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ABSTRACT
Heart failure (HF) affects millions of individuals and causes hundreds of thousands of 
deaths each year in the United States. Despite the public health burden, medical and 
device therapies for HF significantly improve clinical outcomes and, in a subset of 
patients, can cause reversal of abnormalities in cardiac structure and function, termed 
“myocardial recovery.” By identifying novel patterns in high-dimensional data, artificial 
intelligence (AI) and machine learning (ML) algorithms can enhance the identification 
of key predictors and molecular drivers of myocardial recovery. Emerging research in 
the area has begun to demonstrate exciting results that could advance the standard of 
care. Although major obstacles remain to translate this technology to clinical practice, 
AI and ML hold the potential to usher in a new era of purposeful myocardial recovery 
programs based on precision medicine. In this review, we discuss applications of ML to 
the prediction of myocardial recovery, potential roles of ML in elucidating the mechanistic 
basis underlying recovery, barriers to the implementation of ML in clinical practice, and 
areas for future research.
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INTRODUCTION

Heart failure (HF) is a heterogeneous clinical syndrome 
resulting from altered hemodynamics, disrupted fluid 
balance, and maladaptive biochemical changes driven by 
a structural or functional impairment in cardiac ejection 
or filling.1,2 Heart failure is a major public health challenge, 
affecting over 6 million people and causing hundreds of 
thousands of deaths each year in the United States.3 Despite 
the societal burden, medical and device therapies for HF 
have dramatically advanced over the past several decades, 
capable of significantly improving clinical outcomes. It is 
now well-recognized that guideline-directed medical therapy 
(GDMT), cardiac resynchronization therapy (CRT), valvular 
interventions, and mechanical circulatory support can slow or 
even reverse the progressive abnormalities of cardiac structure 
and function observed in HF, termed reverse remodeling 
and/or “myocardial recovery.”4,5 Myocardial recovery has 
been associated with more favorable outcomes than typical 
HF cases, prompting the creation of a new category of HF, 
heart failure with improved ejection fraction (HFimpEF), in 
the 2022 HF management guidelines.1,6,7 These observations 
have driven significant research into the mechanistic basis of 
myocardial recovery, with the goal of identifying therapeutic 
strategies that can augment or induce recovery de novo in 
patients with HF.

Artificial intelligence (AI) and machine learning (ML) 
have become increasingly integrated into the public sphere 
over the past decade. AI refers to computer systems 
that can perform tasks that have historically required 
human intelligence. ML, a subset of AI, encompasses the 
development and use of algorithms that allow computers 
to draw inferences from data without explicit instructions.8,9 

Whereas use cases for ML have previously focused on 
automating pattern-heavy tasks to replace the human 
worker with a computer, ML is now increasingly being 
used to recognize novel patterns in data that cannot be 
identified by humans, even those with significant domain 
expertise. The application of ML to large datasets derived 
from patients with HF has the potential to uncover key 
drivers of myocardial recovery that may dramatically alter 
clinical practice and drug development.10 In this review, 
we discuss the applications of ML to HF, the use of ML for 
predicting myocardial recovery and enhancing cardiac 

“-omic” analyses, barriers impeding the translation of ML to 
clinical cardiology, and potential areas for future research 
to promote the successful implementation of purposeful 
myocardial recovery programs (Figure 1).

MACHINE LEARNING BASICS AND 
APPLICATIONS TO HEART FAILURE

FUNDAMENTAL CONCEPTS IN MACHINE 
LEARNING
In contrast to traditional algorithms that apply predefined 
rules to input data to generate outputs, ML algorithms 
analyze input and output data to generate rules for 
creating new outputs (Figure 2A).8 Thus, ML algorithms 
can learn from data (training dataset), and the learned 
rules (the ML model) can be applied to new datasets 
(test dataset) without requiring manual coding changes 
from a human. Larger and more diverse training datasets 
are preferable as they allow ML models to work well 
when applied to a greater variety of novel test datasets. 
Compared with traditional statistical methods (eg, linear/
logistic regression), ML algorithms are advantageous 
because they can handle nonlinear nonprespecified 
interactions and retain strong performance when 
processing data containing a high number of variables 
(high-dimensional data).9

Machine learning algorithms can generate models 
via two main learning methodologies: supervised or 
unsupervised (Figure 2B). Supervised learning occurs 
under the condition that the training dataset is “labeled,” 
meaning each input is associated with a prespecified 
output. The advantage of this approach is that the 
algorithm focuses on understanding a specific variable of 
interest and generally needs less data to create a robust 
model.8,9 The disadvantage is that the process of labeling 
data can be error-prone and time-intensive, potentially 
requiring manual interpretation of raw data by a human 
expert. In contrast, unsupervised learning is performed on 
unlabeled training data. The ML algorithm identifies which 
datapoints are similar and clusters them into different 
groups based on those similarities. The advantage of 
unsupervised learning is that hidden patterns in data can 
be identified, circumventing preexisting human biases 
that would have inherently affected the labeling process. 
The disadvantage is that interpreting the meaning of 
clusters can be challenging, potentially limiting real-
world applicability of results.9 Further, more training data 
is often required to generate a robust model given the 
lack of direction to guide analysis.9 Beyond supervised 
and unsupervised learning, it is important to note that 
other advanced learning methods have been developed, 
such as “deep learning” that uses neural networks to 
process data across multiple layers of nodes.9



78Lang et al. Methodist DeBakey Cardiovasc J doi: 10.14797/mdcvj.1392

APPLICATIONS OF MACHINE LEARNING TO 
UNDERSTAND, DIAGNOSE, AND MANAGE HEART 
FAILURE
Numerous studies have applied ML algorithms to the field 
of HF, and they have been the subject of several reviews.8–11 
Specifically, ML techniques have been used to support the 
diagnosis of HF,12–16 improve risk stratification for adverse 
outcomes,17–24 create novel HF classifications,25–27 predict 
prognosis after treatment,28–31 strengthen continuous 
monitoring systems,32,33 and perform automated 
interpretation of diagnostic studies.34–36 Results from some 
of these algorithms have demonstrated superiority over 
results derived from traditional methods, including the 
widely-used Pooled Cohort Risk Equation18 and MAGGIC 
mortality risk score.19 Likewise, diagnostic performances 
of ML models have been shown to be superior to general 
cardiologists and cardiology residents for HF diagnosis 
and arrhythmia classification, respectively14,35 Similarly, 
our group recently used supervised learning to develop an 
ML model demonstrating superior diagnostic performance 

to radiologists for recognizing a dilated or hypertrophied 
left ventricle (LV) on chest x-ray.16 Together, these studies 
demonstrate the broad applications of ML for improving 
the care of HF patients and indicate that translation of 
research findings to clinical practice may be on the horizon.

MACHINE LEARNING IN PREDICTION OF 
MYOCARDIAL RECOVERY

FORMS OF MYOCARDIAL RECOVERY AND 
ASSOCIATED OUTCOMES
Clinical studies have demonstrated that device and 
medical therapies (ie, beta-blockers, renin-angiotensin-
aldosterone system inhibitors, and sodium-glucose 
cotransporter-2 inhibitors, or SGLT2i) proven to prolong 
life in HF patients can result in reverse remodeling and 
myocardial recovery.5,37 Some etiologies of HF with reduced 
ejection fraction (HFrEF), including myocarditis, peripartum 
cardiomyopathy, and tachyarrhythmia, are more likely to 

Figure 1 Incorporation of artificial intelligence (AI) and machine learning (ML) into research and clinical workflows to achieve successful 
implementation of purposeful myocardial recovery programs. ML could be applied to multi-omic datasets to elucidate novel drivers of 
myocardial recovery and accelerate drug development. ML could process vast amounts of individual patient data to predict chances of 
recovery with tailored treatment regimens. ML could create new heart failure phenogroups that better delineate prognostically important 
thresholds for changes in myocardial structure and function, thereby allowing for a refined definition of recovery that incorporates a spectrum 
of phenotypes from partial recovery to cure. In a patient who has recovered, ML could track data from high-volume continuous monitoring 
systems to identify candidates who need escalation of care to prevent relapse. Icons were obtained from flaticon.com. CXR: chest x-ray; Echo: 
echocardiography; EKG: electrocardiogram; EMR: electronic medical record; LV: left ventricular; LVEDV: left ventricular end-diastolic volume; 
LVEF: left ventricular ejection fraction; LVESV: left ventricular end-systolic volume; RV struct/fxn: right ventricular structure and function
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recover than others5; however, myocardial recovery is not 
always sustained as patients can relapse after initially 
major clinical and/or echocardiographic improvement.38 
Further, the incidence of recovery varies from < 1% to 40% 
across HF etiologies, disease severities, study designs, and 
selected definitions.5,38,39 Myocardial recovery as defined 
by normalization or near-normalization of LV ejection 

fraction (LVEF)—known as “functional recovery” or HF 
with improved EF (HFimpEF)—is prognostically significant, 
associated with lower rates of HF hospitalizations 
and mortality.5–7 Myocardial recovery as defined by 
improvements in LV end-systolic volume and end-diastolic 
volume after treatment (“structural recovery”) have been 
directly correlated with mortality risk reduction in HFrEF.40 

Figure 2 Differences between (A) traditional algorithms and machine learning (ML) algorithms and (B) supervised and unsupervised 
learning. Traditional algorithms apply predefined rules to input data, whereas ML algorithms create rules from training data to apply to 
new test data without human intervention. Supervised learning utilizes labeled data to train the ML model. When training a model to 
perform a task of classifying transport vehicles into bikes and cars, an ML algorithm will identify the key features comprising a bike versus 
a car and develop a set of rules for classification of each. Unsupervised learning trains the model on unlabeled data. An unsupervised 
ML algorithm training a model to classify transport vehicles into bikes and cars will cluster the data into groups with similar features, 
generating a set of rules for classification of each group. “Bikes” and “cars” are not explicitly named, but successful clustering will have 
properly separated out the two types of vehicles
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Perhaps, the most striking form of myocardial recovery is 
the reversal of chronic ventricular dilation and achievement 
of left ventricular assist device (LVAD) explantation in 
patients with end-stage HFrEF, which is associated with 
robust outcomes similar to transplanted patients.24,38,39,41,42 
Ultimately, myocardial recovery can take many forms but 
is generally associated with favorable outcomes regardless 
of the definition used.

TRADITIONAL PREDICTORS OF MYOCARDIAL 
RECOVERY
Given the prognostic significance, prediction of myocardial 
recovery is clinically useful. Traditional statistical methods 
have established several key factors associated with 
recovery. Across studies of all-comer HF patients, factors 
associated with HFimpEF included young age, nonischemic 
cardiomyopathy, female sex, shorter duration of HF, lower 
comorbidity burden, more intensive GDMT use, and lower 
levels of NTproBNP and troponin.5–7,43–46 In studies of end-
stage patients on LVAD, factors associated with device 
explantation were largely similar, including young age, 
nonischemic cardiomyopathy, shorter duration of HF, 
and more intensive GDMT use while implanted.38,39,41,47–50 
Interestingly, these studies demonstrated that many LVAD 
patients who achieved substantial improvement in LVEF 
did not undergo explantation, likely because such patients 
were not selected a priori for a bridge-to-recovery strategy, 
which commits the clinical team to close monitoring over 
time and significantly increases explantation rates.38,50,51 
These findings highlight the importance of identifying 
candidates for recovery early, and regression-based 
recovery prediction scores, such as Complete Recovery 
Score by the Columbia Group (I-TOPS)49 and INTERMACS 
including Cardiac Recovery Score (I-CARS),50 have been 
developed for this purpose.

APPLICATION OF MACHINE LEARNING TO 
PREDICT MYOCARDIAL RECOVERY
Given its advantages over traditional statistical methods, 
ML represents a powerful tool for improving myocardial 
recovery prediction across the spectrum of HF. Significant 
ML-based research has already been undertaken to 
understand recovery after CRT implantation. Using 
randomized trial data, Cikes et al. were the first to apply 
ML techniques to identify responders and nonresponders 
to CRT.52 The authors utilized unsupervised learning to 
define four phenogroups of patients with distinct baseline 
echocardiographic characteristics, medical histories, and 
medication use. Only two phenogroups exhibited significant 
improvements in event-free survival with CRT. These two 
phenogroups also demonstrated greater evidence of 
structural recovery with CRT than the other phenogroups. 

Typical characteristics of the two phenogroups included 
young age, nonischemic cardiomyopathy, female sex, 
left bundle branch block, and septal flash pattern.52 More 
recently, new studies have built on these findings by utilizing 
ML techniques applied to different input variables and 
response/recovery definitions.53–59 Ultimately, these studies 
demonstrate the power of ML, particularly unsupervised 
learning, for creating unique HF classifications with 
differential potential for myocardial recovery after device 
treatment.

Several studies have applied supervised ML to predict 
myocardial recovery with GDMT in HFrEF. MacGregor et al. 
utilized ML analysis of cardiac magnetic resonance imaging 
from patients with idiopathic dilated cardiomyopathy to 
predict response to medical therapy, defined as symptom 
improvement and increase in LVEF > 10%.60 The resulting 
ML model relied most on regional LV strain measurements 
and discriminated responders and nonresponders with 
an impressive area under curve (AUC) of 0.94. Similarly, 
Mohebi et al. applied ML to understand LVEF improvement 
to ≥ 35% after sacubitril/valsartan treatment.61 Lower HF 
duration and less extensive LV remodeling (eg, higher 
LVEF and lower LV mass index) were associated with 
greater probability of recovery. The ML model was able to 
predict lack of recovery at 1 year with an AUC of 0.86 in 
a test dataset. Finally, Mele et al. studied diabetic HFrEF 
patients treated with SGLT2i and identified several baseline 
echocardiographic characteristics, such as tricuspid 
annular plane systolic excursion, to be important for the 
prediction of structural/functional LV improvements 
after treatment.62 Given that all GDMT classes can induce 
myocardial recovery, these studies demonstrate emerging 
applications of ML to better understand the heterogeneous 
responses to GDMT in patients with stable HFrEF.

Leveraging the INTERMACS dataset of > 20,000 patients, 
our group was the first to apply ML to understand predictors 
of LVAD explantation.63 Here, LASSO (least absolute 
shrinkage and selection operator) feature selection was 
first used to identify 28 clinical variables correlated with 
recovery, including smoking, alcohol use, and medication 
nonadherence, which were not identified in prior regression-
based studies. These variables were then fed into five ML 
algorithms, and all resulting ML models had significantly 
better predictive ability (AUCs > 0.810) than previously 
published I-TOPS and I-CARS scores (P < .001).49,50 The 
best-performing ML model demonstrated significantly 
superior performance to an updated prediction score 
derived from traditional statistical methods applied to the 
contemporaneous INTERMACS dataset (P = .046).63 Patients 
who were predicted to recover by ML demonstrated lower 
mortality and greater chance of LVEF recovery on LVAD 
support. Interestingly, the identification of substance use 
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and medication nonadherence as positive predictors of 
recovery seemed counterintuitive, but our group surmised 
that patients with such characteristics were less likely to 
be listed for transplant, increasing time on LVAD support 
and thus chances of recovery. It is also plausible that some 
nonadherent patients become motivated to change their 
habits after LVAD implantation.63 Overall, this supervised 
learning-based study identified previously unappreciated 
predictors of recovery and demonstrated that ML can 
improve clinical decision-making around candidacy 
selection for LVAD recovery.

Finally, Adekkanattu et al. were the first to apply ML to an 
unstructured dataset of electronic medical records (EMR) 
from > 40,000 patients to predict LVEF changes over time.64 
Several ML models were developed and demonstrated AUCs 
of ~0.85 to 0.90 for predicting an increase in LVEF ≥ 30% at  
1 year. The most important predictive features were initial EF, 
age, ischemic heart disease, chronic obstructive pulmonary 
disease, and hypertension. This study demonstrated the 
feasibility of mining EMR data with ML to understand the 
likelihood of myocardial recovery.

MACHINE LEARNING TO ENHANCE 
MOLECULAR UNDERSTANDING IN 
MYOCARDIAL RECOVERY

EMERGING MOLECULAR MARKERS ASSOCIATED 
WITH MYOCARDIAL RECOVERY
Identification of mechanistic drivers of recovery may 
aid the development of new therapeutic strategies. 
By going beyond clinical predictors, novel molecular 
markers associated with recovery have begun to emerge. 
Proteins involved in myocardial fibrosis, including soluble 
suppression of tumorigenesis-2 (sST2),65 galectin-3,66 and 
procollagen type I c-terminal propeptide (PICP),67 have 
been directly correlated with adverse cardiovascular 
outcomes and inversely correlated with improvements in 
LV structure/function. Inflammatory cytokines, namely  
interferon-γ and tumor necrosis factor-α, have been 
inversely correlated with recovery.68 Specific gene signa
tures, as well as expression of certain mRNAs, microRNAs, 
and long non-coding RNAs, have been associated with 
recovery in mouse models of reversible HF as well as 
in studies evaluating recovered, failing, and nonfailing 
human heart tissue.69–72 Recently, our group has shown 
that the epigenetic profile of failing hearts could help 
determine HF etiology and chances of myocardial 
recovery on LVAD support.73 Lastly, a study of patients 
on LVAD brought together transcriptomic and proteomic 
datasets (“multi-omics”), identifying differential expres
sion of 17 cell cycle-related transcripts/peptides and 22 

extracellular matrix-related transcripts/peptides associ
ated with recovery, most of which were novel.74 As the 
genomic, transcriptomic, proteomic, and epigenomic data
sets from HF patients become increasingly advanced 
and well-integrated with clinical datasets, the molecular 
underpinnings of myocardial recovery can be better 
elucidated.

ROLE OF MACHINE LEARNING TO IDENTIFY 
MOLECULAR MARKERS ASSOCIATED WITH 
RECOVERY
Due to the high dimensionality of -omic datasets, -omic 
analyses have been limited by traditional statistical methods 
relying on thousands to millions of pairwise t-tests that are 
rarely significant after adjusting for multiplicity. Further, 
these traditional methods cannot account for nonlinear 
relationships that are invariably present. ML techniques 
represent a more sophisticated methodology for deriving 
novel insights from these complex datasets.

ML algorithms have begun to be applied to -omic 
datasets from HF patients, revealing new pathophysiologic 
insights. Ouwerkerk et al. created an ML model derived 
from 6 million genomic markers, 403 proteins, 36046 
transcripts, and 54 clinical variables to predict mortality 
in patients with HF.75 The most predictive features in the 
model were WFDC2 protein level, history of renal disease, 
TRAIL-R2 protein level, and TRAJ16 transcript level. Four 
major molecular pathways were identified as activated 
during HF progression and GDMT underdosing: PI3K-
Akt signaling, MAPK signaling, RAS signaling, and EGFR 
tyrosine kinase inhibitor resistance. Similarly, de Bakker 
et al. used ML to analyze large proteomic and clinical 
datasets to predict HF hospitalization and cardiovascular 
death in patients with HFrEF.76 ML techniques identified 9 
out of 4210 serially-measured proteins as prognostically 
significant on top of established risk factors, with the 
resulting model demonstrating strong predictive ability 
(c-index 0.80) in a test dataset.76 These exciting analyses 
demonstrate the power of ML to comprehensively analyze 

-omic datasets for the identification of novel molecular 
drivers of HF progression.

To our knowledge, ML algorithms have not been applied 
to -omic datasets in the context of research questions 
related to myocardial recovery. Given that ML has already 
been applied to understand HF progression, similar 
methodologies could be applied to understand recovery 
from HF. The use of ML to correlate improvements in 
functional/structural LV measurements with changes in 
protein, transcript, genetic, and epigenetic markers over 
time holds significant potential for identifying recovery-
driving molecular pathways that could be targeted by 
novel therapeutic agents.
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BARRIERS TO UNLOCKING THE FULL 
POTENTIAL OF MACHINE LEARNING

The application of ML to the care of patients with HF 
remains an emerging area of research.10 A PubMed search 
of “heart failure” plus “artificial intelligence” or “machine 
learning” yielded only ~1,600 results, with over 80% of 
the articles being published in the past 5 years. Significant 
work remains to successfully translate ML to clinical use, 
particularly in the area of myocardial recovery.

Despite the successes discussed in this review, several 
studies that relied on ML analysis of tabular datasets have 
produced only modest improvement over results derived 
from traditional statistical methods.24,63,76,77 Wehbe has 
proposed that these observations are not a shortcoming 
of ML but, rather, a limitation inherent in the application of 
ML to structured data.77 ML techniques, particularly deep 
learning, have the advantage of being able to process 
unstructured data, including raw images and EMR free text. 
Encouraging results from ML analyses of unstructured data 
have already been reported, and expansion of large-scale 
registries to include unstructured data may unlock the full 
capabilities of ML to identify novel patterns that enhance 
HF care.16,64,77

Constraints inherent to provider adoption represent 
another barrier to the clinical translation of ML. Currently, 
decision-making tools such as risk scores usually require 
manual data input by the clinician using an online 
calculator. Simple tools with less than five to seven input 
variables are preferred by busy clinicians,78 but most ML 
models use many more variables to optimize performance. 
To address these competing priorities, ML models would 
need to be integrated within the EMR, such that patient 
data is automatically pulled into the models and results 
are displayed to the clinician in an easily-readable 
graphical user interface. However, EMR integration of 
ML holds significant technical, logistical, and regulatory 
challenges, including the need for securitized protected 
health information and the potentially significant loss of 
model performance from spurious or unavailable inputs in 
real-world situations.79

Another concern is the potential to create biased models 
that exacerbate healthcare disparities. If an ML model’s 
training dataset underrepresents certain populations, 
the model will likely demonstrate worse performance 
when externally applied to those populations, thereby 
creating racial, gender, and socioeconomic biases that 
could worsen outcomes of already marginalized patients. 
Importantly, major government-funded genomic datasets 
have been reported to be only about 4% non-European, 
demonstrating the bias inherent in even commonly-used 

resources.10 Creation of large diverse training datasets is 
essential for the fair development of ML models.

Lastly, limited interpretability is an important barrier. 
Many ML algorithms are termed “black-box” because the 
developer cannot fully explain how the model arrives at 
its output. Lack of clarification leads a clinician to mistrust 
a model’s results, particularly if the model’s conclusion 
differs from the clinician’s intuition. To increase trust, use 
of explainability tools (eg, feature importance graphs) 
alongside ML outputs will be critical.31,77 Further, F1  
scores are often used in computer science to describe  
the predictive power of ML models. However, such scores 
are less interpretable than traditional AUC with sensitivity, 
specificity, and positive/negative predictive value, which 
are intuitively applicable by clinicians. Thus, authors of  
ML-based studies should make significant efforts to ensure 
model explainability and performance interpretability to 
improve real-world actionability.

AREAS FOR FUTURE RESEARCH

The application of ML to myocardial recovery presents 
numerous exciting areas for future study (Figure 1). 
Many large observational registries, clinical trial datasets, 
and biorepositories have been extensively mined using 
traditional statistical methods but are now ripe for analysis 
by ML techniques.

Currently, all patients with HFrEF are trialed on the same 
four pillars of GDMT derived from population-level studies.1 
However, HFrEF is a heterogenous disease with numerous 
etiologies, and individual patients may respond differently 
to each therapy. Likewise, many device therapies carry 
broad indications but have variable responses after 
implantation. Even the definition of HFimpEF, the only 
guideline-endorsed classification of HF that incorporates 
some form of myocardial recovery, is relatively simple, 
comprised of LVEF alone alongside somewhat arbitrary 
LVEF improvement thresholds that differ across society 
guidelines.1,80

Through ML analysis of multi-omic data from HF 
patients who have achieved myocardial recovery, essential 
molecular pathways driving recovery can be uncovered to 
accelerate drug development. By better predicting chances 
of myocardial recovery across clinical scenarios, ML can 
help identify candidates for therapy earlier, particularly 
in challenging situations, such as proceeding with LVAD 
or heart transplant in a young patient with cardiogenic 
shock. Further, prediction of individual patient responses 
to specific HF therapies could allow for personalized 
treatment that minimizes polypharmacy, decreases drug 
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side effects, avoids unnecessary device implantations, 
and improves outcomes. Finally, through identification of 
new prognostically important phenogroups, ML can help 
develop a more refined definition for “recovered HF” that 
incorporates key indices of LV structure/function beyond 
LVEF, allowing for improved monitoring, patient counseling, 
and treatment selection to prevent HF relapse.

In this review, we have cited several studies 
demonstrating proof-of-concept that such goals are within 
reach in the coming years. Further research is needed to 
transform proof-of-concept tools into validated clinical 
products.

CONCLUSION

AI and ML have enormous potential to usher in a new 
era of purposeful myocardial recovery programs tailored 
to each patient’s specific needs. Emerging research 
has shown that ML tools can enhance our ability to 
predict and understand myocardial recovery across 
the spectrum of HF. However, widespread adoption 
of ML in the clinic has yet to occur. Barriers to clinical 
translation include limited availability of unstructured 
datasets, rigorous requirements for provider adoption, 
potential for demographic bias, and insufficient model 
interpretability. Areas for future ML-based research 
in myocardial recovery include treatment response 
prediction, risk stratification, refined phenogrouping, and 
multi-omic dataset utilization. The proper application of 
ML tools to high-dimensional datasets will help clinicians 
achieve myocardial recovery in a more diverse group of 
HF patients than ever before.

KEY POINTS

•	 In a subset of patients with heart failure (HF), medical 
and device therapies can reverse abnormalities in 
cardiac structure and function, a phenomenon known 
as “myocardial recovery.”

•	 Artificial intelligence and machine learning (ML) 
algorithms allow computers to identify novel patterns 
in high-dimensional data and are superior to traditional 
statistical methods for handling complex interactions in 
large datasets.

•	 Emerging research has demonstrated the feasibility 
of applying ML to understand and predict myocardial 
recovery with pharmacologic and device therapies, 
such as guideline-directed medical therapy, cardiac 
resynchronization therapy, and mechanical circulatory 
support, across the spectrum of HF.

•	 ML has yet to be translated to the clinic at significant 
scale, owing to barriers such as limited availability 
of unstructured datasets, rigorous requirements 
for provider adoption, bias in training datasets, and 
difficulties surrounding model interpretability.

•	 By improving mechanistic understanding, treatment 
response prediction, phenogrouping, and monitoring, 
ML has the potential to usher in a new era of purposeful 
programs for myocardial recovery.
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