positive predictive
value (95% CI)

Negative predictive
value (95% CI)

P value

75 (0.71-0.78) 0.79 (0.75-0.81) 0.55 (0.52-0.58) <0.001
78 (0.75-0.81) 0.83 (0.80-0.85) 0.61 (0.58-0.65) <0.001
55 (0.50-0.59) 0.73 (0.70-0.77) 0.32 (0.29-0.36) 0.010
79 (0.76-0.82) 0.83 (0.81-0.86) 0.61 (0.58-0.64) <0.001

80 (0.77-0.83) 0.84 (0.81-0.86) 0.62 (0.58-0.65) <0.001
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Figure 2. Survival classification performance evaluation based on cancer type
using individual and integrated modalities.
AUC, area under the curve; CT, computed tomography; NSCLC, non-small-cell
lung cancer.
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tween the two groups. A P value <0.05 was considered
statistically significant. Additional supporting metrics,
including sensitivity, specificity, positive predictive value,
and negative predictive value, were also added at the
median threshold.

RESULTS

Study cohort

We included 475 patients treated at the Netherlands Cancer
Institute - AVL Hospital, Amsterdam, between 2014 and
2016 with immunotherapy (anti-PD-L1 or anti-PD-1 immune
checkpoint inhibition). Among them, 207 were patients
with stage IV melanoma, 171 were patients with stage IV
NSCLC, and 97 were patients with stage IV urothelial cancer.
A total of 444 patients had CT imaging, 475 had blood-
based laboratory data, and 444 had both imaging and lab-
oratory data (Table 1 and Supplementary Figure S2, avail-
able at https://doi.org/10.1016/j.iotech.2024.100723). All
patients had clinical parameters of age, sex, and type of
cancer. Overall, 1702 longitudinal CT scans and 7919 longi-
tudinal laboratory examinations were used in the analysis
for training and testing.
Table 3. The prognostic performance of pretreatment and on-treatment longitud
per patient in each interval

Modality Pretreatment On-treatme

-92-0 days 0-92 days

AUC (95% CI) CT 0.64 (0.59-0.70) 0.73 (0.67-0
Laboratory 0.70 (0.65-0.75) 0.81 (0.76-0
Integrated 0.71 (0.66-0.76) 0.83 (0.78-0

P value All experiments <0.001 <0.001

The days in the intervals are relative to start of treatment (SoT). For example, the pretreatme
The highest results, which correspond to the integrated modalities, are highlighted in bold
AUC, area under the curve; CI, confidence interval; CT, computed tomography.
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Individual modalities

The prognostic performance of individual diagnostic modal-
ities was tested using a total of 1559 unique examinations
across all 30 MCCV test splits of random 115 patients.
Overall, across the entire patient treatment timeline, blood-
based laboratory data showed higher prognostic value than
imaging (AUC ¼ 0.81 versus 0.73), followed by clinical data
(AUC ¼ 0.54; Table 2 and Figure 2). In general, pretreatment
showed the lowest results, with the largest decrease
observed in blood values (AUC ¼ 0.69), followed by CT scans
(AUC ¼ 0.66). The highest performance was observed 6-9
months during treatment to predict whether the patient
would be alive 1 year after (AUCblood ¼ 0.88, AUCCT ¼ 0.75;
Table 3 and Supplementary Figure S5, available at https://
doi.org/10.1016/j.iotech.2024.100723). Clinical data were
not longitudinal to be dissected across different time points.
In terms of cancer type, the highest performance was
observed for patients with urothelial cancer (AUCCT ¼ 0.77,
AUCblood ¼ 0.82) followed by those with NSCLC (AUCCT ¼
0.72, AUCblood ¼ 0.81) and melanoma (AUCCT ¼ 0.68,
AUCblood ¼ 0.78; Table 4 and Figure 2). In terms of survival,
blood values showed a survival difference between high- and
low-risk groups (split on median) of 133 days for pretreat-
ment data and 227 and 88 days for on-treatment at 3 and 6
months, respectively. Similarly, CT showed 123 days for
pretreatment data and 206 and 99 days for on-treatment at
3 and 6 months, respectively (Supplementary Table S5,
available at https://doi.org/10.1016/j.iotech.2024.100723).
Integrated modalities

The prognostic performance of the integrated diagnostic
modalities was tested with the same endpoints as in the
single modalities. Across all endpoints and subanalysis, the
integrated scheme was equal to or exceeded the perfor-
mance of each single modality: reaching an AUC of 0.83
versus 0.81 of the best-performing single modality across the
entire treatment timeline, 0.71 versus 0.70 of the best-
performing single modality on pretreatment examinations,
and 0.89 versus 0.88 on 6-9 months on-treatment exami-
nations. The largest increase was observed in the first 6
months of treatment, from 0.83 to 0.86. A similar trend was
observed in individual cancer types, with the largest increase
in NSCLC from 0.81 to 0.84 AUC. In terms of survival, inte-
grated data showed higher performance, with the largest
inal data modalities in 3-month intervals, using the latest examination (pair)

nt

92-184 days 184-276 days 276-365 days

.78) 0.78 (0.72-0.84) 0.75 (0.66-0.84) 0.74 (0.62-0.84)

.85) 0.83 (0.78-0.89) 0.88 (0.81-0.94) 0.83 (0.74-0.90)

.87) 0.86 (0.81-0.91) 0.89 (0.81-0.94) 0.84 (0.75-0.91)
<0.001 <0.001 <0.001

nt interval (-92 to 0 days) refers to the duration from 3 months before SoT up to SoT.
.
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Table 4. The prognostic performance of individual and integrated modalities stratified by cancer type

Modality AUC (95% confidence interval)

NSCLC Melanoma Urothelial All combined

CT 0.72 (0.68-0.76) 0.68 (0.63-0.73) 0.77 (0.71-0.81) 0.73 (0.70-0.75)
Laboratory 0.81 (0.78-0.85) 0.78 (0.74-0.82) 0.82 (0.77-0.86) 0.81 (0.79-0.83)
Clinical 0.50a (0.45-0.55) 0.41 (0.36-0.47) 0.52b (0.45-0.58) 0.54 (0.51-0.57)
Integrated 0.84 (0.80-0.87) 0.78 (0.74-0.82) 0.83 (0.79-0.87) 0.82 (0.80-0.85)

P < 0.05 in all experiments, except the ones marked with an a and b, in which P ¼ 0.997 and P ¼ 0.563, respectively. The highest results, which correspond to the integrated
modalities, are highlighted in bold.
AUC, area under the curve; CT, computed tomography; NSCLC, non-small-cell lung cancer.
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increase observed in the first 3 months of treatment, where
high- and low-risk patients stratified according to integrated
data showed a difference of 239 days. Figure 2 shows a
schematic of the overall performance, across cancer types
and modalities. (Supplementary Figures S3-S5, available at
https://doi.org/10.1016/j.iotech.2024.100723). show the
performance of all combinations of modalities, and Kaplan-
Meier survival curves. More detailed results can also be
found in Tables 2-4 and Supplementary Tables S2-S6, avail-
able at https://doi.org/10.1016/j.iotech.2024.100723.
Explainability of AI models

For the RF model, average SHAP values were calculated for
all the unique laboratory examinations across all MCCV test
splits (n ¼ 1559). The features with the highest average
impact on the output of the model are presented in
Figure 3. Interpretability of the random forest model trained with laboratory
data using Shapely Additive exPlanation (SHAP).
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; CNN, convolutional neural network; Cr, creatinine; CRP, C-
reactive protein; ESR, erythrocyte sedimentation rate; GFR, glomerular filtration
rate; Hb, hemoglobin; Ht, hematocrit; ImmGran, immature granulocytes; Lym-
pho, lymphocytes; Neutr, neutrophils; NeutrGran, a combination of neutrophils,
basophils and eosinophils; Plt, platelets; RBC, red blood cell; SoT, start of
treatment; WBC, white blood cell.
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Figure 3, which are ordered by their average importance for
the task of survival prediction. SHAP explanations showed
that the CRP feature, reflecting the serum C-reactive protein
level, was found, on average, to be the most impactful
feature on the prediction of the likelihood of patient sur-
vival. Lower values of serum CRP (blue) were positively
correlated with survival. Therefore according to the model’s
explanation, patients with lower values of CRP were more
likely to survive. Similarly, lower levels of alkaline phos-
phatase (ALP), which was the second most important
feature, showed a positive correlation with survival pre-
diction. The third important feature was shown to be he-
moglobin (Hb), with higher levels of Hb contributing to the
model’s prediction of survival likelihood. SHAP summary
plots were also generated for each tumor type within our
patient cohort (Supplementary Figures S6-S8, available at
https://doi.org/10.1016/j.iotech.2024.100723), where the
same/very similar features were shown to be important.
DISCUSSION

Our aim was to investigate the potential value that nonin-
vasive integrated diagnostics could bring to the prediction
of 1-year survival in patients with NSCLC, melanoma, and
urothelial cancer treated with immunotherapy. We focused
on integrating longitudinal radiological CT imaging with
laboratory blood data, alongside several clinical parameters.
CT imaging was included to capture anatomical character-
istics that could potentially aid in survival prediction. Blood-
based laboratory data also provide insight into the general
health of the patient (and potentially inflammation-related
information). Each data modality was trained individually in
a supervised manner using specific AI models: CNNs for CT
imaging, RFs for laboratory data, and SVMs for clinical data.
An ensemble of models was trained for each data modality
using MCCV. In our study, we trained the models to predict
the probability of 1-year survival from any given time point.
For example, if the input was data 3 months into treatment,
survival was predicted 1 year and 3 months after the start
of treatment. The prediction probabilities of each modality
were then aggregated into a final integrated decision.

As a single modality, laboratory data had the greatest
predictive performance. This finding could be due to the
predictive power of blood markers but it could also be
influenced by the frequency of acquisition of blood tests,
which leads to the availability of larger amounts of
https://doi.org/10.1016/j.iotech.2024.100723 5
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longitudinal laboratory data for training the AI models
compared with other modalities. Combined with the other
modalities, there was a modest but consistent and statisti-
cally significant improvement (McNemar’s test, P ¼ 0.04) in
the predictive performance of the AI model trained only
with laboratory data. Whether trained on a single modality
or using an integrated approach, AI-based predictions
showed significant discriminative ability between high-risk
and low-risk groups on KaplaneMeier survival curves for
pretreatment data and on-treatment data at 3 and 6
months (Supplementary Figure S5 and Table S5, available at
https://doi.org/10.1016/j.iotech.2024.100723).

SHAP values showed that, on average, the most impactful
feature on the model predictions was the C-reactive protein
(CRP) level, a serum marker for inflammation. Patients with
lower levels of CRP were found to be more likely to survive.
Clinically, an increase in inflammatory markers, such as CRP
and erythrocyte sedimentation rate, has been associated
with poor outcomes in anti-cytotoxic T-lymphocyte-associ-
ated protein 4 (CTLA-4) antibody treatment.34 This was in
line with the findings in our cohort receiving anti-PD-1/PD-
L1 therapy. SHAP showed that lower levels of ALP influ-
enced the model to predict better survival outcomes. Pa-
tients with advanced urothelial cancer, NSCLC, and
melanoma can potentially develop bone metastasis and
have a poor prognosis.35-37 ALP may be elevated in case of
acute inflammation of the liver, cholecystitis, or as the
result of bone diseases such as bone metastasis, and has
been clinically associated with poor prognosis in different
types of cancer.38-44

Patients with higher Hb levels were more likely to survive
according to SHAP. In the literature, significantly lower
concentrations of Hb were detected in patients with
bladder cancer having bone metastasis, suggesting lower
levels of Hb to be a risk factor for developing bone
metastasis in newly diagnosed patients with bladder can-
cer.42 Furthermore, it was suggested that anemia may in-
fluence the treatment outcome, as it could correlate with
tumor hypoxia which, in turn, could be associated with poor
immunotherapy outcome.45-47 Increased neutrophil levels
have been associated with decreased overall survival in
patients treated with ipilimumab, while high lymphocyte
counts upon anti-CTLA-4 blockade and higher levels of al-
bumin following treatment with durvalumab have been
associated with improved survival.34,48 These findings are in
line with the SHAP explanations generated by the averaged
predictions of our models.

SHAP plots split by tumor type identified the same fea-
tures as important for the predictive model, albeit with slight
differences in the order of importance. None of the labora-
tory features show any strong univariate positive or negative
correlations with the survival outcome in our cohort; how-
ever, the most impactful features using SHAP explanations
did show a slightly higher correlation compared with the
other features (Supplementary Figures S6-S9, available at
https://doi.org/10.1016/j.iotech.2024.100723).

Integration of information from different diagnostic data
modalities provides an opportunity to objectively see the
6 https://doi.org/10.1016/j.iotech.2024.100723
patient’s state from different perspectives, thus potentially
developing better computer-aided diagnosis and prognosis
systems.9,18,49 Overall survival is an endpoint that yields itself
easily to integrated diagnostics, as different factors could
simultaneously affect the survival of patients.50-57 With
respect to multimodal AI in immunotherapy, response
assessment has also been a topic of research.57-62 Response
to immunotherapy in melanoma was predicted from complex
biological data sources: T-cell receptor sequencing and the
human leukocyte antigen.58 Johannet et al.59 predicted
response in advanced melanoma by integrating histology
specimens and clinical data, while pathology and genomic
data were used alongside radiological images for response
prediction in NSCLC in the study of Vanguri et al.62 The in-
clusion of histological data sources poses advantages by
utilizing biological domain knowledge to help train an AI
model. However, histology data are invasively obtained and
fail to capture tumor heterogeneity due to sampling bias. By
contrast, noninvasive diagnostic data, such as radiological
imaging and blood-based laboratory tests, are routinely
available during patient treatment and follow-up, and contain
information about the overall status of the tumor and pa-
tient. These data sources have proven promising not only for
response prediction in immunotherapy60,61,63 but also for
monitoring clonal heterogeneity to help identify patients at
risk of progression during treatment.17

Integration methodologies are mainly categorized in the
literature into early, intermediate, and late fusion strate-
gies.10,14 Multimodal data leveraging studies often use in-
termediate fusion strategies, utilizing joint feature-level
learning for capturing concordant and/or complementary
information across different data modalities during training.
Real-world medical datasets are known to suffer from
missing data and/or offer diagnostic information from
different modalities that are often not perfectly aligned in
time. These two drawbacks limit the size of datasets that
could employ early and intermediate fusion strategies. We,
therefore, opted for a late fusion approach, maximizing the
usage of the available medical datasets of each modality
during model training.

Past integrated diagnostics studies in immunotherapy used
single time point data, making direct comparisons to our
longitudinal study challenging. To our knowledge, this has
been carried out in two previous studies in the context of
NSCLC: mainly to predict RECIST response at 60 and 90
days60,61 and iRECIST-based progression-free survival (PFS) at
6 and 9 months.63 Similar to our study, the integration of
laboratory data, CT scans, and clinical data was analyzed;
however, additional clinical and/or genomic data were also
included. The endpoint prediction task, the methods, and the
size of the datasets in these studies were also different from
ours. Both studies, similar to ours, reported an improved
integrated performance with all the modalities compared
with the performance of single modalities. The highest AUCs
reported by Yang et al.61 were for the prediction of response
at 90 days using pretreatment data (AUCmultimodal: 0.80,
AUCradiomics: 0.64, and AUCblood: 0.57). Our subanalysis of the
NSCLC cohort for the prediction of overall survival at 1 year
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using pretreatment data showed AUCmultimodal of 0.71, AUCCT
of 0.62, and AUCblood of 0.70 (Supplementary Table S4,
available at https://doi.org/10.1016/j.iotech.2024.100723).
Farina et al.63 reported AUCmultimodal of 0.824 and 0.753,
AUCCT of 0.740 and 0.702, and AUCbloodþclinical of 0.700 and
0.585 for PFS prediction at 6 and 9 months, respectively,
using longitudinal data. Our analysis for 1-year survival pre-
diction using longitudinal data showed an AUCmultimodal of
0.84, AUCCT of 0.72, and AUCblood of 0.81 in NSCLC. Our re-
sults of overall survival prediction at 1 year were higher than
the results of PFS prediction at 9 months by Farina et al.63

Most integration studies show performance improve-
ments in the integrated model compared with individual
modality models.50,53,54 However, these studies integrated
only two types of data. Studies that included more mo-
dalities for integration showed variable changes in the
performance, based on which modalities were being com-
bined.52,55 A similar trend was observed in our study with
the inclusion of clinical parameters (Supplementary
Table S2, available at https://doi.org/10.1016/j.iotech.2
024.100723). Peisen et al.57 included tumor markers as
part of their clinical data alongside patient demographics
(age and sex) and radiomic features to predict response and
survival in patients with advanced melanoma treated with
immunotherapy. Their study showed an improved perfor-
mance integrating radiomics and clinical data for survival
prediction at 6 and 12 months, compared with clinical data
alone. The drop in the prognostic performance when clinical
parameters were added in some combinations in our study
could probably be due to the limited number of the utilized
clinical parameters.

Another limitation of our study is that we distinguished
longitudinal examinations along the treatment timeline
using a scalar value representing the positions of the ex-
aminations (in days), relative to the start of treatment,
instead of utilizing specific methods for time-series data
analysis. Subsequently, we computed the AUC on samples
that were not fully independent. When accounting for this
in a subanalysis (using only the latest examination per pa-
tient, Table 3), results showed a similar pattern to the rest
of the analysis in terms of modest improvement in inte-
grative performance.

Despite their promise, integration methods in healthcare
have yet to demonstrate sufficient robustness for clinical
usage. The field still requires extensive research to over-
come the challenges that real-life medical datasets present
to benefit from the complementary information that
different diagnostic sources offer. Furthermore, validating
the developed methods for generalizability across different
centers, cancer types, treatments, diseases, and clinical
outcomes is crucial for the clinical implementation of AI
methods. An important requirement for integrational
medical AI research is better collaboration between clini-
cians of different clinical specialties. As radiologists, pa-
thologists, geneticists, and treating clinicians are each
generating increasingly larger volumes of data per patient,
hospitals need to account for the required digital infra-
structure to efficiently store and make good use of this
Volume 24 - Issue C - 2024
resource. European initiatives are now working on estab-
lishing cancer imaging repositories and as regulation begins
to address the needs of medical AI practitioners, large-scale
access to multicenter multimodal data will prove to be a
paradigm shift for this subdomain of medical AI. Notwith-
standing these challenges, the field of multimodal learning
is rapidly evolving, with the potential to revolutionize the
field of healthcare and personalized medicine.
CONCLUSION

In this study, we used AI algorithms to predict the survival
of patients with metastatic NSCLC, melanoma, and uro-
thelial cancer treated with immunotherapy using multi-
modal diagnostic data. Our analysis showed a modest
improvement in the prognostic performance integrating
longitudinal CT imaging, blood-based laboratory data, and
clinical parameters over the performance of the best-
performing single modality, laboratory data. The improve-
ment in the integrative performance was more prominent
in the remaining modalities, CT, and clinical parameters,
showing the potential of integrating different noninvasive
diagnostic data. Future research will focus on implementing
more sophisticated integration strategies to further improve
the prognostic performance using AI in immunotherapy.
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