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Summary 

 

Cardiovascular disease (CVD) is associated with both genetic variants and environmental 

factors. One unifying consequence of the molecular risk factors in CVD is DNA damage, which 

must be repaired by DNA damage response proteins. However, the impact of DNA damage on 

global cardiomyocyte protein abundance, and its relationship to CVD risk remains unclear. We 

therefore treated induced pluripotent stem cell-derived cardiomyocytes with the DNA-damaging 

agent Doxorubicin (DOX) and a vehicle control, and identified 4,178 proteins that contribute to a 

network comprising 12 co-expressed modules and 403 hub proteins with high intramodular 

connectivity. Five modules correlate with DOX and represent distinct biological processes 

including RNA processing, chromatin regulation and metabolism. DOX-correlated hub proteins 

are depleted for proteins that vary in expression across individuals due to genetic variation but 

are enriched for proteins encoded by loss-of-function intolerant genes. While proteins 

associated with genetic risk for CVD, such as arrhythmia are enriched in specific DOX-

correlated modules, DOX-correlated hub proteins are not enriched for known CVD risk proteins. 

Instead, they are enriched among proteins that physically interact with CVD risk proteins. Our 

data demonstrate that DNA damage in cardiomyocytes induces diverse effects on biological 

processes through protein co-expression modules that are relevant for CVD, and that the level 

of protein connectivity in DNA damage-associated modules influences the tolerance to genetic 

variation. 
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Introduction 

 

Cardiovascular disease (CVD) is the leading cause of mortality globally (1). CVD risk factors 

including age, diagnosis of metabolic disease, and treatment with chemotherapeutics can result 

in oxidative stress and apoptosis leading to accumulated DNA damage and activation of the 

DNA damage response in the heart (2). The amount of DNA damage in the myocardium, as 

determined by the DNA double-strand break (DSB) marker gamma γH2AX, is predictive of heart 

failure (3). Persistent DNA damage in cardiac cell types can lead to disease and has been 

detected among some of the most prevalent CVDs, including heart failure, dilated 

cardiomyopathy, and atrial fibrillation (4). The myocardium is comprised of cardiomyocytes that 

produce the contractile force of the heart necessary to circulate oxygenated blood throughout 

the body, and therefore damage to these cells can lead to cardiac dysfunction. Adult human 

cardiomyocytes are also particularly susceptible to DNA damage given that they are post-mitotic 

and unable to regenerate (4). This means that DNA damage, induced through DSBs, can only 

be repaired through error-prone Non-homologous end joining, unlike proliferative cell types that 

can also repair DNA through homologous recombination (5).  

 

Doxorubicin (DOX) is an effective anthracycline chemotherapeutic that can adversely induce 

cardiac dysfunction through the formation of DSBs in cardiomyocytes (6). This is primarily 

mediated through its interaction with the DNA topology regulator topoisomerase II (TOP2). 

Physiologically, the TOP2A and TOP2B isoforms resolve torsional stress in DNA by DSBs; 

however, in the presence of DOX, TOP2 is trapped on DNA where it generates DNA lesions (7). 

The predominant TOP2 isoform expressed in the heart is TOP2B. TOP2B has been shown to 

mediate the cardiotoxic effects of DOX in in vivo animal models and in vitro human disease 

models (8, 9). While DOX can lead to cellular effects through mechanisms including the 

generation of ROS, at clinically-tolerated sub-micromolar doses, DSB induced through 

interactions with TOP2B is the main contributor to DOX-induced cardiotoxicity (10). Clinically, 

DOX-induced cardiac dysfunction shares characteristics of multiple CVDs (6). Nine percent of 

individuals receiving DOX exhibit reductions in their left ventricular ejection fractions within 

values that would constitute heart failure (11, 12). Similarly, treatment with DOX increases the 

risk for electrophysiologic dysfunction and atrial fibrillation by tenfold, and is associated with 

other clinically-measurable phenotypes, such as an increased QT-interval (13, 14). These 

pathologies overlap with those influenced by DNA damage and are impacted by genetic risk (4, 

15).  
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Genome-wide association studies (GWAS) have identified hundreds of risk loci associated with 

complex CVDs including atrial fibrillation, heart failure, DOX-induced cardiotoxicity and clinical 

cardiovascular phenotypes, highlighting the genetic component of CVD (15). Although GWAS 

identify genetic risk loci that can be mapped to genes that implicate putative regulatory effects, 

they do not explain the molecular mechanisms of the diseases that they associate with (16, 17). 

This ultimately impedes our understanding of the effect of genetic variation on CVD and its 

applicability to identify potential drug targets (17).  

 

One approach to understand a complex disease phenotype is to construct networks based on 

molecular phenotypes such as global mRNA or protein expression levels. Indeed, transcriptome 

profiling of human brain regions has provided insight into cell type specificity for the risk for 

neuropsychiatric diseases (18). However, it has been shown that expression networks differ at 

the mRNA and protein level and that many complex disease phenotypes are observed only at 

the proteome level (19-21). Targeted studies investigating the protein interactomes of proteins 

encoded in GWAS loci have identified convergent points in the interaction network for autism 

spectrum disorder and coronary artery disease highlighting disease-relevant biology (22, 23). 

Complex disease networks are likely to exert tissue and cell type-specific effects. Indeed, 

proteins relevant to late onset Alzheimer’s disease are localized within glial cells in the brain 

(21). Similarly, the appropriate cellular context, such as cell type and state, is important for 

understanding the basis of CVD. Clinically-observed CVD such as DOX-induced cardiotoxicity 

can be recapitulated in human induced pluripotent stem cell-derived cardiomyocyte models (24), 

allowing for the study of disease-relevant states such as exposure to DOX and hypoxia to 

understand CVD risk (25-27). However, a protein network has not been generated in this 

context to understand the interplay between a cellular stressor relevant to CVD and proteins 

encoded by genes that are implicated in complex CVDs. 

 

We therefore designed a study to determine the effects of the DNA-damaging drug, DOX, on 

the proteome of human cardiomyocytes. We differentiated cardiomyocytes from induced 

pluripotent stem cells from three healthy individuals, treated them with a sub-lethal dose of 

DOX, and measured global protein expression levels. We were able to construct a protein 

expression network consisting of co-expression modules correlated with DNA damage 

treatment that associate with distinct biological processes and cardiovascular traits and 

diseases, and define the tolerance of network components to genetic variation. 
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Results 

 

iPSC-CM proteome resembles the heart ventricle proteome and is affected by DNA 

damage 

 

We differentiated induced pluripotent stem cells (iPSCs) from three healthy female donors into 

cardiomyocytes (iPSC-CMs) using biphasic WNT modulation (Fig 1A, Table 1). iPSC-CMs were 

metabolically selected and matured for 27 days post-differentiation initiation (See Methods) (26). 

Flow cytometry analysis of two individuals indicated high-purity cultures with a median of 97% of 

cells expressing cardiac troponin T (Fig S1).  

 

To determine the effect of DNA damage on the cardiomyocyte proteome, we treated iPSC-CMs 

with a TOP2B-inhibiting, clinically-relevant concentration of DOX (0.5 μM) and a water vehicle 

control (VEH) for 24 hours. This dose of DOX causes minimal cell death in iPSC-CMs but 

induces thousands of mRNA expression changes for genes in pathways related to p53 

signaling, base excision repair and DNA replication (28). We confirmed the DNA-damaging 

effects of DOX under these conditions by assaying the expression of the DNA DSB marker 

γH2AX (Fig 1B). DOX-treated cardiomyocytes have significantly higher γH2AX expression 

compared to VEH-treated cardiomyocytes (Fig 1C; 90% vs. 7%; t-test; P < 0.05).  To account 

for technical variability in the drug treatment and proteomic data collection, the DOX and VEH 

treatment in iPSC-CMs from one individual was replicated three times, resulting in a total of 10 

samples across individuals and treatments.  

 

Global protein expression data was inferred from peptidic identification and quantification using 

data-independent acquisition mass spectrometry (DIA; See Methods). Peptides were mapped to 

4,261 proteins present in at least one sample (S1 Appendix). Four non-human proteins and 

proteins that were present in less than half of the samples were filtered out. To enable 

construction of a complete as possible network, we used the remaining 4,178 proteins to impute 

protein abundance data for the 246 proteins with missing data using a feature clustering-based 

imputation method commonly used for proteomics data (29, 30) (Fig S2A). On average, imputed 

proteins are less abundant than proteins present in all 10 samples (median log2 abundance all = 

19.83, median imputed abundance = 16.98; Fig S2B). We took advantage of the technical 

replicates to remove unwanted variation in the data (See Methods) (31). After correction, 

principal component analysis reveals that PC1, which accounts for 32% of variation in the data, 
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associates with drug treatment, while PC2, accounting for 29% of the variation in the data, 

associates with individual (Fig S2C-D). Similarly, when comparing all pairwise sample 

correlations, the data primarily separates into two clusters corresponding to DOX and VEH 

treatment (Fig 1D). 

 

To gain insight into the utility of our iPSC-CM proteome data for understanding the effect of 

DNA damage on the heart, we correlated the median expression of our set of proteins with the 

expression of proteins measured in 26 post-mortem human tissues from hundreds of individuals 

(20). The iPSC-CM proteome is most similar to the proteome from heart left ventricle and atrial 

appendage, followed by skeletal muscle (Fig 1E). iPSC-CMs express cardiac-specific and 

cardiac-abundant proteins, including Myosin Heavy Chain 7 (MYH7), Myosin Light Chain 6 

(MYH6), and Troponin I (TNNI3; Fig 1F). Together, these findings affirm that the proteome of 

our iPSC-CMs closely resembles ventricular and atrial tissue, includes key cardiomyocyte 

proteins, and demonstrates the influence of DNA damage as the main contributor to variation of 

protein abundance values within our experimental model.  

 

Network analysis reveals DOX-correlated modules, response proteins and hub proteins 

 

In order to identify sets of co-expressed proteins within our data, we utilized Weighted 

Correlation Network Analysis (WGCNA) (32). WGCNA assumes the co-expression network 

follows a scale-free topology, where few nodes (proteins) have high connectivity and many 

nodes have low connectivity, and requires a soft power threshold to determine the weights of 

edges connecting nodes. We regressed total network connectivity on the connectivity frequency 

distribution at different power thresholds and determined that the lowest power threshold that 

yielded the best fit to a scale-free network (0.71 regression coefficient) was 20 (Fig S3A). The 

scale-free fit is further supported by decreasing connectivities at higher power thresholds, where 

we find that at a power threshold of 20, our network has a median connectivity score of 53.6, 

mean connectivity of 65.4, and max connectivity of 216 (Fig S3B). Using these criteria, we 

generated a network comprising 21 co-expressed modules with at least 40 proteins per module 

(Fig S3C), summarized by 21 eigenproteins (Fig S3D). All combinations of proteins in the co-

expression network are summarized as pairwise correlations (S2 Appendix). To better 

distinguish individual modules, we merged modules with highly correlated eigenproteins 

(Pearson correlation > 0.85), which collapsed the data into 12 distinct modules (Fig 2A & Fig 

S3E). These modules contain between 45 and 798 proteins (Table 2). 106 proteins do not fit the 
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profile of any module and were categorized as ‘unassigned’ (Table 2). Imputed proteins are 

distributed across modules representing 1.6-16% of all proteins within a module. We associated 

each module with the two biological features of our data, namely DOX treatment and Individual 

(IND). To do so, we measured the correlation between each module's eigenprotein and either 

IND or DOX treatment (Fig 2A). We named each of the 12 modules based on the order of their 

absolute correlation with DOX treatment α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, and μ. Eigenproteins from 

the α, β, γ, ε, and δ modules exhibited significant correlations with DOX treatment (Pearson 

correlation, P < 0.01), and were therefore categorized as DOX-correlated modules. Modules α, 

δ and ε have strong negative DOX correlations of -0.97, -0.81 and -0.79, while modules β and γ 

have similar positive correlations of 0.89 and 0.86, respectively. In contrast, eigenproteins from 

the μ, ι, and θ modules are significantly correlated with IND. This delineation indicates that five 

of the 12 co-expressed modules in our iPSC-CM protein abundance correlation network are 

specifically associated with DOX treatment.  

 

To support the categorization of five modules as DOX-correlated, we performed an independent 

pairwise differential abundance (DA) test. Using this approach, we identified 1,167 DA proteins 

among the 4,178 evaluated proteins (P < 0.05; Table 2; See Methods). 613 DA proteins exhibit 

increased abundance in the DOX-treated iPSC-CMs, while 554 DA proteins show decreased 

abundance (Fig 2B). We overlapped the set of DA proteins with the set of proteins in each 

module and found 33 - 57% of α, β, γ, ε, and δ DOX-correlated module proteins are classified 

as DA compared to 0 - 20% of non-DOX-correlated module proteins (Fig 2C). Similarly, proteins 

within DOX-correlated modules tend to have a greater response to DOX treatment as measured 

by their log fold change, compared to proteins in non-DOX-correlated modules (Fig 2D). 

 

In order to test the robustness of our approach for identifying DOX-responsive proteins, we also 

acquired protein measurements of the same samples by data-dependent acquisition (DDA) on 

the mass spectrometer (See Methods). We identified 4,501 proteins using this method. All 

proteins identified by DIA were also identified by DDA, and the abundance of the 3,027 proteins 

present across all samples in both data sets is highly correlated (rho = 0.75, P < 0.001; Fig S4). 

Following imputation and unwanted variance removal of the DDA data, we identified 620 DA 

proteins amongst 3,954 proteins. The effect size of the response to DOX treatment amongst 

proteins included in both acquisition methods is correlated (Pearson correlation coefficient = 

0.35; P < 0.001; Fig S5), and the proportion of DA proteins is similar (16% for DDA & 28% for 
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DIA). These results suggest that protein abundance changes in response to DOX identified by 

DIA are replicated when abundance data is collected through data-dependent acquisition. 

 

We identified a set of proteins with a high level of intra-modular connectivity that are likely to 

play a central role in the biological processes associated with each module. These 403 hub 

proteins have the highest correlation with the module eigenproteins and the highest intra-

modular connectivity (kIN) score (top 10% of all network proteins; See Methods; Fig S6-7 & 

Table 2). Hub proteins predominantly reflect the module’s collective response to DOX or VEH 

treatment. For example, DDX27 in the α module is downregulated in response to DOX 

treatment, while PIGQ in the λ module shows no difference in abundance in response to DOX 

(Fig 2E). We then focused on the relationship between hub proteins across the five DOX-

correlated modules (n = 202). The resulting network revealed not only strong intra-modular 

connections but also significant inter-modular correlations among proteins with a similar 

direction of effect in response to DOX treatment, indicating potential roles in inter-modular 

overlap for biological processes (Fig 2F).  

 

Module proteins differ in their tissue specificity and cellular localization  

 

Having identified modules of co-expressed proteins that are correlated with DOX treatment, we 

next sought to investigate the properties associated with each module. To determine the 

specificity of module proteins to heart tissue, we utilized data from the Human Protein Atlas 

(HPA) and the Genotype-Tissue Expression (GTEx) projects (20, 33). These resources provide 

extensive gene and protein expression measurements across various tissues. The HPA 

database highlights 419 genes with elevated expression in heart tissue, defined as at least a 

four-fold higher mRNA level in the heart compared to the average in other tissues. We detect 

277 proteins corresponding to heart-elevated genes in our data. Heart-elevated proteins 

constitute only a small proportion of proteins in each module regardless of DOX-correlation 

status (median all = 4.5%, range all = 0 - 8%; Fig 3A). For a quantitative analysis of tissue 

specificity of DOX-correlated module proteins, we obtained tissue specificity (TS) scores for 

proteins in heart left ventricle tissue from GTEx. DA proteins generally exhibit lower TS scores 

than non-DA proteins (Wilcoxon rank-sum test; P < 0.05; Fig S8), suggesting that iPSC-CM 

proteins, which are DA in response to DOX, show reduced specificity to heart ventricle tissue. 

We then asked whether this trend applies at the module level. For each module in the network, 

module TS scores were compared to the mutually exclusive set of all other network proteins 
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(network TS Median = 0.33). We find significant deviations in TS scores from DOX-correlated 

modules α, β, γ, and δ, as well as non-DOX-correlated modules κ, and ι (Wilcoxon rank-sum 

test; P < 0.05). Modules β, δ, κ, and ι have higher TS scores, whereas α and γ have lower TS 

scores (Fig 3B). DOX-correlated modules (α, β, γ, δ, and ε) are therefore heterogeneous in their 

tissue specificity. However, the module with the strongest correlation to DOX, α, contains 

proteins that are the least specific to heart ventricle tissue (TS score = -0.465). These findings 

suggest that proteins that are most responsive to DNA damage in cardiomyocytes are not 

specific to the heart ventricle; however there are still likely to be tissue-specific effects among 

DOX response modules as indicated by the β and δ modules.  

 

We next asked whether proteins within each module are restricted to specific intracellular or 

extracellular locations. We first investigated the localization of module proteins across four 

broad categories: intracellular, membrane-bound, plasma-detected, and secreted proteins as 

defined by HPA. We find that DOX-correlated modules α, β, and δ contain proteins that are 

enriched in the intracellular category compared to proteins not contained within each of these 

modules (Fig 3C; Fisher’s exact test; Odds ratio = 1.8, 1.3, 1.5 respectively; P < 0.05). Module γ 

is the only DOX-correlated module enriched for membrane proteins (Odds ratio = 1.4; P < 0.05), 

along with non-DOX-correlated modules η, λ and μ. Plasma-detected proteins are only enriched 

in module β (Odds ratio = 1.61; P < 0.05), while secreted proteins are only enriched in module μ 

(Odds ratio = 2.3; P < 0.05). The ε module is the only DOX-correlated module not enriched for 

any category. These results suggest that the cellular localization of proteins differs across 

modules. We then asked whether the sub-cellular localization of intracellular proteins differs 

across modules using annotation data from the UniProt database (34). Network proteins are 

generally distributed across multiple sub-cellular organelles including the sarcomere, nucleus, 

mitochondrion, lysosome, golgi apparatus, endoplasmic reticulum, cytoskeleton, cytoplasm, cell 

membrane, and autophagosome (Fig 3D). Nuclear proteins are enriched in modules α, β, 

and ε (P < 0.05). Modules α and ε also share enrichment for cell membrane, cytoplasm, 

endoplasmic reticulum, mitochondrial and lysosomal proteins. Module δ is enriched for 

mitochondrial proteins, while γ is enriched for endoplasmic reticulum and cell membrane 

proteins. 

  

DOX-correlated module proteins are enriched for distinct biological processes  
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To elucidate the broad functional roles of proteins within the DOX-correlated modules, we tested 

whether proteins associated with distinct biological processes are enriched in each module (See 

Methods). We found that the α, β, δ and ε modules show enrichment for various biological 

processes (Fisher's exact test; adjusted P < 0.05; Fig 4A & Fig S9). The α module is enriched 

for 160 unique processes related to the DNA damage response, gene regulation via RNA 

splicing and metabolism, as well as chromatin regulating processes such as histone methylation 

and acetylation (Table 3). The β module is uniquely enriched for 35 processes related to protein 

localization within the nucleus and metabolism of carbohydrates, organophosphates, and 

oxoacids. Proteins in the δ module are uniquely enriched for 13 processes related to 

mitochondrial gene expression, translation and ATP synthesis. The ε module is uniquely 

enriched for 26 processes related to DNA replication and chromatin assembly. There are no 

processes significantly enriched within the γ module; however the most represented processes 

include glutamine family amino acid catabolic processes and ion homeostasis. Biological 

processes shared across modules include cytoplasmic translation (enriched in δ & ε), post-

transcriptional regulation of gene expression (α & ε), and ribosome and ribonucleoprotein 

complex biosynthesis (α, ε & δ). Together, these data show a diversity of processes enriched 

amongst DOX-correlated modules. 

 

We then asked whether proteins in each module are enriched for specific protein families 

consistent with their distinct biological processes. The α module is most strongly enriched for 

the splicing factor SR family, RNase PH family, and Histone deacetylase family (Fisher’s exact 

test; P < 0.05; Fig S10). β is most enriched for the TCP-1 chaperonin family, Periredoxin family, 

and Eukaryotic mitochondrial porin family. γ is enriched for proteins in the Septin GTPase 

family, AGC Ser/Thr protein kinase family, and Peptidase C2 family. δ is enriched for proteins in 

the 14-3-3 family, Adaptor complexes small subunit family, and Troponin I family. ε is enriched 

for proteins in the fibrillar collagen family, Ruvb family, and Lin-7 family. These results generally 

corroborate the biological process enrichment analysis results, while also underscoring that 

although some modules may overlap in terms of their biological processes, the proteins that are 

engaged in those processes across different modules can be differentiated by their protein 

families.  

 

We selected five key protein categories to investigate further based on our module-specific 

functional enrichment results (Fig 4B; See Methods) (20, 35-37). The α module is uniquely 

enriched for transcription factors (Fisher's exact test, OR = 5.6; P < 0.05; Fig 4C), particularly 
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the homeodomain, GATA and C2H2 Zinc Finger families that include the GATA4, MEIS1 and 

ZNF629 transcription factors (Fig 4D). Mutations in GATA4 are associated with atrial septal 

defects, arrhythmia, and a reduced capacity for the cardiac hypertrophic response (38), and 

have been implicated in DOX-induced cardiotoxicity (39). Both the α and ε modules show 

enrichment for stress granule components and RNA Binding Proteins (P < 0.05; Fig 4B). RNA 

binding proteins related to multiple post-transcriptional processes including splicing, translation 

and mRNA stability are enriched (Fig 4E), and include proteins such as QKI, YBX3 and GNL3 

(Fig 4F). QKI regulates pre-mRNA splicing, export of mRNAs from the nucleus, protein 

translation, and mRNA stability (40), and is implicated in cardiomyocyte calcium dynamics and 

contractility (41), cardiomyopathies (40) and attenuation of DOX-induced cardiotoxicity (42). The 

β module uniquely exhibits enrichment for enzymes (OR = 1.9; P < 0.05; Fig 4B) involved in 

processes such as fatty acid oxidation, glutathione metabolism and purine metabolism (Fig 4G). 

The most DOX-responsive enzymes include NDUFB7, a member of the δ module and critical 

component of the mitochondrial membrane respiratory chain complex I, and ENOPH1 a 

member of the β module, and key enzyme in the methionine salvage pathway (Fig 4H). The γ 

module is distinctively enriched for transporter proteins including PRDX2 and ABCB1 (OR = 1.6; 

P < 0.05; Fig 4B). These results are consistent with the biological processes enriched in each 

module. 

 

Hub proteins in DOX-correlated modules are depleted for pQTLs  

 

We next focused our attention on the properties of the 403 hub proteins within the network. We 

were particularly interested in understanding the tolerance of these central proteins to 

physiological genetic variation. To do so, we investigated proteins whose expression level 

varies across individuals depending on the genotype of an associated SNP i.e. protein 

quantitative trait loci (pQTLs; Fig 5A). We obtained a set of pQTLs identified in human plasma 

from thousands of individuals (17), and overlapped these with iPSC-CM network proteins (Table 

2). We first asked whether pQTL proteins associated with either cis- or trans-SNPs are enriched 

amongst hub proteins. Hub proteins are nether enriched nor depleted for pQTLs (Fisher’s exact 

test OR = 1.1; 95% CI = 0.8-1.5 for cis-pQTLs and OR = 1.0; 95% CI = 0.8-1.4 for trans-pQTLs). 

We then asked whether pQTL proteins are enriched amongst proteins that respond to DNA 

damage. DOX-correlated proteins are modestly depleted for pQTL proteins associated with 

either cis- (OR = 0.7; 95% CI = 0.6-0.8; P < 0.05; Fig 5B) or trans-SNPs (OR = 0.8; 95% CI = 

0.7-1.0; P < 0.05, Fig 5B). However, DOX-correlated hub proteins show an even more 
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pronounced depletion for pQTL proteins mapped to cis- (OR = 0.2; 95% CI = 0.1-0.5; P < 0.05; 

Fig 5B) or trans-SNPs (OR = 0.4; 95% CI = 0.2-0.6; P < 0.05; Fig 5B).  

 

Next, we investigated those pQTLs that correspond to proteins expressed within our network 

and asked whether the SNP effect size of the pQTLs differed across network components. We 

assigned each pQTL protein to the cis- or trans-SNP with the greatest effect size. As expected, 

the median effect size for cis-pQTL proteins in the network is greater than that for trans-pQTLs 

(0.2 vs. 0.1). There is no difference in the cis- or trans-pQTL effect sizes between DOX-

correlated and non-DOX-correlated proteins (Fig 5C). However, DOX-correlated hub proteins 

have lower cis- and trans-pQTL effect sizes than hub proteins that are not correlated with DOX 

(Wilcoxon rank-sum test; P < 0.05; Fig 5D).  

 

Given the depletion of pQTLs amongst DOX-correlated hub proteins and not the total set of hub 

proteins, we next asked if there is a relationship between the intra-modular connectivity of a 

protein and the probability of that protein being a pQTL that is influenced by DOX. We assigned 

proteins into two groups based on their DOX-correlation status, stratified proteins within each 

group into deciles based on their connectivity, and calculated the percentage of pQTL proteins 

in each decile. In the non-DOX-correlated group, the decile with the highest connectivity shows 

the greatest percentage of pQTL proteins (21%), while the decile with the lowest connectivity 

shows the lowest percentage of pQTL proteins (9%). Across deciles, there is a general upward 

trend in the percentage of pQTL proteins as intra-modular connectivity increases (Fig 5E). In the 

DOX-correlated group, the highest connectivity decile shows a reduction in the percentage of 

pQTL proteins (8%) relative to the lowest connectivity decile (16%), and more variability for the 

percentage of pQTL proteins across deciles. Therefore, the percentage of pQTL proteins across 

different deciles showed opposite trends depending on their correlation to DOX. The decrease 

in pQTL proteins with the highest connectivity among DOX-correlated proteins suggests that 

hub proteins correlated to DOX treatment are under stronger evolutionary constraints, leading to 

reduced genetic variation in these highly connected proteins. In summary, our analysis reveals 

that DOX-correlated hub proteins are less likely to be associated with pQTLs, indicating their 

likelihood to play an essential role in maintaining network stability and function under stress 

conditions.  

 

DOX-correlated hub proteins are enriched for loss-of-function intolerant proteins  
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Given that DOX-correlated hub proteins are depleted for proteins that vary in their expression 

across healthy individuals, we next asked about the tolerance of these proteins to variation 

more broadly. We utilized several genetic tolerance scores to assess the functional impact and 

evolutionary constraint of genes encoding proteins within specific modules. First, we considered 

the probability of each protein in a module being haploinsufficient (pHaplo), which estimates 

whether a single copy of a gene can maintain normal function, or triplosensitive (pTriplo), which 

estimates the risks of gene dose increases, that can be equally detrimental. Genes with a high 

pHaplo score (≥ 0.86) or a high pTriplo score (≥ 0.94) are deemed haploinsufficient or 

triplosensitive, respectively, and likely precipitate health consequences (43). We compared the 

gene dose scores of DOX-correlated module proteins against the broader network (See 

Methods). The α and ε modules have higher pHaplo scores compared to network proteins, while 

δ module proteins have lower pHaplo scores (Fig 6A; Wilcoxon rank-sum test; P < 0.05). The α 

module also shows increased pTriplo scores compared to the network average, while the δ 

module's pTriplo scores are lower (Fig 6B; P < 0.05). These results show that the most DOX-

correlated module, α, is most sensitive to gene dosage changes. 

 

Next, we examined the tolerance of module proteins to mutations that reduce or eliminate 

protein function. Genes with a high probability (≥ 0.9) of loss-of-function intolerance (pLI) are 

considered loss-of-function intolerant, meaning they cannot withstand loss-of-function mutations 

without significant phenotypic impact. Conversely, genes with a low probability (≤ 0.1) can 

tolerate loss-of-function mutations with minimal phenotypic consequences and are considered 

loss-of-function tolerant (43, 44). Both α and ε module proteins exhibit significantly higher pLI 

scores than proteins outside these modules (Fig 6C; Table 2; P < 0.05), indicating that they are 

less tolerant to genetic variation. In contrast, the β module is characterized by lower pLI scores 

(Fig 6C; P < 0.05), suggesting these proteins can better tolerate loss-of-function mutations. 

These results emphasize that the α module contains proteins that are highly intolerant to 

pathogenic variation. 

 

To test the relationship between modular connectivity and pLI across the network, we identified 

the set of loss-of-function tolerant and loss-of-function intolerant proteins. We find that loss-of-

function intolerant proteins have a higher level of intra-modular connectivity compared to loss-

of-function tolerant proteins (Wilcoxon rank-sum test; P < 0.05; Fig 6D). To understand the 

relationship between different types of connectivity and DOX-correlation, we next considered 

the spectrum of tolerance to mutation across all proteins in the network. First, we classified all 
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proteins into two groups based on their DOX-correlation status. We then generated deciles for 

intra-modular connectivity (kIN), inter-modular connectivity (kOut) and total network connectivity 

(kTotal) for both DOX-correlated, and non-DOX-correlated proteins. For DOX-correlated 

proteins, there is a marked increase in pLI scores in the highest kTotal and kIN deciles (Fig 6E). 

Conversely, pLI scores for kOut appeared more variable at higher connectivity deciles. In 

comparison to DOX-correlated proteins, median pLI scores for non-DOX-correlated proteins 

remain consistently low across deciles for all measures of connectivity. These findings highlight 

that DOX-correlated proteins with the highest total connectivity, primarily driven by intra-modular 

connectivity, are essential for cellular function under DNA damage conditions and are under 

strong evolutionary constraints to maintain their functional integrity. In contrast, non-DOX-

correlated proteins do not exhibit a relationship between connectivity and mutation intolerance, 

suggesting a less critical role in maintaining network stability.  

 

We next asked whether loss-of-function intolerant proteins are enriched among proteins central 

to the protein network given that there are increased pLI scores in the highest decile for intra-

modular connectivity. DOX-correlated proteins are modestly enriched for proteins whose 

encoding genes are loss-of-function intolerant (Fisher’s exact test; OR = 1.5; CI = 1.3-1.7; P < 

0.05; Fig 6F) and depleted for proteins that are tolerant to mutation (OR = 0.7; CI = 0.6-0.8; P < 

0.05). Hub proteins are modestly enriched for loss-of-function intolerant proteins (OR = 1.4; CI = 

1.1-1.8; P < 0.05) and depleted for mutation tolerant proteins (OR = 0.7; CI = 0.6-0.9; P < 0.05). 

However, DOX-correlated hub proteins are highly enriched for mutation-intolerant proteins (OR 

= 2.9; CI = 1.8-4.6; P < 0.05) and depleted for mutation-tolerant proteins (OR = 0.4; CI = 0.2-

0.6; P < 0.05; Fig 6F). These data demonstrate that DOX-correlated hub proteins are likely to be 

the most critical proteins to the DNA damage response network.  

 

DOX-correlated modules are enriched for cardiovascular disease-associated proteins  

 

We assessed the relative likelihood for DOX-correlated proteins to be contained in the set of 

proteins mapped to cardiovascular traits. Because our network’s modules are enriched for 

biological processes and protein families, testing for enrichment of proteins in trait-associated 

loci within network modules can contextualize how genetic risk factors might disrupt specific 

biological pathways and contribute to disease. We therefore collated heart function 

measurement traits and CVD traits from the GWAS catalog (45), and tested for enrichment of 

the GWAS mapped genes amongst proteins expressed in our network modules (Fig 7A; See 
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Methods). We obtained 1,077 traits to explore, where 993 correspond to heart function 

measurements, and 84 correspond to CVDs. DOX-correlated modules are enriched for proteins 

mapped to 26 clinical cardiovascular traits (Fisher’s exact test; P < 0.05), 25 of which are unique 

to DOX-correlated modules, and five CVDs, all of which are specific to a module (Fig 7B). 

 

The α module is enriched for proteins related to clinical traits such as QT-interval, left ventricular 

mass to end diastolic volume ratio, frontal QRS-T angle, and ceramide levels. These proteins 

are also relevant to disease as this module contains proteins implicated in atrial fibrillation. The 

β module is enriched for trihexosylceramide levels, heart rate response to beta blockers, and 

ascending aorta distensibility. However, the β module is not enriched for any CVD traits. The γ 

module is enriched for age-related endophenotypes (classified as both a clinical trait and CVD) 

and asymmetrical dimethylarginine levels. The δ module is enriched for glycerophospholipid-

related traits as well as radial peak diastolic strain and right ventricular ejection fraction. Proteins 

in this module are enriched for dilated cardiomyopathy. The ε module is enriched for traits 

related to glycerophospholipids, myocardial dimensions, heart rate post exercise, and the ratio 

of BNP to pro-BNP. This module is also enriched for proteins associated with Anthracycline-

induced cardiotoxicity. Together these results highlight that the modules of co-expressed 

proteins that we identify are associated with distinct physiological and pathological processes, 

suggesting protein co-expression may serve as a functionally relevant context to interpret the 

role of CVD risk proteins in mediating CVD.  

 

DOX-correlated hub proteins are enriched for physical protein-protein interactors of 

CVD-associated proteins  

 

We assessed the relative likelihood for key network proteins to be contained in the set of 

proteins mapped to CVD (Fig 8A). CVD-associated proteins are neither enriched nor depleted 

amongst hub proteins, DOX-correlated proteins or DOX-correlated hub proteins (Fig 8B) 

suggesting that they do not contribute to the key features of our protein network. Although these 

results are in line with the observation that DOX-correlated hub proteins are depleted for pQTLs 

and are intolerant to genetic mutation, these data conflict with the result showing enrichment of 

proteins associated with CVD within DOX-correlated modules.  

 

We next reasoned that proteins that are known to physically interact with CVD-associated 

proteins may provide insight into how proteins encoded by CVD risk genes connect to the DOX-
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correlated proteins in our network. We therefore identified pairwise interactions between all 

4,178 network proteins (STRINGdb; confidence score ≥ 0.9) and generated a total physical 

protein-protein interaction (PPI) network (n = 13,750 edges). We then extracted the subnetwork 

containing CVD proteins (n = 213) and their interactors (n = 798; n = 909 edges; Tables 2 & 4). 

We then asked whether CVD proteins and their interactors differ in their essentiality. CVD 

proteins have lower pLI scores than proteins they interact with (0.07 vs. 0.69; Wilcoxon rank-

sum test; P < 0.05; Fig 8C). To test the robustness of these results, we analyzed 10,000 

randomly generated subnetworks from the total network that maintained a similar degree 

distribution as the CVD protein network (See Methods). The enrichment P value of CVD-

associated proteins and their interactors is lower than the 5 th percentile of the random 

distribution (P = 0.00001 vs. P = 0.006), and the median pLI score difference between our test 

sets (0.62) is within the 95th (0.63) and 96th (0.64) percentiles of the randomly generated 

networks. These findings suggest that genes encoding CVD risk proteins are less likely to be 

essential compared to their interacting partners.  

 

We next asked about the relative likelihood for hub proteins in the network to be contained in 

the set of CVD protein interactors. We first calculated the frequency of protein interactors falling 

in the same module. We find that the proportion of interacting proteins expressed in the same 

module is higher for interactions where one of the proteins is a hub protein compared to 

interactions that do not include a hub protein (Wilcoxon rank-sum test; P < 0.05; Fig S11). 

Although hub proteins are more likely to be co-expressed in the same module with their physical 

protein interactors, hub proteins are not enriched among CVD protein interactors (Fig 8D). 

However, CVD protein interactors are enriched for DOX-correlated proteins in comparison to 

proteins that are not DOX-correlated (Fisher’s exact test, Odds ratio = 1.5, CI = 1.1-2.1; P < 

0.05; Fig 8D). We further find that CVD protein interactors are enriched for DOX-correlated hub 

proteins in comparison to hub proteins that are not DOX-correlated (Odds ratio = 5.1; CI = 1.8-

15.1; P < 0.05; Fig 8D). We similarly observe a significant enrichment of CVD protein interactors 

amongst DOX-correlated hub proteins when identifying interactors with a lower stringency score 

(n = 49,020 interactions; STRINGdb confidence score ≥ 0.4; Odds ratio = 2.3, P < 0.05). These 

data suggest that the pathogenicity of CVD variants identified by GWAS might not only be a 

consequence of a direct effect on a protein's function but also indirectly through interactions with 

essential proteins that are highly correlated to the DNA damage response in cardiomyocytes. 

We therefore illustrate the CVD protein and CVD protein interactor network together with our 

experimentally-derived DOX-correlation and hub protein status annotations (Fig 8E & Fig S12).  
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We posit that the DNA damage-associated CVD protein network in cardiomyocytes can also be 

used to reduce the search space for druggable targets that might have the greatest impact on 

influencing various CVD phenotypes. We therefore also annotated each network protein by 

whether they are a target of an FDA-approved drug (Table 2) (33). We identified 79 proteins in 

DOX-correlated modules that are druggable including the chromatin-modifying enzymes 

HDAC1, HDAC2 and HDAC3. Seven DOX-correlated proteins are CVD proteins (FADS1, 

FADS2, FINC, IGF1R, AT2B1, RL3, and TRXR1), and five have elevated expression in heart 

tissue (RYR2, ADT1, LDHB, ODO1 and AAPK2), thereby opening further avenues of 

investigation. 

 

Discussion 

  

Many genetic loci have been associated with CVD. While the genes in these loci can be inferred 

to play a role in disease risk, the mechanisms behind these associations is often unclear. We 

hypothesized that a relevant environmental factor may provide insight. DNA damage is a 

ubiquitous stressor that is both implicated in, and predictive of CVD (3). It can be induced 

through exogenous factors including through administration of drugs used in the treatment of 

cancer. To understand how DNA damage in cardiomyocytes influences CVD risk, we used an in 

vitro model of iPSC-CMs from multiple individuals to study the effects of DOX on the proteome. 

We identified many changes in protein abundance that can be connected to CVD risk proteins. 

 

DOX induces changes to the cardiomyocyte proteome relevant to anthracycline-induced 

cardiotoxicity 

 

The effects of genetic variation and environmental perturbations on mediating risk to complex 

disease have most often been assayed through the transcriptome. This includes studies 

investigating the influence of DOX on cardiomyocytes (24, 27, 46). Here, we measured the 

effects of DOX on the cardiomyocyte proteome using both a pairwise differential abundance 

test, and a co-expression network correlated with DOX treatment. We identified 1,167 

differentially abundant proteins (28% of the proteome), and five out of 12 co-expressed modules 

to be correlated with DOX treatment. A previous study that assayed the proteomic response to 

anthracyclines, including DOX, using both human microtissues, and tissues from heart failure 

patients identified four anthracycline-associated hub proteins (47). We find two of these 
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proteins, BAG3 and CAND1, in DOX-correlated modules in cardiomyocytes indicating the 

relevance of our cardiomyocyte model. In addition, our study generated protein data for 

thousands more proteins implicating many more proteins in DOX toxicity. Conversely, we found 

little overlap between our data and DOX-treated rodent cardiac proteomic data from rat 

cardiomyocytes (48) and rat heart tissue (49) suggesting species-specificity in DOX responses. 

 

Our network analysis identified the α module as the most DOX-correlated co-expression 

module. The 579 proteins in this module decrease in their abundance following DOX treatment 

and are enriched for proteins in gene regulatory processes and DNA damage repair. The most 

enriched processes relate to RNA processing and splicing. The associated proteins likely 

contribute to the large-scale splicing changes that have previously been identified following 

DOX treatment (27). Processes related to chromatin organization and histone modifications are 

also enriched, in line with previous work in a murine DOX toxicity model indicating effects on 

histone eviction and histone modifying enzymes (50). This module is also enriched for 

transcription factors including GATA4, CTCF, ZNF629, ESSRA, GATAD2B, ZNF346, YBX3, 

GTF2I, GATAD2A, indicating potential drivers of the gene expression changes observed due to 

DOX treatment in heart cells (38, 39, 51-61). Many of these processes are important across cell 

types, and we correspondingly observe decreased heart tissue specificity for proteins in this 

module. Indeed, DOX can lead to neurotoxicity, hepatotoxicity, and nephrotoxicity in addition to 

cardiotoxicity (62-64). Conversely the DOX-correlated δ module includes proteins with higher 

heart specificity than proteins in other modules, and is enriched for processes related to 

mitochondrial functions such as oxidative phosphorylation. Proteins in this module may thus 

contribute to some of the in vivo tissue-specific effects of DOX on the heart. 

 

The target of DOX is TOP2, expressed in the heart as both the α and β isoforms. It is TOP2B 

that is thought to mediate the cardiotoxic effects of anthracycline chemotherapeutics such as 

DOX. While we do not detect a change in TOP2B protein abundance in response to DOX, it is 

co-expressed in the ε module, which is DOX-correlated and consists of proteins downregulated 

in response to DOX. Notably, ~75% of proteins shown to physically interact with TOP2B (10/13 

expressed in iPSC-CMs), including CTCF, are present in DOX-correlated modules α and ε and 

exhibit high connectivity (65). GWAS have identified 10 risk loci associated with anthracycline-

induced cardiotoxicity (66-68). We find three proteins encoded by genes mapped to these risk 

loci expressed in our network, where two are enriched in the ε module. These proteins include 

POLRMT and RPL7. Decreased abundance of POLRMT, a DNA-directed RNA polymerase 
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located in mitochondria, and RPL7, a component of the large ribosomal subunit, suggest that 

these proteins concordantly lead to decreased mitochondrial transcription and translation due to 

DOX treatment. While the mitochondrial topoisomerase TOP1MT is not detected in our network, 

TOP2A and TOP2B can translocate to mitochondria and resolve torsional stress of 

mitochondrial DNA (69-71). It stands to reason that POLRMT, a physical protein interactor of 

TOP1MT, may interact with TOP2B in the mitochondria under DNA-damaging conditions. 

Together, the proteins that we identify as responding to DOX in cardiomyocytes have been 

implicated in DOX-induced cardiotoxicity through molecular and genetic approaches. 

 

DOX-induced protein expression changes are relevant to CVD 

 

Our network approach allowed us to intersect sets of DOX-correlated proteins with proteins 

implicated in risk for all complex CVDs. The α module is uniquely enriched for proteins encoded 

by genes in loci associated with atrial fibrillation. These proteins include GATA4, LRRC10, 

RBM20, SLIT3, CAND2, GTF2I, HSPG2, FILIP1, MYO18B, CASZ1, and DPF3 that are 

downregulated in response to DOX treatment. Many of these proteins show evidence for 

independently impacting atrial fibrillation risk, as well as playing an essential role in cardiac 

development (38, 39, 51-61). The co-expression of these proteins involved in the genetic risk for 

atrial fibrillation indicates that DNA damage may mediate atrial fibrillation by collectively 

reducing the abundance of these critical proteins. Atrial fibrillation can be a cause or 

consequence of many complex CVD traits (72), highlighting the importance of these proteins to 

disease. 

 

DOX-correlated module δ captures proteins intersecting DNA damage and mitochondrial 

function, as well as risk proteins for dilated cardiomyopathy. For example, FHOD3 has been 

shown to play a critical role in regulating myocardial thickness in both dilated cardiomyopathy 

and hypertrophic cardiomyopathy progression (72-74). BAG3 haploinsufficiency disrupts many 

cardiomyocyte processes such as sarcomere integrity, apoptosis, calcium homeostasis, as well 

as mitophagy by interactions with E3 ubiquitin-protein ligase, which is co-expressed with BAG3 

within the δ module (75).  

 

In addition to providing insight into how specific proteins contribute to CVD risk, our study also 

has the potential to inform on proteins that might mediate cardioprotective effects to DOX. 

Metabolism-mediating therapies such as SGLT2 inhibitors are being clinically investigated for 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.14.607863doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.607863
http://creativecommons.org/licenses/by-nc/4.0/


 
 

20 

their role in cardioprotection following heart failure and anthracycline-induced cardiotoxicity (76, 

77). The β module, containing proteins with increased abundance due to DOX treatment, shows 

enrichment for both metabolic processes as well as processes involved in the translocation of 

enzymatic proteins to the nucleus, uniquely placing it at the intersection between the proteomic 

and metabolomic response to DNA damage. This includes the hub protein PRDX1, which has 

been shown to translocate to the nucleus upon DNA double-strand breakage and clear 

damage‐induced nuclear reactive oxygen species and γH2AX (78). Similarly, four TCA cycle 

proteins help prevent DOX-mediated cellular damage by translocating from the mitochondria to 

the nucleus upon DNA damage (79). Three of these proteins, PDH-E1, MDH-2 and CS, are co-

expressed in the β module. Therefore, the β module may identify proteins for future studies 

investigating how the nuclear translocation of enzymatic proteins can attenuate DOX-induced 

cardiotoxicity.  

 

Highly-connected DNA damage-associated proteins are intolerant to mutation 

 

Our network analysis identified not only modules of co-expressed proteins but also subsets of 

highly connected hub proteins belonging to DOX-correlated and non-DOX-correlated modules. 

This allowed us to investigate the relationship between DNA damage-associated connectivity 

and tolerance of these proteins to physiological and pathological variation. We find that DNA 

damage-associated hub proteins are depleted for pQTLs, but are enriched for loss-of-function 

intolerant proteins indicating the importance of these proteins. Considering the spectrum of 

connectivity, beyond the highly-connected hub proteins, revealed increasing pLI values with 

increasing protein connectivity for DOX-correlated module proteins. pLI values remain low 

across a range of connectivities for non-DOX-correlated module proteins. The trend for DOX-

correlated proteins was observable in both total connectivity and intra-modular connectivity, but 

not inter-modular connectivity, suggesting that intolerance to mutation in the network is centered 

around DOX-correlated modules and their related biological processes. The opposite trend is 

true for pQTLs, where enrichment tends to decrease with increased connectivity of DOX-

correlated proteins. The differential relationship between connectivity, genetic influence and pLI, 

emphasizes the evolutionary constraint of DOX-correlated hub proteins by purifying selection to 

minimize potential disruptions in their expression.  

 

Highly-connected DNA damage-associated proteins influence CVD risk proteins through 

protein-protein interactions 
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While CVD risk proteins are not enriched amongst hub proteins or DOX-correlated proteins, 

physical protein interactors of CVD risk proteins are enriched amongst DOX-correlated proteins 

and DOX-correlated hub proteins in particular. For example, DOX-correlated hub proteins 

PBRM1 and SMARCC1 both interact with atrial fibrillation-associated protein DPF3, and DOX-

correlated hub protein HSPA4 interacts with dilated cardiomyopathy-associated BAG3. DOX-

correlated hub proteins TFB1M and TFAM interact with POLRMT in anthracycline-induced 

cardiotoxicity, while another risk protein, RPl7, interacts with 28 DOX-correlated hub proteins. 

These findings are also corroborated by the finding that GWAS risk proteins are generally very 

tolerant to mutation, but their physical PPIs are not. However, there are exceptions to this trend 

such as is observed in atrial fibrillation, where GATA4, GTF2I, and CASZ1 are both CVD 

proteins and DOX-correlated hub proteins. These data support the notion that genetic variation 

could contribute to CVD phenotypes by altering the stability and functionality of regulatory 

proteins that are central to the proteomic DNA damage response network through physical 

protein interactions. Therefore, our network pinpoints CVD risk proteins that are highly 

connected to proteins central to the cardiomyocyte DNA damage response that can be 

prioritized for cell-type specific co-immunoprecipitation studies that have proved informative for 

understanding mechanisms behind genes implicated in coronary artery disease and autism 

spectrum disorder (22, 23).  

 

Considering the DNA damage response network in the context of the omnigenic model 

 

The omnigenic model for complex phenotypes posits that thousands of genes expressed in 

disease-relevant cell types can influence complex traits, whereby core genes have a direct 

impact on the phenotype, while peripheral genes influence it indirectly through distant gene 

interactions (80). In an omnigenic architecture, the majority of the heritability influencing 

complex traits with polygenic architecture is distributed across peripheral genes and involves 

extensive regulatory networks connecting them to core genes (80, 81). In practice, core genes 

are likely identified on a graded scale rather than a binary classification, where heritability 

decreases as the degree of separation from core genes is reduced. The use of co-expression 

networks to investigate the omnigenic model provides a powerful approach to untangle the 

complex interactions specified in this framework.  
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Co-expression networks across different conditions or tissues can use connectivity as a method 

to identify core and peripheral genes and specify the distribution of heritability across degrees of 

separation. For example, Mähler et al., used a transcriptional co-expression network from P. 

tremula leaf buds to demonstrate that eQTL genes are predominantly located at the network's 

periphery, and that connectivity is inversely correlated with eQTL effect sizes, implying that core 

genes (hub genes) within modules experience strong selective pressures (82). The purifying 

selection predominantly acting on core genes implies an evolutionary conservation that possibly 

underscores their fundamental biological roles. This finding is also consistent with the notion 

that damage to core genes by loss-of-function mutations tends to have strong effects on 

disease risk (80, 82). Fóthi et al., evaluated the omnigenic model's application to autism 

spectrum disorder using brain-specific gene interaction networks and found that autism gene 

clusters are significantly more connected to each other and the peripheral genes in brain-related 

tissues than in non-brain-related tissues (83). These data support the notion that disease-

relevant tissues are the appropriate context for assessing omnigenic architectures to better 

understand complex traits. Hartl et al., used this foundation to generate a co-expression network 

derived from gene expression profiles across 12 brain regions to contextualize the functional 

pathways of risk genes for multiple neuropsychiatric diseases (18). Despite the omnigenic 

model's suggestion that disease risk is mediated by a small number of core genes indirectly 

influenced by peripheral genes, the study indicated that gene effects are distributed more 

continuously across the networks rather than being segregated into distinct core and peripheral 

categories.  

 

The omnigenic model suggests that the connections between peripheral and core genes vary by 

trait and include transcriptional networks, post-translational modifications, and protein-protein 

interactions (80, 84) and that genetic variants influencing disease may affect expression in 

specific cell types or conditions (80). The aforementioned studies all utilize steady-state 

expression data to construct their networks, whereas an omnigenic architecture relevant to 

disease may emerge under the conditions of specific cell stressors that drive the purifying 

selection pressure that core genes are placed under. The results obtained for DOX-correlated 

modules resemble what would be predicted by an omnigenic architecture, where there is a 

negative correlation between the influence of genetic variation and network connectivity. 

However, the opposite is true for proteins that are not correlated to DOX. This suggests that the 

core-periphery structure may develop in response to selective pressures. Our dynamic network 

differentiates proteins that are actively responding to stress from those that are not. While 
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modules derived from steady-state networks can enrich for various biological processes, the 

connectivity observed at steady state may not accurately reflect gene relationships under 

disease-relevant conditions. Instead, the core-periphery structure may be dynamic, shifting 

according to different cellular states. If true, it means that networks constructed in response to 

various stressors might establish a connectivity profile that pinpoints unique or shared core-

peripheral relationships to different cell states. Therefore, networks generated from cell models 

that capture the dynamic molecular responses to selective pressures or disease-associated 

stimuli may be needed to more accurately understand how the core-periphery structure 

described in the omnigenic model emerges in the transition from non-disease to disease states.  

 

Potential limitations of our model 

 

We generate cardiomyocytes through directed differentiation of iPSCs as it allows us to include 

multiple individuals, and use these cardiomyocytes in carefully-controlled experiments where we 

can treat the same batch of cells with DOX and measure their protein abundance. However, it is 

possible that our in vitro system may not fully recapitulate the in vivo molecular profile. We also 

selected a single, sub-lethal, dose of DOX to study the primary effects of DNA damage on the 

proteome. It is possible that different doses of DOX would apply different selective pressures on 

the proteome and identify different response proteins and mutation tolerance. However, we 

believe our results using a clinically-relevant dose of a widely-used chemotherapeutic agent 

allow us to provide useful insights. Similarly, the response to DNA damage may be temporally 

dynamic and hence our results may not extrapolate to shorter or longer exposure times. 

 

While mass spectrometry is a powerful tool for measuring protein abundance, it has inherent 

limitations that can affect the comprehensiveness and accuracy of the data acquired. For 

example, it may not detect low-abundance proteins effectively, leading to an incomplete 

representation of the proteome. Further, while protein abundance is a critical metric, it is not the 

only relevant measure when assessing protein function and cellular responses. Other important 

protein metrics include post-translational modifications such as phosphorylation, ubiquitination, 

and glycosylation, which can significantly alter protein function, stability, localization, and 

interactions. Future studies that integrate more comprehensive transcriptional and proteomic 

networks that capture multiple timepoints and greater protein coverage may enhance the 

findings from similarly designed studies.  
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In summary, there are no studies integrating proteomic data from cardiomyocytes subjected to 

DNA damage with measures of genetic tolerance to variation and disease. Here, we profiled 

protein abundance in cardiomyocytes treated with DOX across multiple individuals. We found 

that the level of protein connectivity in DNA damage-associated co-expression modules 

influences the tolerance to genetic variation. We believe that the data and analysis presented 

here will be a resource for further studies into the mechanistic effects of DNA damage on the 

cardiomyocyte proteome and DOX-induced cardiotoxicity, as well as for studies investigating 

the architecture of complex traits in response to perturbation. 

 

Methods 

 

Ethics statement 

iPSC lines from individuals 1 and 2 (Individual 1: UCSD131i-77-1 and Individual 2: UCSD143i-

87-1) were obtained from the iPSCORE resource generated by Dr. Kelly A. Frazer at the 

University of California San Diego as part of the National Heart, Lung and Blood Institute Next 

Generation Consortium (85). The iPSC lines were generated with approval from the Institutional 

Review Boards of the University of California San Diego and The Salk Institute (Project number: 

110776ZF), and informed written consent from participants. The cell lines are available through 

the biorepository at WiCell Research Institute (Madison, WI, USA), or through contacting Dr. 

Kelly A. Frazer at the University of California, San Diego. 

 

The iPSC line from Individual 3 (WTSIi048-A) was obtained from the HipSci project funded by 

the Wellcome Trust and Medical Research Council (86). The HipSci line was approved by the 

East of England - Cambridge Central Research Ethics Committee (REC 15/EE/0049). The cell 

line was generated with informed consent of the participant. The cell line is available from the 

European Bank of induced pluripotent Stem Cells (EBiSC) and European Collection of 

Authenticated Cell Cultures (ECACC). 

 

Induced pluripotent stem cell lines  

The iPSCORE iPSC lines: UCSD143i-87-1 and UCSD131i-77-1 were generated from skin 

fibroblasts from two unrelated, healthy female donors of Asian-Chinese ethnicity aged 23 and 

21 respectively. The HipSci iPSC line: WTSIi048-A was generated from skin fibroblasts from a 

72-year-old female of White British ethnicity.  All donors used in our study were healthy with no 

previous history of cardiac disease. All lines tested negative for mycoplasma contamination.  
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iPSC culture 

Feeder-independent iPSCs were cultured in mTESR1 (85850, Stem Cell Technology, 

Vancouver, BC, Canada) media with 1% Penicillin/Streptomycin (30-002-Cl, Corning, Bedford, 

MA. USA) on hESC-qualified Matrigel Matrix (354277, Corning, Bedford, MA, USA) at a dilution 

of 1:100. iPSCs were passaged with dissociation reagent (0.5 mM EDTA, 300 mm NaCl in PBS) 

when they attained 70-80% confluency, approximately every 3-5 days.   

 

Cardiomyocyte differentiation 

Cardiomyocyte differentiations were performed as previously described (26). Briefly, iPSC lines 

were seeded in Matrigel-coated culture dishes (Days -6/-5) and cultured until 85–90% confluent. 

Differentiations were initiated (Day 0) by adding 12 μM of the GSK3 inhibitor, CHIR99021 

trihydrochloride (4953, Tocris Bioscience, Bristol, UK) in Cardiomyocyte Differentiation Media 

(CDM) [500 mL RPMI 1640 (15-040-CM, Corning), 10 mL B-27 minus insulin (A1895601, 

ThermoFisher Scientific, Waltham, MA, USA), 5 mL GlutaMAX (35050-061, ThermoFisher 

Scientific), and 5 mL of Penicillin/Streptomycin (100X) (30-002-Cl, Corning)]. After 24 hr (Day 1), 

the media was replaced with fresh CDM. On Day 3 (after 48 hr) media was replaced with CDM 

containing 2 μM of the Wnt signaling inhibitor Wnt-C59 (5148, Tocris Bioscience) in CDM. CDM 

was replaced on Day 5, 7, 10 and 12. We observed spontaneously beating cells between Day 

7–10. iPSC-CMs were purified by metabolic selection with glucose-free, lactate-containing 

media [500 mL RPMI without glucose (11879, ThermoFisher Scientific), 106.5 mg L-Ascorbic 

acid 2-phosphate sesquimagnesium salt (sc228390, Santa Cruz Biotechnology, Santa Cruz, 

CA, USA), 3.33 ml 75 mg/ml Human Recombinant Albumin (A0237, Sigma-Aldrich, St Louis, 

MO, USA), 2.5 mL 1 M lactate in 1 M HEPES (L(+)Lactic acid sodium (L7022, Sigma-Aldrich)), 

and 5 ml Penicillin/Streptomycin] added on Day 14, 16 and 18. On Day 20, iPSC-CMs were 

detached with 0.05% Trypsin-EDTA solution (25–053 Cl, Corning), and a single cell suspension 

was generated by straining. iPSC-CMs were counted with a Countess 2 machine. 1.5 million 

iPSC-CMs were plated per well of a 0.1% Gelatin-coated 6-well plate in 3 mL Cardiomyocyte 

Maintenance Media (CMM) [500 mL DMEM without glucose (A1443001, ThermoFisher 

Scientific), 50 mL FBS (S1200-500, Genemate), 990 mg Galactose (G5388, Sigma-Aldrich), 5 

mL 100 mM sodium pyruvate (11360–070, ThermoFisher Scientific), 2.5 mL 1 M HEPES 

(SH3023701, ThermoFisher Scientific), 5 mL Glutamax (35050–061, ThermoFisher Scientific), 5 

mL Penicillin/Streptomycin]. The iPSC-CMs were matured in culture for 10 days, with CMM 

replaced on Day 23, 25, 27, 28, and 30. 
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iPSC-CM purity determination using flow cytometry  

After differentiation of iPSCs from Individuals 2 & 3, the iPSC-CM purity was determined using 

flow cytometry. Between Day 25-27 of differentiation the iPSC-CMs were dissociated with 

0.05% Trypsin-EDTA solution and strained to generate a single cell suspension. One million 

cells were stained with Zombie Violet Fixable Viability Kit (423113, BioLegend) for 30 min at 4 

°C prior to fixation and permeabilization (FOXP3/Transcription Factor Staining Buffer Set, 00–

5523, ThermoFisher Scientific) for 30 min at 4 °C. Cells were stained with 5 ml PE Mouse Anti-

Cardiac Troponin T antibody (564767, clone 13–11, BD Biosciences, San Jose, CA, USA) for 

45 min at 4 °C. Cells were washed three times in permeabilization buffer and re-suspended in 

autoMACS Running Buffer (130-091-221, Miltenyi Biotec, Bergisch Gladbach, Germany). We 

used several negative controls in each flow cytometry experiment: 1) iPSCs, which should not 

express TNNT2, 2) an iPSC-CM sample that has not been labeled with viability stain or TNNT2 

antibody, 3) an iPSC-CM sample that is only labeled with the viability stain and 4) an iPSC-CM 

sample that is only labeled with TNNT2. 10,000 cells were captured and profiled on the BD 

LSRFortessa Cell Analyzer. Multiple gating steps were performed to determine the proportion of 

TNNT2-positive cells: 1) Cellular debris was removed by gating out cells with low granularity on 

FSC versus SSC density plots, 2) From this population, live cells were identified as the violet 

laser-excitable, Pacific Blue dye-negative population, 3) TNNT2-positive cells were identified 

within the set of live cells and any cells that overlap the profiles of the negative control samples 

were excluded. iPSC-CM purity is reported as the proportion of TNNT2-positive live cells. 

 

Drug treatment of iPSC-CMs  

On Day 29, iPSC-CMs were treated with 0.5 μM of Doxorubicin (D1515, Sigma-Aldrich) or 

vehicle (Molecular Biology grade water) in fresh CMM media for 24 hr. The treatment for 

Individual 3 was replicated two additional times yielding 10 samples in total across three 

individuals. Post- treatment, cells were washed twice and scraped in ice-cold PBS. iPSC-CMs 

were flash-frozen and stored at -80 °C prior to further processing. 

 

γH2AX immunofluorescence staining and quantification of DNA double-strand breaks 

300,000 iPSC-CMs were seeded per well of a 24-well plate in CMM media. Cells were treated 

with 0.5 μM DOX or vehicle (DMSO). The   treated   cells   were   fixed   in   4%   

paraformaldehyde   for   15   min and permeabilized with 0.25% DPBS-T for 10 min at room 

temperature. Cells were incubated with 5% BSA:DPBS-T for 30 min at room temperature, then 
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incubated with a 1:500 dilution of γ-H2AX primary antibody in BSA:DPBS-T overnight at 4 °C 

(Phospho-Histone H2A.X (Ser139) Rabbit mAb; NC1602516; Fisher Scientific). Cells were 

incubated with Fluorochrome-conjugated secondary antibody (Donkey anti-Rabbit Alexa Fluor 

594, A-21207, Invitrogen) for 1 hr at room temperature at a 1:1000 dilution in DPBS-T. Cell 

nuclei were counterstained with Hoechst 33342 nucleic acid stain (PI62249, Thermo Scientific) 

for 10 min in the dark. Stained cells were subjected to fluorescence microscopy. The total 

number of nuclei and γH2AX-positive nuclei were quantified using the cell counter plugin of 

ImageJ software (87). The number of γH2AX-positive nuclei were divided by the total number of 

nuclei to determine the percentage of γH2AX-positive nuclei in DOX- and vehicle-treated iPSC-

CMs for three different individuals. The percentage of γH2AX-positive cells between vehicle- 

and DOX-treated iPSC-CM samples was compared by t-test.  

 

Protein isolation and quantification 

Protein was isolated from iPSC-CMs by lysing the cells with RIPA buffer [1.5 ml 5 M NaCl, 1 ml 

Triton X100, 1 g Na deoxycholate, 1 ml 10% SDS, 1 ml 1 M Tris pH 7.4 and 45 ml dH2O] with 

protease inhibitor for 1 hr at 4 °C. Isolated proteins were quantified by using the BCA Protein 

Assay kit (23227, Thermo Scientific) according to the manufacturer’s instructions. 

 

Protein digestion  

The samples were prepared similarly as previously described (88). Briefly, 15 μg of protein were 

solubilized with 60 μL of 50 mM Triethylammonium bicarbonate (TEAB) pH 7.55.  The proteins 

were then reduced with 10 mM Tris(2-carboxyethyl) phosphine (TCEP) (77720, Thermo) and 

incubated at 65 °C for 10 min. The sample was then cooled to room temperature and 1 μL of 

500 mM iodoacetamide acid was added and allowed to react for 30 min in the dark. Then, 3.3 μl 

of 12% phosphoric acid was added to the protein solution followed by 200 μL of binding buffer 

(90% Methanol, 100mM TEAB pH 8.5). The resulting solution was added to S-Trap spin column 

(protifi.com) and passed through the column using a bench top centrifuge (60 s spin at 1,000 g). 

The spin column is washed with 150 μL of binding buffer and centrifuged. This is repeated two 

times. 30 μL of 20 ng/μL Trypsin is added to the protein mixture in 50 mM TEAB pH 8.5, and 

incubated at 37 ○C overnight. Peptides were eluted twice with 75 μL of 50% acetonitrile, 0.1% 

formic acid. Aliquots of 20 μL of eluted peptides were quantified using the Quantitative 

Fluorometric Peptide Assay (Pierce, Thermo Fisher Scientific). Eluted volume of peptides 

corresponding to 5.5 μg of peptides are dried in a speed vac and resuspended in 27.5 μL 1.67% 
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acetonitrile, 0.08% formic acid, 0.83% acetic acid, 97.42% water and placed in an autosampler 

vial.  

 

Nanoflow liquid chromatography mass spectrometry  

Peptide mixtures were analyzed by nanoflow liquid chromatography-tandem mass spectrometry 

(nanoLC-MS/MS) using a nano-LC chromatography system (UltiMate 3000 RSLCnano, 

Dionex), coupled on-line to a Thermo Orbitrap Eclipse mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA) through a nanospray ion source. Instrument performance was verified 

by analyzing a standard six protein mix digest before the sample set run, between each 

experimental block and at the end of the experiment. The six protein mix data files were 

analyzed to confirm that instrument performance remained consistent throughout the 

experiment. A direct injection method using 3 μL of digest onto an analytical column was used; 

Aurora (75 µm X 25 cm, 1.6 µm) from (IonOpticks). After equilibrating the column in 98% 

solvent A (0.1% formic acid in water) and 2% solvent B (0.1% formic acid in acetonitrile (ACN)), 

the samples (2 µL in solvent A) were injected (300 nL/min) by gradient elution onto the C18 

column as follows: isocratic at 2% B, 0-5 min; 2% to 6%, 5-5.1 min; 6% to 25% 5.1-105 min, 

25% to 50% B, 105-120 min; 50% to 90% B, 120-122 min; isocratic at 90% B, 122-124 min; 

90% to 5%, 124-125 min; isocratic at 5% B, 125-126 min; 5% to 90% 126-128 min; isocratic for 

one min; 90%-2%, 129-130 min; and isocratic at 2% B, till 150 min.  

 

NanoLC MS/MS Analysis for DDA 

All data were acquired using an Orbitrap Eclipse in positive ion mode using a top speed data-

dependent acquisition (DDA) method with a 3 s cycle time and a spray voltage of 1600 V. The 

survey scans (m/z 375-2000) were acquired in the Orbitrap at 120,000 resolution (at m/z = 400) 

in profile mode, with a maximum injection time of 100 ms and an AGC target of 1,000,000 ions. 

The S-lens RF level was set to 30. Isolation was performed in the quadrupole with a 1.6 Da 

isolation window, and HCD MS/MS acquisition was performed in profile mode using the orbitrap 

at a resolution of 15,000 using the following settings: parent threshold = 5,000; collision energy 

= 30%; AGC target at 125,000 using the default settings. Monoisotopic precursor selection 

(MIPS) and charge state filtering were on, with charge states 2-10 included. Dynamic exclusion 

was used to remove selected precursor ions, with a +/- 10 ppm mass tolerance, for 30 s after 

acquisition of one MS/MS spectrum.  

 

NanoLC MS/MS Analysis for DIA 
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All LC-MS/MS data were acquired using an Orbitrap Eclipse in positive ion mode using a data-

independent acquisition (DIA) method with 16 Da windows from 400-1000 and a loop time of 3 

s. The survey scans (m/z 350-1500) were acquired in the Orbitrap at 60,000 resolution (at m/z = 

400) in centroid mode, with a maximum injection time of 118 ms and an AGC target of 100,000 

ions. The S-lens RF level was set to 60. Isolation was performed in the quadrupole, and HCD 

MS/MS acquisition was performed in profile mode using the orbitrap at a resolution of 30000 

using the following settings: collision energy = 33%, IT 54 ms, AGC target = 50,000. A pooled 

sample was used to create spectral libraries that we search the individual samples against by 

injecting 5 times using narrow (4 Da), staggered windows over 100 m/z ranges from 400-900 

m/z in a technique called gas phase fractionation as described in Searle et al. (89). 

 

Database searching for DDA proteins 

Tandem mass spectra were extracted and charge state deconvoluted using Proteome 

Discoverer (Thermo Fisher, version 2.2.0388). Deisotoping was not performed. All MS/MS 

spectra were searched against a Uniprot Human database using Sequest and the Minora node 

used to perform Label-Free Quan (LFQ) using the MS peak areas for each of the peptide-

spectral matches (PSMs). Searches were performed with a parent ion tolerance of 5 ppm and a 

fragment ion tolerance of 0.02 Da. Trypsin was specified as the enzyme, allowing for two 

missed cleavages. Fixed modification of carbamidomethyl (C) and variable modifications of 

oxidation (M) and deamidation were specified in Sequest. Protein identities reported at 1% false 

discovery rate were considered for filtering and downstream analysis.   

 

Database searching for DIA proteins 

The raw data was demultiplexed to mzML with 10 ppm accuracy after peak picking in 

MSConvert (90). The resulting mzML files were searched in MSFragger (91) and quantified via 

DIA-NN (https://github.com/vdemichev/DiaNN) using the following settings: peptide length range 

7-50, protease set to Trypsin, 2 missed cleavages, 3 variable modifications, clip N-term M on, 

fixed C carbamidomethylation, variable modifications of methionine oxidation and n-terminal 

acetylation, MS1 and MS2 accuracy set to 20 ppm, 1% FDR, and DIANN quantification strategy 

set to Robust LC (high accuracy). The files were searched against a database of human 

acquired from Uniprot (18th December, 2023). The gas-phase fractions were used only to 

generate the spectral library, which was used for analysis of the individual samples. 

 

Abundance matrix filtering and imputation   
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We removed four non-human or uncharacterized proteins (UniProt: Q6ZSR9, P15252, P25691, 

P00761). Proteins that were missing across 50% or more of the samples were removed. For the 

remaining 246 proteins, missing values were imputed using k-Nearest Neighbors from the 

impute package knn. with, parameters k (number of neighbors to be used in the imputation) and 

rowmax (the maximum percent missing data allowed in any row) (30). Using k = 10 in the 

impute.knn function leverages all available samples to impute missing values, given the small 

sample size of our dataset. The rowmax = 0.4 parameter allows for imputing rows with up to 

40% missing values, balancing the need to retain as much data as possible while maintaining 

the quality of the imputations. These steps led to a total of 4,178 analyzable proteins across all 

samples.  

 

Removal of unwanted technical variation and normalization  

To eliminate unwanted technical variation from the log2-transformed imputed abundance matrix, 

we adjusted the 10 sample data matrix using both negative controls and the replicate data with 

the RUV-III function in the ruv R package (92). Negative control proteins were defined as the 

5% least variable proteins across all samples. The RUV-corrected abundance matrix and RUV 

factors were used in downstream analysis. 

 

Comparison of the iPSC-CM proteome with the proteome across human tissues 

Protein abundance values across 26 tissues was obtained from Jiang et. al (20). We identified 

the set of proteins expressed across the 26 tissues and our iPSC-CMs. We calculated the 

median abundance across individuals for the set of 26 tissues, as well as for our iPSC-CMs. 

The median abundance between our iPSC-CMs and each of the 26 tissues was correlated 

using Pearson correlation.  

 

WGCNA network construction  

We adopted the Weighted Gene Co-expression Network Analysis (WGCNA) methodology to 

investigate correlations between protein abundances in our RUV-corrected abundance matrix of 

DOX- and VEH-treated iPSC-CMs (32). The WGCNA framework, primarily utilizing wrapper 

functions from BioNERO, was implemented for this analysis (93). We first established a scale-

free network topology, achieved by determining the appropriate soft threshold power using the 

SFT_fit function. After iterating different soft power thresholds (β), the linear regression of 

log10(k) versus log10(p(k)) indicates that by setting β = 20, the network is close to a scale-free 

network, where k is the whole network connectivity and p(k) is the corresponding frequency 
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distribution. This setting resulted in our network attaining a scale-free fit index of 0.71 

(quantification of how well the network approximates a scale-free topology), with a mean node 

connectivity of 65.4 and median connectivity of 53.6. We identified modules of co-expressed 

proteins using a modified workflow as previously described (32, 93). The workflow was 

encapsulated in the exp2gcn2 function from the BioNERO package. We selected a signed 

network with a soft power threshold of 20, merging threshold of 0.85, and the pearson 

correlation method. We computed the Topological Overlap Matrix (TOM), a measure of network 

connectivity that emphasizes the shared neighbors between protein pairs to enhance the 

robustness and reliability of the calculated adjacency network. Using hierarchical clustering on 

the dissimilarity TOM (dissTOM), we identified initial modules of co-expressed proteins. The 

dynamic tree cut method using the cutreeDynamicTree function with maxTreeHeight of 3, 

minimum module sizes of 40 and no deep splitting was applied to the protein dendrogram to 

define these modules by modifying the exp2gcn2 function. The module eigenproteins (MEs), 

representing the first principal component for the module, were then calculated across modules 

with moduleEigengenes. These eigenproteins served as characteristic expression profiles of 

proteins within a module and were used to assess the interrelation between modules. Similar 

modules were merged based on the eigenprotein dissimilarity, ensuring that highly correlated 

modules were combined. Modules whose eigenproteins had a correlation of 0.85 or greater 

were merged.  

 

We used three types of connectivity metrics to describe how each node/protein in the network 

related to other nodes/proteins. Total connectivity was calculated by summing the weighted 

correlations between each protein and all other proteins in the network (kTotal). Intra-modular 

connectivity (kIN) was calculated by summing the weighted correlations between each protein 

and all other proteins in the assigned module. Extra-modular connectivity (kOut) was calculated 

by summing the weighted correlations between each protein and all other proteins outside the 

assigned module. 

 

Identification of hub proteins 

We identified hub proteins that might play central roles in the biological processes represented 

by each module. We used the get_hubs_gcn function to identify hub proteins within our protein 

abundance correlation network. Hub proteins within modules are defined as the proteins with 

the highest intra-modular connectivity (kIN) score (top 10%) and the highest pearson correlation 

value with the module eigenprotein (> 0.8).  
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Module correlation to DOX treatment and individual 

To assess the relationship between each module's eigenprotein and the defined trait (DOX 

treatment or individual), we performed a pearson correlation analysis using the cor.test function 

from the stats package in R (94). This analysis provided a correlation coefficient for each 

module, indicating the strength and direction of the association between the module's 

expression profile and the experimental condition. The statistical significance of these 

correlations was determined by extracting P values for each module-trait correlation using the 

cor.test function, where P values less than 0.01 were determined to be significant. 

 

Hub protein correlation network visualization in DOX-correlated modules 

The correlation network for hub proteins in DOX-correlated modules was visualized using the 

igraph package in R (95). Abundance correlations between proteins were obtained using the 

get_edge_list function from BioNERO (93). Protein pairs with positive Pearson correlations of 

0.9 or more were selected for visualization.  

 

Linear modelling to identify differentially abundant proteins 

We utilized the limma package to fit protein abundances to a linear model across conditions (96, 

97). We randomly selected one technical replicate per treatment group from Individual 3 so as 

not to confound technical and biological variation in the linear modelling process. The RUV-III 

corrected abundance matrix from six samples was quantile normalized using the 

normalizeBetweenArrays function. Drug treatment (DOX or VEH) was modelled as a fixed 

effect, whereas individual (IND) was treated as a random effect estimated using the 

duplicateCorrelation function. The linear model fitting was done using lmFit, which incorporated 

the block effect from the individuals and the design matrix. This model was then passed through 

the empirical Bayes moderation in the eBayes function to obtain moderated t-statistics. We 

defined contrasts in the linear model to compare the differential expression between DOX and 

VEH conditions such that positive log2-fold change values correspond to increased abundance 

in the DOX-treated group, and negative values correspond to decreased abundance in the 

DOX-treated group. The model was refitted with these contrasts, and empirical Bayes 

moderation was applied again to adjust the statistics. This summary was visually explored 

through a histogram of nominal P values, whereby observation of the distribution and plotting of 

abundance values across samples led us to determine that a nominal P < 0.05 was an 

appropriate cutoff for significance for differential abundance. We denote proteins that meet this 

criterion as differentially abundant proteins (DAP). 
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Comparison of the DIA and DDA datasets 

We detected 4,501 proteins by DDA and removed all proteins containing at least one missing 

protein abundance value, resulting in 3,384 measured proteins. We detected 4,261 proteins by 

DIA and removed all proteins containing at least one missing protein abundance value, resulting 

in 3,934 measured proteins. We selected the 3,027 proteins shared between these two sets and 

calculated the mean log2 abundance for each protein across all samples. DDA and DIA protein 

log2 abundance were fit to a linear model using the lmFit function to determine the strength and 

significance of the correlation between data sets. We identified differentially abundant proteins 

in the DDA data set as described above for DIA, using the same preprocessing and modelling 

parameters. We then compared the response effect sizes (log2 fold change) between proteins 

shared between the two data sets using the lmFit function to determine the strength and 

significance of the correlation between data sets. 

 

Comparison of proteins elevated in heart tissue across modules  

We sourced data on proteins whose expression is elevated in heart tissue compared to other 

tissue types from the Human Protein Atlas (33). Elevated proteins correspond to those with at 

least a four-fold higher mRNA level in a particular tissue compared to any other tissue. Proteins 

identified as elevated in heart tissue were categorized into their respective modules within our 

correlation network. We then calculated their percentages relative to the total protein count 

within each respective module. 

 

Comparison of heart ventricle tissue specificity scores across modules 

Tissue specificity values for 'Heart.Ventricle' were obtained for our 4,178 proteins from 

Supplementary Table 2 of (20). We tested for differences in tissue specificity across modules 

using a Wilcoxon rank-sum test for each module. We compared scores between all proteins in a 

given module, and all proteins not contained within that module, where significant differences 

were denoted when P < 0.05. The same criteria and test were also applied to compare tissue 

specificity between DAPs and non-DAPs. 

 

Cellular localization of module proteins 

We retrieved lists of proteins classified as signal peptides, voltage-gated channels, secreted, 

intracellular, membrane-bound, or plasma proteins from the Human Protein Atlas database (33). 

We utilized the UniProt database (34) to identify proteins experimentally shown to be located in 

subcellular structures including autophagosomes, membranes, cytoplasm, cytoskeleton, 
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endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, nucleus, and sarcomere. We 

classified each protein in the correlation network according to the above annotations, and 

performed a Fisher’s exact test to determine which modules were enriched for proteins from a 

particular classification. Fisher’s exact test P < 0.05 was considered significant. 

 

Biological process enrichment across modules 

To interpret the biological significance of the WGCNA-derived modules correlated with the DOX 

treatment, enrichment analysis was performed based on annotated Gene Ontologies (GO) (98). 

The enrichGO function from the clusterProfiler R package was used to test the enrichment of 

terms associated with biological processes against the background of all network proteins (99). 

Enriched terms were those with a Benjamini-Hochberg adjusted P < 0.05.  

 

Functional categorization of module proteins 

We retrieved lists of proteins classified as human transcription factors (35), RNA binding 

proteins (RBPs) (37), enzymes and transporter proteins (33), and mammalian stress granule 

(MSG) proteins (36). Enrichment of different protein categories within each module was 

determined by Fisher’s exact test. 

 

Protein family enrichment amongst module proteins 

We queried UniProt for protein family names for the set of network proteins (34). We assigned 

each protein to its set of families and performed a Fisher’s exact test to determine which 

modules were enriched for proteins from a particular family. Fisher’s exact P < 0.05 was 

considered significant.  

 

pQTL protein enrichment  

We obtained plasma pQTL data from the UK Biobank from Supplementary Table 10 (17). We 

selected pQTLs that were identified independent of genetic ancestry. pQTLs were further 

classified as cis-pQTLs or trans-pQTLs. For pQTL protein enrichment analysis, we collated the 

set of unique pQTL proteins. We tested for enrichment of pQTL proteins among hub proteins, 

DOX-correlated proteins, and DOX-correlated hub proteins, compared to the set of proteins not 

contained within each of those sets using the Fisher’s exact test. A Fisher's exact P < 0.05 was 

considered statistically significant. 

 

Comparison of pQTL SNP effect sizes 
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From the aforementioned set of cis-pQTLs and trans-pQTLs, we selected the SNP with the 

highest effect size for each protein. We tested for differences in effect sizes between DOX-

correlated and non-DOX-correlated proteins, hub proteins and non-hub proteins, and DOX-

correlated hub proteins and non-DOX-correlated hub proteins using a Wilcoxon rank-sum test, 

where a P < 0.05 was considered statistically significant. 

 

Proportion of pQTLs across network protein connectivity deciles 

For each protein in the network, we calculated the normalized intra-modular connectivity by 

taking the kIN of each protein and dividing it by one less than the number of module 

connections. Proteins were assigned to one of two groups based on their DOX-correlation 

status, and stratified into deciles based on their normalized intra-modular connectivity. We then 

calculated the proportion of proteins in each decile that were pQTLs (either cis- or trans-pQTLs).  

 

pLI, pHaplo and pTriplo comparisons across modules 

We obtained probability of loss-of-function intolerance (pLI) scores (100) and probability of 

Haploinsufficiency (pHaplo) and Triplosensitivity (pTriplo) scores (43). We tested whether the 

set of scores for each metric was different for each module compared to all proteins in the 

network outside the module using the Wilcoxon rank-sum test. A P < 0.05 was considered to be 

significant. 

 

Comparisons between pLI scores and network connectivity 

Proteins with a pLI ≥ 0.9 are considered intolerant to mutation, while proteins with a pLI ≤ 0.1 

are considered tolerant to mutation. We compared the normalized kIN values of mutation-

intolerant proteins to mutation-tolerant proteins using the Wilcoxon rank-sum test. A P < 0.05 

was considered to be significant.  

 

We used three types of connectivity metrics to describe how each protein in the network related 

to pLI scores across connectivity deciles. Total connectivity was calculated by summing the 

weighted correlations between each protein and all other proteins in the network (kTotal). 

Normalized kIN was used as described above. Extra-modular connectivity (kOut), the 

correlation between proteins within each module to all proteins outside the module, was 

normalized by dividing kOut by the number proteins outside the target protein’s module. 

Proteins were assigned into two groups based on their DOX-correlation status, and deciles 

generated for each aforementioned type of connectivity.  
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To ascertain enrichment for mutation-tolerant or intolerant proteins among hub proteins, DOX-

correlated proteins, and DOX-correlated hub proteins, the Fisher’s exact test was conducted. A 

Fisher's exact P < 0.05 was considered statistically significant. 

 

CVD GWAS enrichment testing 

We obtained GWAS summary statistics from the GWAS catalog (45). We downloaded summary 

statistics for “heart disease” (EFO_0003777) and “heart function measurement” 

(EFO_0004311). We first combined the set of mapped genes of traits identified through multi-

trait analysis of GWAS (MTAG) with their non-MTAG terms to limit trait redundancy. We then 

combined the mapped genes of traits from "Anthracycline-induced cardiotoxicity in early breast 

cancer", "Anthracycline-induced cardiotoxicity in childhood cancer", and "Anthracycline-induced 

cardiotoxicity in breast cancer" into one trait termed "Anthracycline-induced cardiotoxicity" to 

capture the broadest set of genes for this DOX-related trait. Beginning with 1,564 traits, we 

filtered out 487 traits contained within the heart disease and heart function measurement 

summary statistics where at least one risk locus was not mapped to a gene or expressed within 

our network. The remaining mapped genes for each of the 1,077 traits were overlapped with 

those expressed as proteins in our data.  

 

Module-wise enrichment testing was then performed by comparing to the set of all proteins not 

contained within the module of interest. This analysis involved constructing contingency tables 

for each module-gene set pair and conducting Fisher's exact tests to determine the statistical 

significance of the overlap. Enriched traits are defined as those with a Fisher’s exact test P < 

0.05 and at least two overlapped genes with module proteins.  

 

To ascertain enrichment for CVD risk proteins among hub proteins, DOX-correlated proteins, 

and DOX-correlated hub proteins, the Fisher’s exact test was conducted. A Fisher's exact P < 

0.05 was considered statistically significant.  

 

CVD risk protein interactor enrichment testing 

Using the set of CVD risk proteins as mentioned above, protein UniProt IDs were uploaded to 

STRINGdb (https://string-db.org/) and PPI networks were generated (101). We focused on 

proteins with experimental interaction evidence (confidence score ≥ 0.9). The protein interactors 

for CVD risk proteins were denoted “CVD protein interactors”. To ascertain enrichment for CVD 

proteins interactors among hub proteins, DOX-correlated proteins, and DOX-correlated hub 
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proteins, the Fisher’s exact test was conducted. A Fisher's exact P < 0.05 was considered 

statistically significant. 

 

pLI comparison between CVD proteins and CVD protein interactors 

Using the set of CVD proteins and CVD protein interactors as mentioned above, we assigned 

each protein their pLI score as previously described. We compared the pLI values between the 

two groups using the Wilcoxon rank-sum test. A P < 0.05 was considered to be significant.  

 

We also generated a degree-randomized PPI network with resampling to ensure robustness of 

results. We utilized the set of CVD proteins and their physical protein-protein interaction 

partners, as determined by STRINGdb with confidence scores above 0.9. The degree of each 

GWAS protein within the physical PPI network was calculated, resulting in a degree distribution 

for the CVD proteins. This distribution highlighted the percentage of proteins with varying 

degrees of interaction. CVD proteins were assigned group names based on their degree, and 

we subsequently calculated the degree for every protein in the entire network. Proteins in the 

network with degrees similar to those of the CVD proteins were assigned to the same group, 

while those with degrees not captured by the CVD-proteins were assigned to the group with the 

nearest degree. Each protein in the network was thus assigned to a group reflective of the 

degree distribution of the GWAS proteins, ensuring comprehensive sampling without excluding 

proteins based on their degree. We resampled while maintaining a degree-based proportion 

comparable to that of the original CVD proteins. We simulated 10,000 subnetworks among 

sampled proteins and their interactors, comparing pLI scores between CVD proteins and their 

physical interactors using the Wilcoxon rank-sum test.  

 

PPI network construction  

UniProt IDs for all proteins in the iPSC-CM network were imported into Cytoscape (Version 

3.10.2) to generate a PPI network. PPIs were determined using the STRINGdb application in 

Cytoscape. We selected the ‘physical subnetwork’ of PPIs with confidence scores > 0.4, prior to 

later sub-setting PPIs with confidence scores > 0.9 in R. The combination of both moderate and 

stringent cutoffs was used for sensitivity analysis of our results. We then annotated proteins in 

the network by whether they were DOX-correlated, hub proteins or CVD proteins, as well as by 

which module each protein belonged to. Edges in the network represent the WGCNA-derived 

weighted correlation between proteins. We next generated a subnetwork from the total network 

by selecting PPIs where at least one protein in the PPI was a CVD protein to center our 
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analyses on the differences between CVD proteins and their direct physical protein interactors. 

We then used the tidygraph  (102) and ggraph (103) packages in the R programming 

environment to visualize a network of CVD proteins and their physical protein interactors. 

 

Data availability 

 

Mass Spectrometry data will be available from the MassIVE database 

(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp). All custom analysis scripts used for 

this project are available at (https://omar-johnson.github.io/DOX_24_Github/index.html) and 

generated using workflowr (104).  
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Figure 1: iPSC-CM protein samples cluster by DOX treatment and most closely resemble 
the heart ventricle proteome. (A) Flowchart representing the study design. iPSCs from three 
individuals (Ind) Ind 1 (blue), Ind 2 (green) and Ind 3 (orange) were differentiated into 

cardiomyocytes (iPSC-CMs). iPSC-CMs were exposed to 0.5 M Doxorubicin (DOX) or a 
vehicle control (VEH) for 24 hours. The treatment was replicated in Ind 3 three times, yielding 
10 total samples. Peptides were isolated and quantified by mass spectrometry allowing the 
construction of an iPSC-CM network from 4,178 proteins. (B) Immunostaining of the DNA 
damage marker, and Hoechst nuclear stain in VEH- and DOX-treated iPSC-CMs. (C) 
Percentage of VEH- and DOX-treated iPSC-CMs that stain positive for γH2AX. Data 
representative of treatment experiments from three individuals. Asterisk represents a statistically 
significant change in γH2AX expression (**P < 0.01). (D) Pairwise Pearson correlation of the 
median protein abundance across all 10 samples. (E) Pearson correlation of the median iPSC-
CM protein abundance for all proteins across all experimental samples to the median 
abundance of those proteins across different human postmortem tissues (20). (F) Median 
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protein abundance across experimental samples of select proteins known to be elevated in 
heart tissue in comparison to other tissue types. 
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Figure 2: Network analysis of the iPSC-CM proteome identifies protein co-expression 
modules correlated with DOX treatment. (A) Hierarchical clustering of 12 co-expression 
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module eigen (ME) proteins based on their Pearson correlation. Height represents the 
dissimilarity between ME proteins (1-corr.). Each module is represented by a color and the 
number of proteins in the module specified. The "Unassigned" module, shaded grey, includes 
proteins that cannot be represented by one of the 12 ME proteins. The correlation between 
each ME protein and the known biological variables: Individual (Ind) and DOX treatment is 
shown. Asterisk represents a significant correlation between the ME protein and the trait (*P < 
0.01). Modules are designated by Greek letters in order of decreasing correlation with DOX and 
summarized as DOX-correlated modules (red), and non-DOX-correlated modules (dark blue). 
(B) Volcano plot representing proteins that are differentially abundant (DAPs; P < 0.05; blue) 
and not differentially abundant (salmon) between VEH- and DOX-treated iPSC-CMs. (C) 
Percentage of DAPs (blue) and non-DAPs (salmon) across co-expression modules where 
modules are ordered by decreasing correlation to DOX treatment, and amongst a module-
unassigned set (grey). (D) Distribution of effect sizes of response to DOX treatment (log2 fold 
change from pairwise differential abundance model) for the five DOX-correlated and seven non-
DOX-correlated modules. (E) Examples of hub protein abundance values in VEH- and DOX-

treated iPSC-CMs in a DOX-correlated module (; DDX27) and a non-DOX-correlated module 
(λ; PIGQ). (F) DOX-correlated hub protein co-expression correlation network, where nodes are 
hub proteins and edges represent the weighted correlation between them. Connections among 
DOX-correlated proteins with a correlation of ≥ 0.9 are depicted for visualization. 
 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.14.607863doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.607863
http://creativecommons.org/licenses/by-nc/4.0/


 
 

50 

 

  

 
 
 
 
 
 
Figure 3: Network modules display heterogeneity for cellular localization and tissue 
specificity. (A) Percentage of each module in the network that consists of proteins annotated 
as having increased expression in heart relative to other tissues (20). Dashed red line 
represents the median percentage of heart elevated proteins across all modules. (B) 
Comparison of heart ventricle tissue specificity scores for each module (x) in the network 
compared to proteins in all other modules (Non-x). The red dashed line indicates the median 
tissue specificity score for the network. Asterisk represents statistically significant differences in 
tissue-specificity scores between module proteins and non-module proteins (*P < 0.01, ***P < 
0.0001). (C) Enrichment of module proteins across cellular and extracellular compartments. 
Asterisk represents locations with a significant enrichment of module proteins (*P < 0.05). (D) 
Distribution of module proteins across subcellular compartments. Colors represent the set of 
proteins in each module and shapes represent the cellular compartments. Numbers indicate the 
number of proteins in each module or compartment. 
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.  

Figure 4: DOX-correlated module proteins are enriched for distinct functions. (A) The total 
number of enriched biological processes (adjusted P < 0.05) across DOX-correlated modules 
and their overlap between modules. Terms representing the top enriched processes are 
indicated. (B) Enrichment of proteins of different functional categories amongst DOX-correlated 
module proteins. Asterisk represents protein categories with a significant enrichment of module 
proteins (*P < 0.05). (C) Enrichment of proteins annotated by transcription factor binding 
domains amongst DOX-correlated module proteins. Grey shading indicates an infinite likelihood 
due to all transcription factor proteins with the particular binding domain being in only one 
module. (D) Top 20 most DOX-responsive transcription factors across DOX-correlated modules 
represented by log2 fold change from the pairwise differential abundance test. (E) Enrichment of 
RNA binding protein (RBP) types amongst DOX-correlated module proteins. (F) Top 20 most 
DOX-responsive RBPs across DOX-correlated modules. (G) Enrichment of proteins annotated 
by enzymatic process amongst DOX-correlated module proteins. (H) Top 20 most DOX-
responsive enzymes across DOX-correlated modules.  
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Figure 5: DOX-correlated hub proteins are depleted for protein quantitative trait loci (A) 
Schematic representing the rationale behind the test design. Protein expression can be 
influenced by cis- or trans-SNPs resulting in differential abundance of proteins across 
individuals with different genotypes. We integrated existing protein quantitative trait loci (pQTL) 
data from plasma samples (17) with our DOX-treated iPSC-CM protein network. (B) Enrichment 
of cis- (blue) and trans-pQTLs (green) amongst hub proteins, DOX-correlated proteins, and 
DOX-correlated hub proteins. (C) Maximum pQTL effect sizes for cis- and trans-pQTLs amongst 
all proteins in DOX-correlated modules and non-DOX-correlated modules. (D) Maximum pQTL 
effect sizes for cis- and trans-pQTLs amongst all hub proteins in DOX-correlated modules and 
non-DOX correlated modules. Asterisk represents a significant difference in effect sizes 
between DOX-correlated and non-DOX-correlated modules (*P < 0.05). (E) Percentage of pQTL 
proteins across connectivity deciles for normalized kIN for proteins in DOX-correlated modules 
(red), and non-DOX-correlated (blue). Deciles are ordered by increasing kIN scores.  
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Figure 6: DOX-correlated hub proteins are enriched for loss-of-function intolerant 
proteins. (A)  Probability of haploinsufficiency (pHaplo) for all proteins in each DOX-correlated 

module (x), and all proteins outside of the module (Non-x). Asterisk represents a significant 
difference in scores between module-specific proteins and all proteins outside of modules (*P < 
0.01, ***P < 0.0001). (B) Probability of triplosensitivity (pTriplo) for all proteins in each DOX-
correlated module (x), and all proteins outside of the module (Non-x). (C) Probability of loss-of-
function intolerance (pLI) for all proteins in each DOX-correlated module (x), and all proteins 
outside of the module (Non-x). (D) Connectivity (normalized kIN) amongst mutation tolerant (pLI 
≤ 0.1) and mutation intolerant (pLI > 0.9) proteins. Asterisk represents a significant difference in 
scores between module-specific proteins and all proteins outside of modules (*P < 0.05). (E) 
Median pLI scores across proteins in connectivity deciles (kTotal (solid line), normalized kIN 
(dashed line), normalized kOut (dotted line)) for proteins in DOX-correlated modules (red), and 
non-DOX-correlated (blue). Deciles are ordered by increasing connectivity scores. (F) 
Enrichment of mutation intolerant (orange) and mutation tolerant (brown) proteins for hub 
proteins, DOX-correlated proteins, and DOX-correlated hub proteins.  
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Figure 7: DOX-correlated modules are enriched for proteins mapped to cardiovascular 
traits and diseases. (A) Schematic representing how cardiovascular trait proteins are obtained. 
Cardiovascular trait-associated SNPs (CV-SNP) from GWAS are mapped to nearby genes (CV 
gene) and converted to the corresponding protein identifier (CV protein). (B) Enrichment of 
heart function measurement traits (GWAS catalog ontology class EFO_0004311) and heart 
diseases (EFO_0003777) across DOX-correlated module proteins. Grey shading indicates an 
infinite likelihood of enrichment due to all trait-associated proteins being in only one module. 
Asterisk represents traits and diseases that are enriched amongst DOX-correlated module 
proteins (*P < 0.05) and contain at least two proteins in the module.  
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Figure 8: DOX-correlated hub proteins are enriched for physical protein interactors of 
CVD risk proteins. (A) Schematic representing the rationale behind the test design. CVD-
associated SNPs (CVD-SNP) are mapped to nearby genes (CVD gene) which are translated 
into proteins (CVD proteins) that may physically interact with other proteins (CVD protein 
interactors). (B) Enrichment of CVD risk proteins amongst hub proteins, DOX-correlated 
proteins, and DOX-correlated hub proteins. (C) pLI score distribution of CVD risk proteins and 
CVD risk protein interactors. Asterisk represents a significant difference in the scores between 
protein groups (*P < 0.05). (D) Enrichment of CVD risk protein interactors amongst hub 
proteins, DOX-correlated proteins, and DOX-correlated hub proteins. (E) Protein-protein 
interaction network for CVD proteins (square) and CVD protein interactors (circle) expressed 
within the co-expression network. Color represents if the protein is in a DOX-correlated module 
(red) or a non-DOX-correlated module (blue). Edges represent weighted correlation within the 
co-expression network. Node size indicates if a protein is a hub (large icon) or not a hub (small 
icon) protein. A CVD protein subnetwork containing the most highly connected proteins is 
presented here with the full CVD protein network displayed in Fig S12. 
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