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Apolipoprotein E (ApoE) polymorphisms modify the risk of neurodegenerative disease with the 16 

ApoE4 isoform increasing and ApoE2 isoform decreasing risk relative to the ‘wild-type control’ 17 
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ApoE3 isoform. To elucidate how ApoE isoforms alter the proteome, we measured relative protein 18 

abundance and turnover in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). 19 

This data provides insight into how ApoE isoforms affect the in vivo synthesis and degradation of 20 

a wide variety of proteins. We identified 4849 proteins and tested for ApoE isoform-dependent 21 

changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and 22 

ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-23 

type control ApoE3. In ApoE4 mice, this regulation is not cohesive suggesting that aerobic 24 

respiration is impacted by proteasomal and autophagic dysregulation. ApoE2 mice exhibited a 25 

matching change in mitochondrial matrix proteins and the membrane which suggests coordinated 26 

maintenance of the entire organelle.  In the liver, we did not observe these changes suggesting that 27 

the ApoE-effect on proteostasis is amplified in the brain relative to other tissues.  Our findings 28 

underscore the utility of combining protein abundance and turnover rates to decipher proteome 29 

regulatory mechanisms and their potential role in biology. 30 

INTRODUCTION:  31 

Apolipoprotein E (ApoE) is one of the lipoproteins used for the transport of lipids and cholesterol 32 

throughout the body. ApoE is also the primary transporter of lipids in the brain. The three major 33 

subtypes of human ApoE—ApoE2, ApoE3, and ApoE4— differ by 2 amino acids and exhibit 34 

allelic frequencies of 8.4%, 77.9%, and 13.7%, respectively. 2, 3 The ApoE3 allele is considered 35 

the normal or wild-type, and the behavior of the E2 or E4 isoforms differs from E3 in measurable 36 

ways.  The ApoE2 protein isoform, characterized by an R158C substitution relative to the ApoE3, 37 

has been associated with decreased affinity for the LDL receptor4, 5, while the ApoE4 protein 38 

isoform, which features a C112R substitution relative to ApoE3, favors binding to very-low-39 
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density lipoprotein receptors4, 5. Thus, these seemingly minor genotypic changes may lead to 40 

profound biochemical consequences. 41 

Both ApoE2 and E4 modulate disease risk relative to ApoE3. Ferrer et al. observed a 3 – 15-fold 42 

increase in Alzheimer’s Disease (AD) prevalence in carriers of the ApoE4 allele relative to ApoE3 43 

carriers and a decreased risk in individuals expressing the ApoE2 allele.6 Although ApoE2 44 

expression protects against AD, its expression is associated with the increased incidence of familial 45 

type III hyperlipoproteinemia—a disorder characterized by an inability to metabolize lipids 46 

including cholesterol and triglycerides.7 ApoE isoforms have also been implicated in the 47 

development of Parkinson’s disease8, vascular pathology9, and most recently, COVID-19 48 

prognosis10. 49 

Some mechanistic details have been identified for how the ApoE alleles modulate an individual’s 50 

risk for disease. ApoE is a transporter of amyloidβ, a widely recognized biomarker in AD 51 

development.11 ApoE-isoforms modulate brain mRNA expression, presumably in response to 52 

changes in lipid availability11 as well as direct transcriptional effects.12  Here we used both 53 

quantitative and kinetic proteomics to explore the impact of human ApoE genotypes in the 54 

proteome of mice. Both approaches leverage liquid chromatography and mass spectrometry (LC-55 

MS) to identify and quantify thousands of proteins (Figure 1A).1 We apply a simplified kinetic 56 

model of proteostasis (Figure 1B), which combines turnover rate and concentration measurements 57 

to reveal ApoE isoform-dependent effects on protein synthesis and degradation. Our analysis 58 

identifies key brain-specific proteostasis changes, as evidenced by pathway-level changes in 59 

synthesis and degradation.  Building upon a significant body of literature and this proteome scale 60 

study, we propose a unifying mechanism wherein ApoE alleles systemically impact cellular 61 
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proteostasis through alterations in endosomal trafficking, mitochondrial function, and proteo-62 

lysosomal activity.  63 

EXPERIMENTAL PROCEDURES: 64 

Experimental Design and Statistical Rationale 65 

Cohort Grouping and Analysis Rationale 66 

A total of 72 homozygous ApoE transgenic mice, with an equal distribution of female and male 67 

individuals were included. This cohort included 24 ApoE2, 24 ApoE3, and 24 ApoE4 (refer to 68 

Table S1 for details). The sample groups for protein turnover rate measurements of each ApoE 69 

genotype and gender, were two independent blocks of six mice. These six mice were selected 70 

based on the metabolic labeling duration, namely Day 0, Hour 6, Day 1, Day 4, Day 16, and Day 71 

32 post-exposure to deuterium.  72 

The kinetic analysis utilized peptide identifications from LC-MS/MS acquisition files to extract 73 

isotope envelope information from LC-MS (MS1 only) data. Notably, this process heavily relies 74 

on peptide retention time. To facilitate this, MS/MS data and MS data were collected within the 75 

same sample worklist. The initial four timepoints (Day 0, Hour 6, Day 1, and Day 4) were used to 76 

generate LC-MS/MS fragmentation spectra and identify peptide sequences with observed charge 77 

and retention time.  78 

To streamline sample processing and turnover rate measurements, mice were organized into four 79 

gender-specific groups of 18 mice (n=6 per genotype, Figure S1). This grouping strategy 80 

accommodated instrument availability and minimized retention time deviations associated with 81 

extensive sample worklists. Additionally, from each group, a subset of four mice per genotype, 82 

comprising the first four timepoints (Day 0, Hour 6, Day 1, Day 4), were selected for LFQ 83 

proteomics. This selection yielded a total of 16 mice per ApoE genotype for an area under the LC 84 
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curve (Abundance) fold change (FC) calculations, with an equal distribution of 8 females and 8 85 

males in the four gender-specific groups. Thus, out of the initial 72 mice, 48 were used to generate 86 

the “Abundance” FC values (Figure S1).  87 

To broaden proteome coverage, each brain homogenate sample was fractionated into cytosolic 88 

and membrane components, which were prepared and analyzed separately using the workflow 89 

described below. This fractionation led to the creation of eight datasets for our analysis. Each 90 

dataset underwent individual processing using the Peaks Studio software (Bioinformics Solutions 91 

Inc.) for protein abundance and Deuterater software 1 for turnover rate measurements. Protein-92 

level abundance fold change relative to control (FC values), turnover rate FC values, and statistical 93 

analysis (P-value) for each comparison (e.g., E2vsE3) were calculated for each dataset 94 

independently to minimize inter-set variance caused by sample prep discrepancies, instrument 95 

noise, buffer compositions, and sample run variables. It is worth noting that due to problems in 96 

sample processing, the Hour 6 sample was omitted from a single ApoE4 dataset (D16 was 97 

substituted for LFQ analysis), and Day 4 was omitted from a single ApoE3 LFQ dataset (See Table 98 

S1, Figure S1).  99 

While FC and P-value calculations were conducted at the protein level, this study mainly focuses 100 

on how proteins with shared functional characteristics are regulated in an ApoE isoform-specific 101 

manner. To achieve this, the StringDB multiprotein tool13 was employed to identify functional 102 

groups (ontologies) represented in the final data sets (Abundance FC, Turnover FC). Every protein 103 

Abundance FC value was calculated with a minimum of three biological abundance measurements 104 

in experimental (ApoE2, or ApoE4) and control (ApoE3); see the ‘Protein ∆Abundance Analysis’ 105 

section for more details. The null hypothesis (H0) posited that proteins' collective gene expression 106 

ratio in an ontology would remain unchanged (H0: Abundance FC = 1) across ApoE genotypes. 107 
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Consequently, we tested the alternative hypothesis that ApoE genotype alters the regulation of 108 

functionally related protein groups (Ha: Abundance FC ≠ 1) using a one-sample t-test. This 109 

analytical approach captured changes occurring across the broader functional proteome rather than 110 

focusing solely on identifying individually significant proteins. Python code created for both 111 

protein- and ontology-level calculations is available in the GitHub repository, as detailed in the 112 

Supplementary Data section of this paper.  113 

Proteostasis Model and Analysis Rational 114 

A protein homeostasis model must account for common sources and sinks of protein mass 115 

(Figure S2). In this model we assume there is a large circulating pool of free amino acids affected 116 

by diet, metabolites, and waste expulsion. Amino acids become the precursors for protein synthesis 117 

in an initial tRNA charging step, which then polymerize in an mRNA-dependent step before 118 

folding into functional proteins. Multiple competing processes subsequently influence the 119 

resulting protein concentration. First, degradation returns the protein to the constituent amino acids 120 

in the free pool. The functional proteins may also transition (reversibly) into an 121 

Figure S2: Protein Homeostasis Model with commonly observed sources and sinks of protein 
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aggregate/condensate state that undergoes a separate degradation process. Finally, protein 122 

concentration may be affected by importing or exporting proteins.  123 

Our goal is to use chemical kinetics and translate this diagram into a mathematical model with 124 

a few tunable parameters identifiable from experimental data. Unfortunately, a complete 125 

mathematical translation of this system leads to a model with too many parameters to draw 126 

meaningful conclusions. We, therefore, make several simplifying assumptions regarding which 127 

processes are dominant to restrict the parameters to an identifiable subset. 128 

First, the mice in this study are healthy adults, so we assume the protein concentrations are in 129 

steady-state with no protein aggregate.  We assume that the pool of free amino acids is large so 130 

that the rate bottleneck in the tRNA-charging/synthesis steps is synthesis and that import/export is 131 

negligible. We also assume the protein pool is well mixed, assuring the random selection of protein 132 

for degradation (unregulated).  Although a reasonable starting point for the present study, we 133 

acknowledge that these assumptions are poor for surprisingly large sections of the proteome where 134 

reversible aggregation 14, 15, multistage regulation of synthesis rates 16-18, exchange of protein 135 

subunits in complexes 19, 20 and nonrandom degradation 21-24 are biologically important. There has 136 

yet to be presented a standardized model that successfully accounts for all of these confounding 137 

variables, so we elect to maintain the aforementioned assumptions as a starting point for the 138 

modeling. Previous literature reports have presented mathematical modeling of protein turnover 139 

rates using similar starting points.25-32  This then results in Equation 1 where the time-dependent 140 

change in a protein concentration is the difference between the synthesis and degradation rates. 141 

Equation 1:  
𝑑𝑃

𝑑𝑡
= 𝑘𝑠𝑦𝑛 − 𝑘𝑑𝑒𝑔[𝑃]  142 

This model assumes that the concentration of an individual protein ([P]) in every location is 143 

under the control of a zero-order synthesis rate (ksyn) and a concentration-dependent degradation 144 
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(kdeg) step. The assumption of zero-order synthesis suggests that the precursor is stable and 145 

unresponsive to protein concentration, while a first-order rate for degradation suggests that there 146 

is no regulation of degradation other than protein concentration. In general, the rates ksyn and kdeg 147 

need not be constant as they are under the control of numerous exogenous factors that may vary in 148 

time. However, we now formalize our final assumption: protein homeostasis. This assumption is 149 

that the multiple processes regulating each protein concentration are in dynamic equilibrium so 150 

that these rates are constant for a given experimental condition. Under these assumptions, both 151 

synthesis and degradation for a given protein are equal, ensuring that the number of proteins 152 

produced is equal to the number of proteins lost. Therefore, during the measurements d[P]/dt=0, 153 

leading to the relationship: 154 

Equation 2: [𝑃] =  
𝑘𝑠𝑦𝑛

𝑘𝑑𝑒𝑔
 155 

Our hypothesis is that the expression of the ApoE polymorphysms (ApoEx = ApoE2 or ApoE4) 156 

creates a unique steady state or proteostasis across the proteome that can differ from the 157 

concentration of the human wild-type control (ApoE3). The change in protein abundance 158 

(Equation 3) between the two conditions allows us to infer how the ratio of the rates is changed in 159 

the experimental cohorts, but neither parameter is individually identifiable.     160 

Equation 3: Abundance = 
𝑑[𝑃]

𝑑𝐴𝑝𝑜𝐸
= (

𝑘𝑠𝑦𝑛

𝑘𝑑𝑒𝑔
)

𝐴𝑝𝑜𝐸𝑥

− (
𝑘𝑠𝑦𝑛

𝑘𝑑𝑒𝑔
)

𝐴𝑝𝑜𝐸3

 161 

Using metabolic isotope labeling (Figure S2) we can add rate information that will distinguish 162 

between changes in synthesis and changes in degradation.  Assume that at t=0 our model 163 

simplifications are true, but that the amino acid pool is replaced with a deuterated version.  Proteins 164 

synthesized after t=0 are isotopically labeled, and we can measure the time-dependent replacement 165 

of old unlabeled for new labeled proteins. To make this mathematically explicit, we denote the 166 
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concentration of normal proteins by [P] and the concentration of deuterated proteins by [PD]. These 167 

two concentrations now satisfy the initial value problems. 168 

Equation 4:  
𝑑[𝑃]

𝑑𝑡
= −𝑘𝑑𝑒𝑔[𝑃], [P](0) =

𝑘𝑠𝑦𝑛

𝑘𝑑𝑒𝑔
  169 

and  170 

Equation 5:  
𝑑[𝑃𝐷]

𝑑𝑡
= 𝑘𝑠𝑦𝑛 − 𝑘𝑑𝑒𝑔[𝑃𝐷], [𝑃𝐷](0) = 0  171 

These are true because normal proteins are no longer being synthesized (Equation 4) and [PD] 172 

have no initial concentration (Equation 5).  These ordinary differential equations can be solved in 173 

closed-form using standard techniques. The solutions are: 174 

Equation 6: [𝑃]𝑡 =
𝑘𝑠𝑦𝑛

𝑘𝑑𝑒𝑔
(𝑒(−𝑘𝑑𝑒𝑔𝑡)) 175 

Equation 7: [𝑃𝐷]𝑡 =
𝑘𝑠𝑦𝑛

𝑘𝑑𝑒𝑔
(1 − 𝑒(−𝑘𝑑𝑒𝑔𝑡)) 176 

Notice that these equations satisfy [P]t + [PD]t = ksyn/kdeg, which is independent of time as it must 177 

be in homeostasis.  However, the measurable fraction of deuterated protein over time is given by. 178 

Equation 8: 
[𝑷𝑫]

[𝑷]+[𝑷𝑫]
= 𝟏 − 𝒆−𝒌𝒅𝒆𝒈𝒕, 179 

Equation 8 seems to suggest that the degradation rate is the measurable driving force behind the 180 

turnover of old protein and the replacement by labeled protein.  However, because the processes 181 

of synthesis and degradation are exactly balanced in the proteostasis condition, we can just as 182 

easily identify the turnover rate as the per-molar synthesis rate: ksyn/[P] or as it is commonly called 183 

fractional synthesis33.  It is important to emphasize that these rates are only properly defined in 184 

homeostasis. Because there is no assurance that homeostasis is equally applied to all proteins 185 

simultaneously18, 21, 34, we find it conceptually preferable to define the turnover rate as the mean 186 

of the per-molar synthesis and degradation rates: 187 
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Equation 9: 𝑘𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
1

2
(𝑘𝑠𝑦𝑛/[𝑃] + 𝑘𝑑𝑒𝑔) 188 

As stated above, each experimental mouse cohort will have a unique homeostasis with a 189 

protein-specific synthesis and degradation rate.  Using ApoE3 as our normal control we can 190 

assess how the average of the synthesis and degradation rates have changed with the E2 and E4 191 

polymorphisms (ApoEx).  192 

Equation 10: 193 

 Turnover = 
1

2
((

𝑘𝑠𝑦𝑛(𝐴𝑝𝑜𝐸𝑥)

[𝑃](𝐴𝑝𝑜𝐸𝑥)
−

𝑘𝑠𝑦𝑛(𝐴𝑝𝑜𝐸3)

[𝑃](𝐴𝑝𝑜𝐸3)
) + (𝑘𝑑𝑒𝑔(𝐴𝑝𝑜𝐸𝑥) − 𝑘𝑑𝑒𝑔(𝐴𝑝𝑜𝐸3)))   194 

 195 

This means that if, for example, the ApoE polymorphism increases a proteins concentration 196 

(+Abundance, Equation 3) the Turnover (Equation 10) will highlight whether the change in 197 

proteostasis was driven by an increase in ksyn/[P](ApoEx) or a decrease in kdeg(ApoEx) because the 198 

sign of Turnover will be different for each possibility. Together the unique ∆Abundance and 199 

∆Turnover for each protein identifies whether the differences in proteostasis are primarily due to 200 

changes in synthesis or degradation. Graphing these values produces a plot where each quadrant 201 

(Figure 1C) has meaning.  For example, a positive x-axis (+∆abundance) and y-axis (+∆turnover) 202 

suggest that synthesis increases (Syn↑). Conversely, a protein with lower expression levels (-203 

∆abundance) between ApoE genotypes, could result from less synthesis (Syn↓) if turnover rate 204 

decreases (-∆turnover) or more degradation (Deg↑) if the protein turnover rate increases 205 

(+∆turnover). Since each measurement has independent noise, a nonrandom grouping of multiple 206 

proteins from a functionally related ontology within a quadrant is an important metric of 207 

confidence that the cell is regulating protein expression to change biochemical functions (Figure 208 

1D and 1E). 209 

Mouse Handling 210 
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All animal handling experiments were authorized by the Brigham Young University Institutional 211 

Animal Care and Use Committee (IACUC protocol #191102). The mouse model employed for 212 

this study consists of C57BL/6 transgenic mice with homozygous genotypes for each of the three 213 

human ApoE alleles (ApoE2, ApoE3, ApoE4, n=24/allele, see Supplemental Table S1) under the 214 

GFAP promoter (JAX# 004632, 004633, 004631). Notably, this model has provided valuable 215 

insight into genotype-specific effects of ApoE in a large number of other experiments35-46. This 216 

study does not encompass differences from wild-type mice. The transgenic mice were selected 217 

with deliberate focus on ApoE isoforms rather than wild-type conditions, or age differences. The 218 

findings reported in this publication use fold change relative to ApoE3 to minimize the GFAP 219 

promoter variable as reported previously47-49.  Because mouse ApoE has a low sequence identity 220 

(77%) and a different transcription promoter, the human ApoE3 model is the best control for 221 

comparison.   While we recognize the limits of a transgenic model, this study provides valuable 222 

identification of in vivo patterns which can be confirmed in future ApoE knock-in mice models 223 

and human studies. These results refer solely to the effects of ApoE isoform differences, rather 224 

than Alzheimer’s Disease.  Any claims regarding Alzheimer’s disease are made solely to highlight 225 

similarities between current ApoE/AD research and our observations to create a holistic 226 

mechanistic hypothesis. 227 

Mice were randomly selected for replicate designation and timepoint based on availability.  They 228 

were all 6–8-month-old, retired breeders with no signs of disease or neurological dysfunction. 229 

There were no exclusions among this group.  Specific cohort denominations and animal numbers 230 

can be found in Table S1.  Blinding was not used during any portion of this experiment as it was 231 

necessary to compare groups at each point.  Mice were housed together in the same room of the 232 

facility at the same time.  Mice had ad libitum access to water and standard nutritional rodent feed 233 
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(Teklad 8604) while housed in a temperature-controlled environment of ~24 ◦C. This environment 234 

included a 12-hr circadian cycle.  To initiate turnover rate measurements, mice received an 235 

intraperitoneal (IP) injection of sterile D2O 0.9% w/v saline (35 μl/g body weight) calculated to 236 

increase internal D2O concentrations to an initial 5% of overall water weight (w/w). Mice were 237 

then given 8% D2O as the sole hydration source for the remainder of the experiment. This was 238 

done to maintain overall internal water at 5% D2O enrichment. Mice were sacrificed according to 239 

the following timepoints post IP injection: day 0 (no D2O injection), hour 6, day 1, day 4, day 16, 240 

and day 32. Mice were euthanized via CO2 asphyxiation followed by bilateral thoracotomy. Blood 241 

was collected via cardiac puncture for D2O enrichment calculations.  Brains were divided sagittally 242 

into respective hemispheres.  Relevant organs including brain and liver were flash frozen on blocks 243 

of solid CO2.  Tissues were stored frozen at -80 °C until processing. 244 

Tissue Preparation 245 

Singular brain hemispheres and liver sections were homogenized in lysis buffer (25mM 246 

Ammonium Bicarbonate treated with diethylpyrocarbonate and ThermoScientific Halt Protease & 247 

Phosphatase Inhibitor Cocktail) for 60 sec using a MP FastPrep-24 homogenizer. Homogenized 248 

samples were centrifuged for 15 minutes at 14,000xg to separate them into cytosolic and 249 

membrane isolates. The membrane pellet was resuspended in lysis buffer and centrifuged for 15 250 

minutes at 14,000xg a total of three times to remove cytosolic components. Each fraction was 251 

resuspended in 5% SDS. Aliquot concentration was measured via a Pierce™ BCA Protein Assay 252 

Kit purchased from ThermoFisher Scientific, and 50 μg of protein were prepared according to S-253 

Trap™ documentation (cytosol and membrane fractions were prepared separately). Proteins were 254 

digested with trypsin Lys/C overnight at 36°C.  Resultant peptides were dehydrated in a 255 
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ThermoScientific Savant SPD131DDA SpeedVac Concentrator and resuspended at a final 256 

concentration of 1 μg/μL in buffer A (3% acetonitrile, 0.1% formic acid). 257 

LC-MS 258 

Samples were separated and measured via liquid chromatography-mass spectrometry (LC-MS) 259 

on an Ultimate 3000 RSLC in connection with a Thermo Easy-spray source and an Orbitrap Fusion 260 

Lumos. Peptides were pre-concentrated with buffer A (3% acetonitrile, 0.1% formic acid) onto a 261 

PepMap Neo Trap Cartridge (particle size 5 μm, inner diameter 300 μm, length 5 mm) and 262 

separated with an EASY-Spray™ HPLC Column (particle size 2 μm, inner diameter 75 μm, length 263 

25 mm) with increasing buffer B (80% acetonitrile, 0.1% formic acid) gradient: 264 

0-5 min, 0 to 5% B; 5-87 min, 5 to 22% B; 87-102 min, 22 to 32% B; 102-112 min, 32 to 95% 265 

B; 112-122 min, 95% B; 122-125 min, 95 to 2% B; 125 to 127 min, 2% B; 127-129 min, 2 to 266 

100% B; 129-132 min, 100% B; 132-133 min, 100 to 2% B; 133-135 min, 2% B; 135-137 min, 2 267 

to 100% B; 137-140 min, 100% B; 140-142 min, 100 to 0% B; 142-144 min, 0% B. 268 

The MS-based data-dependent acquisition method was set to a 3 second cycle time. MS1 scans 269 

were acquired by the Orbitrap at a resolution of 120,000. Precursors with a charge > 1 and < 6 270 

were selected for MS2 fragmentation. MS2 scans of CID precursor fragments were detected with 271 

the linear ion trap at a scan rate of 33.333 Da/sec with a dynamic injection time.  CID collisions 272 

were set to 30% for 10ms. A 60 second dynamic exclusion window was enabled; isotopes and 273 

unassigned charge states were excluded. The deuterium labeling information was collected 274 

separately in an MS1-only acquisition with the Orbitrap at a resolution of 60,000 as previously 275 

described by Naylor et al.1 The mass spectrometry proteomics data have been deposited to the 276 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 277 

PXD044460 278 
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Raw Data Processing for Peptide Identification and Label-free Quantitation 279 

Raw files were searched against the 2022 Uniprot/Swissprot mus musculus FASTA (containing 280 

17144 entries) using Peaks Studio v.11 (Bioinformics Solutions Inc.) for label-free quantitation 281 

(LFQ) analysis. During the data refinement step, the feature “associate feature with chimera 282 

[DDA]” was selected to deconvolute scans with co-eluted isobaric peptides.  The parent mass error 283 

tolerance was set to ±15 ppm and the fragment mass error tolerance was set to 0.5 Da. Cysteine 284 

carbamidomethylation was set as a fixed modification, and both methionine oxidation and pyro-285 

glu from glutamine were set as variable modifications in the search. Digest mode was set to semi-286 

specific for the trypsin-lysC enzyme mix allowing for ≤ 3 missed cleavages and the peptide length 287 

range was set to 6 – 45 amino acids. The false discovery rate (FDR) for peptide matches was set 288 

to 1%, and protein ID significance was set to -10log(P-value) ≥ 15 for each identified protein. 289 

Peaks Studio (Bioinformics Solutions Inc.) was also used to search raw files for use in 290 

Deuterater1 software. The raw files were searched against the 2021 Uniprot/Swissprot mus 291 

musculus FASTA (containing 17144 entries). Peptide searches were performed using trypsin/lysC 292 

semi-specific digest with a tolerance of ±20ppm and missed cleavages ≤ 3. Carbamidomethylation 293 

was set as a fixed modification and pyro-glu from glutamine and methionine oxidation were set as 294 

variable modifications. Within the Peaks Studio DB module, proteins were identified with two or 295 

more unique peptides at an FDR of 2% and significance was set to -10log(P-value) ≥ 15 for each 296 

identified protein. 297 

Protein ∆Abundance Analysis 298 

The group of mice used in this paper were divided into two male and two female groups for 299 

analysis.  Each group produced a dataset for cytosolic proteins and another dataset for membrane 300 
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proteins. Please refer to the Experimental Design and Statistical Rationale section for more 301 

information resulting in a total of eight datasets.  302 

Data filtering, normalization, and quantitative calculations were performed independently for 303 

each dataset following standardized metrics for data quality and analysis following the process 304 

described by Aguilan et al. 50 Each Peaks Studio DB protein.csv output dataset contains the 305 

proteins identified in the analysis and the expression values (relative abundance) for each protein 306 

in each sample are labeled as “Area”. This output was filtered to retain only the top proteins in 307 

each protein group and proteins with at most one missing protein “Area” value per genotype (i.e., 308 

n – 1/genotype/dataset). Subsequently, protein “Area” values in the dataset underwent log2 309 

transformation. The distribution of these protein “Area” values was mean centered by subtracting 310 

by the average protein “Area” from each protein “Area” within the sample. To ensure 311 

comparability across samples, the distribution width was also normalized between samples by 312 

calculating the correlation slope between these total average protein “Area” values across all 313 

samples and the individual sample values. Each protein “Area” in a sample was then divided by 314 

the corresponding sample slope.  For samples with a missing protein “Area” value, imputation was 315 

carried out using the scikit-learn KNN imputer function module in python with the two closest 316 

neighbors.51  317 

Protein fold change (FC) values, which represent the relative change in protein abundance values 318 

(“Area”) compared to a reference, were calculated, and used as a metric of change in abundance 319 

(∆abundance). For this study, FCs were calculated for protein expression values in ApoE2 mice 320 

and ApoE4 mice with ApoE3 expression values as reference, respectively. As per Aguilan et al.’s 321 

methodology, an F-test was employed to assess the variance between protein expression values 322 

before performing p-value calculations for statistical significance. To evaluate the statistical 323 
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significance of expression levels in each comparison, a two-sample independent t-test 324 

(homoscedastic) was employed for proteins with an insignificant F-test result and a two-sample 325 

independent t-test (heteroscedastic) for proteins with a significant F-test result. Both the F-test and 326 

t-test calculations were conducted with the Scipy python package.52 327 

Protein FC values were averaged across all datasets for each respective comparison. This 328 

produced a single set of “Area” (expression value) FCs for each comparison. Please note that both 329 

the ApoE2 vs ApoE3 (E2vsE3) comparison and the ApoE4 vs ApoE3 (E4vsE3) use the same list 330 

of quantified proteins. As outlined by Van den Berg, protein FC values from individual 331 

comparisons were range scaled using the following formula prior to ontology exploration 53:  332 

Equation 11:  𝑥′𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑖̅

𝑥𝑖𝑚𝑎𝑥−𝑥𝑖𝑚𝑖𝑛

 333 

Where x’ij, xij, 𝑥𝑖̅, ximax, and ximin are the scaled FC value, non-scaled FC value, mean FC, largest 334 

FC, and smallest FC, respectively. Range scaling was selected because it captures relative change 335 

in protein expression while considering the full range of values specific to the dataset. These scaled 336 

FC values will be utilized in functional analyses as described in the Ontology-level Calculations 337 

section below. The python script created for the steps outlined in this quantitative analysis can be 338 

found in the GitHub repository as detailed in the supplementary data section of this paper.  The 339 

change in abundance was validated in samples using Data Independent Acquisition (DIA)54 to test 340 

for reproducibility of the ontology level changes (Supplementary table S6).   341 

Protein Turnover Rate calculation 342 

Protein turnover rate values were calculated using Deuterater1 v5. This software uses an accurate 343 

mass and time database to extract peptide isotope patterns from LC-MS (MS1) centroided data 344 

utilizing feature identifications (e.g. retention time, mass, peptide ID, etc.) obtained from MS/MS 345 
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data (refer to the Raw Data Processing for Peptide Identification and Label-free Quantitation 346 

section above).  347 

Isotope patterns were extracted from MS1 raw data with an extraction retention time window of 348 

1.5 min and an m/z error limit of ≤ 30 ppm. The n-value represents the number of available 349 

positions on a peptide where deuterium can replace hydrogen. In the theory generation step, 350 

peptides with data missing in an extracted file are removed, and the n-value is calculated for 351 

remaining extracted peptides based on known quantities for each amino acid55, 56. Subsequently, 352 

Fraction New measures the amount of turnover rate for each peptide in a file by calculating 353 

changes in neutromer abundance and spacing1. These calculations were performed using the 354 

average between M0 and the highest isotope peak for peptides meeting specified criteria, including 355 

peptide n-values greater than 5, a minimum peptide sequence length of 6, and a minimum allowed 356 

M0 change of 0.04. In the Rate Calculation stage, the data from the Fraction New step is fitted to 357 

a kinetic rate curve using Equation 8 from our proteostasis model. Turnover rates were calculated 358 

for peptides that met a specified criterion, including a minimum of 3 non-zero peptide timepoints, 359 

and measurement deviation of less than 0.1, as previously reported19. The asymptote value is 360 

assumed to be 1 in the first iteration of analysis for proteins, but not for lipids where multiple pools 361 

of the same lipid are frequently observed57. 362 

After the Deuterater1 analysis, all proteins with a valid turnover rate value (Rsq ≥ 0.6, combined 363 

unique peptides > 1, combined rate > 0) grouped by allele cohort, and the average turnover rate 364 

value was calculated for each protein in the cohort, respectively. These protein turnover rate values 365 

were log2 transformed, and the protein turnover rate FC was calculated as the difference of the log2 366 

rates.  The ApoE2 mice and ApoE4 mice were compared to the reference ApoE3 mice, resulting 367 

in a single set of protein turnover rate FCs for each comparison.  To standardize the protein 368 
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turnover rate FCs, auto scaling 53 was applied, where x’ij, xij, 𝑥𝑖̅  , and si are the scaled turnover rate 369 

FC value, non-scaled turnover FC rate value, mean turnover FC rate and turnover rate FC standard 370 

deviation, respectively:  371 

Equation 12: 𝑥′𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑖̅

𝑠𝑖
 372 

Auto scaling was implemented because it considers both the mean and standard deviation to 373 

reduce the effects of outliers and variation in the data while preserving the ability to focus on small 374 

changes. It is important to note that because of the signal to noise requirements fewer proteins had 375 

valid turnover rate FC values than quantifiable abundances. Consequently, proteins with turnover 376 

rate FCs represent a smaller subset population in comparison proteins with expression value FCs 377 

calculated from “Area” values. These protein turnover rate values were used for ontology analysis 378 

as outlined in the Ontology-level Calculations section below.  For further reference, the python 379 

script created to process the calculated_rates output from Deuterater1 can be found in the GitHub 380 

repository, as detailed in the supplementary data section of this paper. 381 

Ontology-level Calculations 382 

The StringDB13 multiprotein tool was employed to calculate group FC values for functionally-383 

related protein groups (ontologies) regardless of statistical significance. To streamline the analysis 384 

and reduce the number of redundant term ID (ontologies), ontologies were selected only from the 385 

following established: GO Process, GO Function, GO Component, KEGG, Reactome, and 386 

WikiPathways. To quantify the representation of each ontology, the “observed gene count” was 387 

divided by the “background gene count” to calculate the “Ontology_coverage (%)” for each 388 

ontology. Only ontologies with ≥25% were included in this analysis. This latter criterion ensures 389 

that the identified ontologies are sufficiently represented in the data (Table S4 and S5). 390 
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The “matching proteins in your network (labels)” was used to associate each observed protein 391 

in the ontology with the calculated “Area” FC and turnover rate FC, respectively, for both the 392 

E2vsE3 and the E4vsE3 comparison. Next, the average protein “Area” FC and turnover rate FC 393 

was calculated for each identified ontology by averaging the FC values of proteins within that 394 

category. This step summarized the collective expression and turnover rate changes of proteins 395 

within specific functional groups for each comparison. 396 

To assess the statistical significance of the FC values within each ontology, a one-sample t-test 397 

was performed with null hypothesis (H0) stating the average Abundance (Equation 3) for the 398 

ontology is equal to 0, and the alternative hypothesis (Ha) indicating that it is not equal to 0. This 399 

statistical test is used to determine whether the observed changes in protein expression for the 400 

ontology were statistically significant. To account for multiple comparisons and maintain a 401 

controlled false discovery rate (FDR), the Benjamini-Hochberg correction (BH-PV) was 402 

calculated for the resulting p-values (FDR = 0.25). Ontologies with a BH-PV < 0.05 were 403 

considered statistically significant. In the case of highly similar ontology with significant changes, 404 

the ontology with the most proteins was selected to represent the results. The Python code used to 405 

analyze StringDB and calculate the FCs can be found in the GitHub repository, as detailed in the 406 

supplementary data section of this paper. 407 

RESULTS 408 

Proteome Ontology Analysis  409 
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  410 

In our analysis, we identified 4,849 proteins in the brain tissue across the three ApoE-isoform 411 

groups (n = 47). We determined abundance and turnover rate FCs for comparisons for these 412 

 

Figure 1. Testing for changes in regulation of the brain proteome A. Homozygous ApoE transgenic 

mice (ApoE2, E3, or E4, n = 24 each) were given 8% D2O drinking water and sacrificed at specific 

timepoints ranging from day 0 to day 32. Tissues were prepared using the S-Trap protocol and 

analyzed via LC-MS. Data-dependent acquisition was used to collect data for LFQ analysis and MS1 

level data was used to calculate turnover rate values for each protein. Resulting spectra from MS/MS 

acquisitions were analyzed by Peaks Studio (Bioinformatics Solutions Inc.) peptide-protein 

identification (IDs) and quantitation while Deuterater1 software was used for turnover rate calculation. 

B. Proteostasis model where protein expression levels and turnover rates are a function of synthesis 

and degradation. C. Regulation of synthesis and degradation can be inferred from ∆abundance (x-axis) 

and ∆turnover (y-axis) and visualized using a proteostasis plot. D & E. Proteostasis plot showing 276 

and 288 protein ontologies with significant ∆abundance (red circles) in ApoE2 (panel D) and ApoE4 

(panel E)mice relative to ApoE3 mice (E4vsE3) (BH-PV < 0.05).  
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proteins: ApoE2 vs. ApoE3 (E2vsE3) and ApoE4 vs. ApoE3 (E4vsE3). Here, ApoE3 serves as the 413 

reference 'normal' control. We quantified 3,532 abundance FCs for both the E2vsE3 and E4vsE3 414 

comparisons (Supplementary Table S2). A smaller number of turnover rate FCs were obtained: 415 

1,430 for E2vsE3 and 1,405 FCs for E4vsE3 (Supplementary Table S2) because of the more 416 

rigorous statistical filtering criteria. 417 

For this analysis, we focused on ontologies from six databases: GO Function, GO Component, 418 

GO Process, WikiPathways, Reactome, and KEGG. Using the StringDB results, we calculated the 419 

average abundance FC (∆abundance) and turnover rate FC (∆turnover) for the proteins observed 420 

in each ontology (Please refer to the Ontology-level Calculations in the methods section). This 421 

yielded ~2700 ontology-level comparisons between average ∆abundance and ∆turnover 422 

calculations for both E2vsE3 and E4vsE3 (Supplementary Table S4). The interpretation (Figure 423 

1C) relies on the traditional understanding of protein turnover, contextualizing changes in protein 424 

expression. It offers a lens to assess the variances in the steady states of ApoE genotypes58.  Using 425 

a one-sample t-test, we discerned which ontologies deviated significantly from a median 426 

∆abundance of 0. In the E2vsE3 comparison, we identified 284 protein ontologies with notable 427 

∆abundance (BH-PV < 0.05) (Figure 1D). For the E4vsE3 comparison, 287 protein ontologies had 428 

significant ∆abundance (BH-PV < 0.05) (Figure 1-E). 429 

The box plots in Figures 2 through 5 encapsulate the ∆abundance and ∆turnover for ontologies 430 

with marked ∆abundance shifts. To maximize visibility and to accommodate for space limitations, 431 

these boxplots do not contain outlier points but supplementary Figures 2 through 5 contain the 432 

boxplots with outlier points. Given that some ontologies are repetitive, proteins depicted in the box 433 

plots might appear in multiple ontologies with analogous names/functions. When faced with such 434 

redundancies, we typically chose the ontology with superior coverage (Observed/Total) for 435 
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representation. As a convention, each ontology is presented in an "ontology name (n)" format, 436 

where (n) indicates the count of quantified proteins within that ontology.  Overlap between similar 437 

ontologies is shown in the heatmap.  438 

ApoE Isoforms Modulate Synthesis and Degradation of Endocytic Vesicle Components  439 

We observed that multiple ontologies with significant ∆abundance were associated with 440 

endocytosis and vesicular processing (Figure 2). Specifically, the general Endocytosis (158) 441 

ontology demonstrated increased ∆abundance and decreased ∆turnover, suggesting reduced 442 

degradation in both ApoE2 and ApoE4 compared to ApoE3. In the context of ApoE2, Clathrin-443 

mediated endocytosis (82), Clathrin binding (35), and Clathrin coat (26) mirrored the same 444 

↓degradation effect observed in endocytosis, while SNARE complex (32) showed diminished 445 

∆abundance and ∆turnover, suggesting a decline in protein synthesis compared to ApoE3. 446 

Moreover, ApoE2 expression led to significant alterations in several regulatory ontologies tied to 447 

endocytosis and vesicular processes, such as: Endocytic recycling (34) (↑synthesis), Early 448 

endosome (↑synthesis), and Regulation of endocytosis (15) (↑synthesis).  In ApoE2, proteins 449 

related to Lysosome Vesicle Biogenesis (18) have lower degradation while Regulation of 450 

Endocytosis (107) had increased synthesis leading to higher abundance of these protein groups and 451 

presumably more efficient endolysosomal function. 452 

In both ApoE2 (E2vsE3) and ApoE4 (E4vsE3) we noted diminished degradation of general 453 

lysosome (146) proteins. Within this general ontology, the lysosomal membrane (70) ontology had 454 

diminished ∆abundance and ∆turnover only in the ApoE4 group, suggesting less synthesis of the 455 

membrane components compared to ApoE3. This is consistent with large lysosomal vesicles stored 456 

in ApoE4 cells59, 60.  In ApoE4 mice there was higher ∆abundance and ∆turnover (↑synthesis) of 457 

Phosphatidylinositol binding (90) relative to ApoE3. Conversely, there was a decline in both 458 
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∆abundance and ∆turnover (↓synthesis) of SNARE interactions in vesicular transport (19), 459 

Synaptobrevin 2-SNAP-25-syntaxin-1a complex (5), and SNARE complex (32).  460 
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 461 

 

Figure 2. ApoE4 expression disrupts endosomal maturation and ApoE2 increases lysosomal 

capacity.  A-B. Bar plot displaying ∆abundance (orange) and ∆turnover (blue) of proteins 

detected in all experimental cohorts for significant* ontologies related to endolysosomal 

trafficking in the E2vsE3 comparison (A) and in the E4vsE3 comparison (B). C. Heatmap 

displaying % of proteins shared across the endolysosomal ontologies with significant* 

∆abundance. (*BH-PV < 0.05).  

 

B
A

C

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.607719doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.13.607719
http://creativecommons.org/licenses/by/4.0/


 25 

ApoE Isoforms Modulate Synthesis and Degradation of Mitochondrial Components  462 

Our analysis identified significant ∆abundance (BH-PV < 0.05) changes for multiple ontologies 463 

related to mitochondrial components (Figure 3). In the E4vsE3 comparison, these ontologies 464 

included mitochondrial membranes, protein transport, and morphology (Figure 3A and Figure 465 

S3A). Each of these ontologies displayed a negative ∆abundance coupled with a positive 466 

∆turnover, signifying ↑degradation.  We also detected ↓synthesis of mitochondrial calcium ion 467 

transmembrane transport (12) and mitophagy (18). In contrast, ApoE4 mitochondrial matrix (159) 468 

also had ↑degradation. (Figure 3B and Figure S3B) The percentage of overlapping proteins in each 469 

mitochondrial component ontology is displayed in Figure 3C.  The key finding from these 470 

ontologies is that within the ApoE2 mice there is a coherent increase in the degradation of all 471 

mitochondrial components consistent with an increase in mitochondrial degradation as an entire 472 

unit.  In contrast, the ApoE4 tissues show discordant changes in matrix versus membrane proteins 473 

suggesting that mitochondrial maintenance is more piecemeal and that mitophagy may be less 474 

efficient as previously suggested in the literature 61.  Both the ApoE2 and the ApoE4 results are 475 

synergistic with the changes in lysosome dynamics discussed above.  In ApoE2 more efficient 476 

lysosomal processing will facilitate mitophagy based quality control while the inhibited lysosomal 477 

processing would inhibit mitophagy and make the ApoE4 more reliant upon individual protein 478 

replacement strategies. 479 

  480 
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 481 

  482 

 

Figure 3. ApoE genotype differentially regulates mitochondrial proteostasis.   A-B. Bar plot 

displaying ∆abundance (orange) and ∆turnover (blue) for ontologies of proteins detected in all 

experimental cohorts related to mitochondrial components with significant* ∆abundance in the 

E2vsE3 comparison (A) and in the E4vsE3 comparison (B). C. Heatmap displaying % of 

proteins shared across the mitochondrial ontologies with significant* ∆abundance. (*BH-PV 

< 0.05). 

A
B

C

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.607719doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.13.607719
http://creativecommons.org/licenses/by/4.0/


 27 

ApoE4 Disrupts Metabolic Pathway Control 483 

We observed significant changes in ∆abundance (BH-PV < 0.05) across multiple ontologies 484 

related to energy production (Figure 4). ApoE2 resulted in lower expression of levels of Pyruvate 485 

metabolism (32), Citrate cycle (TCA cycle) (26), and Glycolysis/Gluconeogenesis (41). These 486 

reductions were primarily attributed to decreased synthesis (↓synthesis), a trend that was also 487 

evident in the Oxidative stress and redox pathway (48) proteins which protect the cell from reduced 488 

oxygen species. Notably, Fatty acid beta-oxidation (25) demonstrated reduced ∆abundance 489 

coupled with increased ∆turnover (↑degradation) in ApoE2 (E2vsE3), suggesting a potential 490 

decrease in fatty acid catabolism and an increase in the use of fatty acids for building complex 491 

lipids.  In contrast, in the ApoE4 mice, major energy production pathways such as Fructose and 492 

mannose metabolism (21), Pyruvate metabolism (32), and Glycogen metabolism (22) all exhibited 493 

increased ∆abundance and ∆turnover, pointing towards enhanced synthesis of enzymes involved 494 

in carbohydrate metabolism in the E4vsE3 comparison and an increased reliance on carbohydrates 495 

for energy similar to previous observations 62, 63.  496 
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  497 

Figure 4. ApoE2 and ApoE4 expression drive changes in cellular fuel selection A-B. Bar plot 

displaying ∆abundance (orange) and ∆turnover (blue) for ontologies of proteins detected in all 

experimental cohorts belonging to oxidative phosphorylation with significant* ∆abundance in 

the E2vsE3 comparison (A) and in the E4vsE3 comparison (B). C. Heatmap displaying % of 

proteins shared across the oxidative phosphorylation ontologies with significant* ∆abundance. 

(*BH-PV < 0.05).  

A B

C
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ApoE Isoforms and Ubiquitin-Proteasome Pathway Activity 498 

The proteasome related ontologies exhibited significant changes in regulation due to ApoE 499 

isoforms (Figure 5). For both the E2vsE3 and E4vsE3 comparisons, we identified pronounced 500 

increases in ∆abundance and reductions in ∆turnover (↓degradation) associated with the 501 

proteasome complex (47) Furthermore, an increased ∆abundance and ∆turnover (↑synthesis) of 502 

proteins involved in the Regulation of ubiquitin-dependent protein catabolic process (62) was 503 

statistically significant in both comparisons (BH-PV 0.05).  504 

  The proteasome regulatory particle, base subcomplex (11) displayed ↑synthesis in the E2vsE3 505 

comparison and ↓degradation in the E4vsE3 comparison. Meanwhile, proteins within the 506 

Proteasome regulatory particle, lid subcomplex (6), demonstrated significant ∆abundance due to 507 

↓degradation in the E4vsE3 comparison with ApoE4 expression. However, these changes were 508 

not significant in the E2vsE3 comparison. Additionally, in ApoE4 we noted ↑synthesis in the 509 

Negative regulation of proteasomal ubiquitin-dependent protein catabolic process (21), 510 

↓degradation Deubiquitination (79), and ↓synthesis Hsp70 protein binding (23). These 511 

observations suggest a nuanced regulation of the ubiquitin-proteasome system (UPS) in 512 

association with ApoE isoforms. Hsp70 proteins are often deemed pivotal regulators of proteasome 513 

activity64. These changes suggest a significant reduction in the protein quality control for ApoE4 514 

tissue (Figure 5C). 515 

   516 
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 517 

Quantifying ApoE-dependent Shifts in Liver Proteostasis 518 

The liver is the largest producer of ApoE in the body and is also a major receptor of ApoE and 519 

its associated cargo9, 65, 66. Therefore, we tested whether the liver tissue from these same 520 

experimental mice would show matching ApoE allele-specific shifts in proteome regulation.   521 

 

Figure 5. Proteasomal activity decreases with ApoE4 expression.   A-B. Bar plot displaying 

∆abundance (orange) and ∆turnover (blue) of proteins detected in all experimental cohorts for 

several ontologies related to proteasomal activity with significant* ∆abundance in the E2vsE3 

comparison (A) and in the E4vsE3 comparison (B). C. Heatmap displaying % of proteins shared 

across the ontologies with significant* ∆abundance. (*BH-PV < 0.05).  

A
B

C
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In ApoE2 liver there was not a significant change in any of the endocytic processes relative to 522 

ApoE3 (Table S5). Multiple mitochondrial ontologies in the liver changed in significant ways and 523 

nearly 60% of their proteostasis changes are equivalent to the brain. Most changes in the 524 

mitochondria in the liver with ApoE2 expression involve increased degradation of mitochondrial 525 

components, though there is some reduced synthesis for the mitochondrial envelope and 526 

transmembrane transport. Interestingly, where ApoE2 the brain contains decreased degradation of 527 

proteasomal components, in the liver we observed increased synthesis and greater more 528 

proteasomal capacity similar to published studies67-69.  529 

In ApoE4/E3 liver comparisons there was not a significant change in any of the endocytic 530 

processes (Table S5) with the exception of endosomal protein localization. In the brain, this 531 

ontology had increased synthesis, while the liver promotes decreased degradation, both of which 532 

result in an increased concentration. As for ApoE4 mitochondrial components, most changes in 533 

the liver involve increased degradation. All of the significant increased degradation ontologies 534 

observed in the brain were observed with the similar increased degradation in the liver, though not 535 

all were significant. Likewise 80% of the significant mitochondrial liver ontologies had the same 536 

proteostasis changes in the brain (Table S5). The 20% differences were due to certain NADH and 537 

ATP synthesis electron transport chain ontologies that were increased synthesis in the brain and 538 

increased degradation in the liver. Similar to the liver comparison of ApoE2 with the proteasome, 539 

in ApoE4 liver data there were no shared proteasome proteostasis changes with the brain [Figure 540 

S7 and S8]. These data suggest that most of the ApoE effects observed in the brain are not global. 541 

DISCUSSION 542 

Exploring ApoE-genotype Effects Through the Lens of Proteostasis  543 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.607719doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.13.607719
http://creativecommons.org/licenses/by/4.0/


 32 

Compared to the neutral ApoE3 allele, expression of ApoE4 heightens the risk for 544 

neurodegeneration, while the expression of ApoE2 is protective6, 9, 63, 67, 70-73. We conducted an 545 

experiment to identify how protein homeostasis changes with ApoE genotype in the tissues of 546 

human-ApoE transgenic mice (Fig 1A). Homeostasis is the dynamic control of concentration and 547 

quality in the cell (Figure S2).  Traditionally, the dynamic control of protein concentration is 548 

conceptualized as the balance between synthesis and degradation26 while protein turnover rate is 549 

defined as the time required for a protein to be replaced.24, 32, 58, 74 We present this as simplified 550 

equations that relate to synthesis and degradation (Fig 1B, see ‘Proteostasis Model and Analysis 551 

Rational’ section for more detail). Therefore, changes in protein expression levels (∆abundance) 552 

paired with changes in protein turnover rate (∆turnover) can highlight the regulatory balance of 553 

synthesis versus degradation between conditions (Figure 1B-C). 554 

 For instance, to increase [protein] in the experimental condition (resulting in a positive 555 

∆abundance), cells can either elevate synthesis or diminish degradation. Alternatively, to decrease 556 

[protein] (leading to a negative ∆abundance), cells might reduce synthesis or increase degradation. 557 

Using the change in protein turnover rates (turnover = ½(synthesis + degradation), Proteostasis 558 

Model section Equation 10) we can deduce whether changes in synthesis or degradation led to 559 

changes in abundance (Figure 1B). Therefore a positive ∆abundance indicates increased synthesis 560 

when ∆turnover is positive or reduced degradation when ∆turnover is negative. Conversely, a 561 

negative ∆abundance signals increased degradation when ∆turnover is positive or decreased 562 

synthesis when ∆turnover is negative (Figure 1C).  We used this model to identify the ApoE-563 

dependent changes in proteostasis regulation (Figure 6).  Below we discuss how our results unify 564 

a diverse set of literature observations where ApoE-dependent modifications of endosome 565 

trafficking, as well as lysosomal, mitochondrial, and proteosomal function have been reported. 566 
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 567 

ApoE isoforms modify Endocytic/Endosomal trafficking  568 

Previous research has highlighted the dysregulation of endocytic pathways associated with 569 

ApoE4 expression59, 60, 70, 75-77. We detected notable ApoE4-dependent changes in several 570 

ontologies related to endocytosis (Figure 2 and Figure S3). This is in line with what is known about 571 

how ApoE isoforms modify affinity for cell surface receptors, such as LDLR and APOER24, 5, 572 

initiating the endocytosis of ApoE along with its content. After this endocytic event, ApoE-laden 573 

endosomes undergo various maturation stages, wherein contents are earmarked for recycling, 574 

delivery, or degradation.  575 

ApoE4 has a higher binding affinity to receptors4, 5 and is known to induce a trafficking anomaly 576 

in the early endosome78, then lead to accumulation and enlargement of lysoendosomal 577 

compartments59, 60. Following an endocytic event, the clathrin coat dismantles, allowing vesicles 578 

to transit to various destinations for cargo release. This fusion mechanism leans heavily on SNARE 579 

Figure 6. Model comparing the observed changes in proteostasis for ApoE2 and ApoE4. The 

arrows are color coded to represent the different pathways impacted in both ApoE2 and ApoE4 

when compared to ApoE3 
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and SNAP-receptor proteins, also pivotal for exocytosis. In our study, we observed diminished 580 

synthesis of SNARE and SNAP ontologies in ApoE4 mice which may disrupt vesicle fusion 581 

between organelles79 and in response to exocytic sequences80. Our study revealed a reduced 582 

degradation of proteins associated with Clathrin-mediated endocytosis (82), increased synthesis 583 

of PICALM (90), and reduced synthesis of the lysosomal membrane (70) (Figure 2B, Figure S3B) 584 

in the presence of ApoE4.  Priyanka et al. also noted a decline in clathrin-mediated endocytosis in 585 

astrocytes with ApoE4 expression81 while in vivo studies identified alterations in early endosome 586 

populations in 18- and 25-month-old ApoE4 mice82. This mechanism further incorporates 587 

phosphatidylinositol binding proteins like PICALM83. Before undergoing lysosomal degradation, 588 

endosomes transition to the late endosomal phase. Our findings suggest that ApoE4 expression 589 

reduces the synthesis of both late endosomal and lysosomal membranes. Although the general 590 

lysosome (146) ontology exhibits increased degradation with ApoE4 expression, if we look 591 

specifically at the membrane components of this ontology then the ApoE4 specifically has less 592 

total protein due to lower synthesis. These results are consistent with previous observations of 593 

large-volume lysosomes which would have a low membrane surface/volume ratios accumulating 594 

in the in ApoE4 cells 59, 60.  Collectively, these results underscore multiple points of failure due to 595 

ApoE4-associated inhibition of endosomal maturation and stalled lysosomal functions as 596 

previously observed 78, 82, 84.   597 

The E2vsE3 tissue had similarities in vesicle-centric ontologies. Notably, there was a decline in 598 

the degradation of endocytosis and clathrin protein-related ontologies, and SNARE complexes saw 599 

reduced synthesis. This implies that ApoE2 also modifies vesicle endocytosis. However, the 600 

changes suggested a more streamlined regulation of endolysosomal events with ApoE2 (E2vsE3). 601 

This again agrees with literature reports of modified receptor binding with ApoE2 having lower 602 
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affinity while ApoE4 has a higher affinity4, 5. This coupled with lower degradation of proteins 603 

within the lysosome vesicle biogenesis ontology for the E2vsE3 comparison, a process intrinsically 604 

tied to endosomal trafficking and central to lysosomal adaptation85, suggests a tighter control of 605 

endocytic events and better lysosomal quality with ApoE2 expression. These observations agree 606 

with previous research on astrocytes indicating ApoE2 expression increases lysosomal activity 607 

relative to ApoE3 and ApoE4 expression86.  608 

ApoE-dependent changes in Mitochondrial Proteostasis 609 

We observed ApoE-dependent changes in mitochondrial proteostasis that were consistent with 610 

modified autophagy and lysosomal function. In ApoE4 (E4vsE3) mice, we measured elevated 611 

degradation in mitochondrial membrane (406), mitochondrial inner membrane (303) (Figure 3 612 

and Figure S4), Cristae formation (11), Mitochondrial fusion (13), and mitochondrial transport 613 

(72) with no accompanying change in general mitochondrial matrix (159) and decreased synthesis 614 

of mitophagy (18). Mitochondrial membrane complexes play critical functions in cellular 615 

homeostasis—such as energy production, calcium level modulation, apoptosis, and the regulation 616 

of reactive oxygen species (ROS) 87. Prior research has documented alterations in the 617 

mitochondrial membrane's integrity in the context of neurodegenerative diseases 88, 89.  618 

Most mitochondrial proteins are encoded on the nuclear DNA and are transported into the 619 

mitochondria through translocases (TIM and TOM)90, 91. These translocases interact with the many 620 

inner mitochondrial membrane (IMM) folds that make up the cristae via the mitochondrial cristae 621 

organizing system (MICOS).92 Our observations indicate a change in mitochondrial protein 622 

import, especially evident in the higher degradation of the TOM complex (10), cristae formation 623 

(11), and the MICOS complex (7) ontologies. (See Figure 5B and Figure S5B). The MICOS also 624 

plays a vital role in cristae organization and the function of respiratory complexes.93 Disruptions 625 
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in MICOS have been documented to modify cristae structure94, and recent studies associate altered 626 

MICOS protein expressions with ApoE4 manifestation89. The MICOS literature also report 627 

evidence of mitochondrial fusion and fission imbalance in Neuro-2a cells expressing ApoE4.89 628 

Previous analysis of AD brains indicated diminished protein levels connected to mitochondrial 629 

fusion/fission95, which our data supports as a degradation driven loss of fusion proteins (See Figure 630 

3B and Figure S3B).  631 

Mitochondria and the endoplasmic reticulum (ER) collectively form the mitochondria-632 

associated membrane (MAM), which has implications in AD pathology96-98. These MAMs 633 

regulate oxidative phosphorylation, calcium levels, protein degradation, and mitochondrial 634 

membrane organization. Our dataset elucidates an ApoE4-induced MAM (57), marked by 635 

increased degradation contrasted against ApoE3 (Figure 3 and Figure S4). Our results support 636 

ApoE4-related MAM instability by diminished synthesis of chaperone complexes, mitophagy, and 637 

calcium transport. 638 

In contrast, ApoE2 mice display increased degradation of mitochondrial membrane ontologies 639 

with a matching increase in the degradation of the matrix proteins.  Although both ApoE2 and 640 

ApoE4 mice revealed changes in the mitochondrial membrane and transport, our ApoE2 findings 641 

suggests that there is a cohesive organelle-wide response involving both membrane and matrix 642 

proteins. Drawing from our preliminary insights into endolysosomal systems discussed above, we 643 

postulate this might be evidence of superior mitophagy in ApoE2. Additionally, we theorize, as 644 

described in the literature,61-63, 89, 99 that the alterations in mitochondrial proteostasis induced by 645 

ApoE4 culminate in mitochondrial dysfunction. 646 

ApoE disrupts ATP production 647 
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There is an increasing body of research on ApoE genotype-specific effects on ATP 648 

production100-102. Moreover, compromised bioenergetic pathways are identified as a distinct 649 

characteristic of neurodegeneration103-106. Several studies highlight an ApoE-related shift towards 650 

glycolysis and diminished oxygen consumption in brain tissues103, 107. Our data align with these 651 

observations, revealing a heightened synthesis of ontologies suggesting that ApoE4 expression 652 

leads to a more pronounced reliance on glycolytic pathways compared to ApoE3 (see Figure 4B, 653 

Figure S4B). These ontologies include Fructose and mannose metabolism (21), Pyruvate 654 

metabolism (32), and Glycogen metabolism (22). We posit that this increased reliance on 655 

carbohydrate metabolism is a consequence of the lack of cohesive mitochondrial maintenance. 656 

Another study focusing on glycolytic and OXPHOS activities found that ApoE4 expression leads 657 

to compromised mitophagy and elevated ROS levels in brain cells, a trend our data supports108. 658 

The impaired mitophagy was attributed to cholesterol buildup in lysosomes. While we haven't 659 

analyzed cholesterol or ROS levels, our data does indicate reduced synthesis in mitophagy (18), 660 

lysosomal membrane (70) and Detoxification of Reactive Oxygen Species (20) proteins —potential 661 

indicators of disrupted mitophagy and ROS balance (See Figure 3B, Figure S3B) 662 

In cell culture ApoE2 expression has been associated with enhanced ATP production and 663 

heightened glycolytic activity103, 107. In contrast, various studies have shown that ApoE4 664 

expression was associated with diminished ATP production100, 109-111. In ApoE2 tissue we observed 665 

decreased abundance in ontologies such as the TCA cycle (25), Pyruvate metabolism (32), and 666 

Glycolysis / Gluconeogenesis (41) due to diminished synthesis and augmented degradation. Our 667 

study is averaging together all cell types in the brain and therefore may diverge from cell type-668 

specific experiments 100. Collectively, our data accentuates the isoform-specific alterations in 669 
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diverse metabolic pathways, and suggests that isolating single cell types from the brain may be a 670 

critical method to test for metabolic changes in response to ApoE isoforms. 671 

Linkages between the Proteasome and Mitochondrial Homeostasis 672 

The proteasome is a key component of proteostasis maintenance and is essential in clearing out 673 

misfolded proteins and saving cells from misfolding stress response.112 Reduced proteasome 674 

activity has consistently been implicated as a major player in the pathophysiology of 675 

neurodegeneration23, 61, 67, 69, 113. ApoE has been shown to directly regulate the cleavage of amyloid 676 

precursor protein (APP) to form amyloidogenic Aβ peptides with ApoE4 allowing increased Aβ 677 

peptide cleavage and plaque deposition.114 This buildup of Aβ is relevant to proteasomal function 678 

and has been shown to directly inhibit proteasome function leading to increased accumulation of 679 

amyloid plaques.115, 116 680 

The proteasome also plays a major role in the mitochondrial quality control, especially in 681 

response to misfolded proteins that disrupt mitochondrial activity117. Interestingly, a growing body 682 

of literature suggests that proteasome function can also be disrupted by mitochondrial dysfunction. 683 

For example, oxidation of the 26S subunit of the proteasome due to increased mitochondrial 684 

oxidative stress has been shown to increase the accumulation of ubiquitinated substrates and 685 

decrease proteasomal activity118. Notably, we discerned a significant reduction in the synthesis of 686 

HSP70 proteins in E4 which latch onto misfolded or compromised proteins before proteasomal 687 

degradation68. This interconnection of the proteasome and mitochondria as well as their consistent 688 

implication in neurodegenerative disease has led some researchers to suggest that dysfunction in 689 

either the proteasome or mitochondria are “two sides of the same coin” leading to a futile cycle of 690 

mitochondrial and proteasomal insult.119  691 
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Our investigation revealed reduced degradation of both the proteasome and its regulatory 692 

complex in ApoE4 mice (refer to Figure 5 and Figure S6). Additionally, while ApoE4 expression 693 

increased the synthesis of ontologies linked to ubiquitin-proteasome regulation, it also elevated the 694 

synthesis specifically for its negative regulation.  Such trends align with existing literature 695 

delineating the impact of ApoE isoforms on proteasomal dysregulation in Alzheimer's disease67, 696 

120. Alongside our observation of compromised mitochondrial activity in ApoE4 mice, these 697 

findings imply a heightened susceptibility to both mitochondrial and proteasomal damage. The 698 

concurrent malfunction of mitochondria and proteasomes has been historically correlated with 699 

neuronal apoptotic pathways and neurodegeneration, thereby underlining a mechanism through 700 

which ApoE4 exacerbates the risk of neurodegenerative ailments such as Alzheimer's121. 701 

ApoE2 also exhibited a notable decline in the degradation of proteins associated with ubiquitin 702 

and proteasomal processes, paralleling the ApoE4 response (see Figure 5 and Figure S6). While 703 

both ApoE2 and ApoE4 amplify the regulation of ubiquitin-dependent catabolism, the base 704 

complex of the proteasome (responsible for facilitating the unfolding and admission of 705 

ubiquitinated polypeptides into the proteasome's degradation chamber122) reduced degradation of 706 

deubiquitinating proteins was more prevalent in ApoE4. This implies larger proteasome pool in 707 

ApoE4, albeit with more regulation. It's worth speculating that the ApoE2-mediated inhibition of 708 

APP cleavage to form Aβ114 might also be instrumental in curbing proteasomal dysfunction. 709 

These patterns suggest that both phenomena might be interconnected, with proteasomal 710 

dysfunction potentially instigating ApoE4-associated reductions in ATP production. Beyond the 711 

ubiquitin-proteasome system, autophagy is instrumental in clearing defective mitochondria via 712 

lysosomal degradation.  As previously mentioned, our findings substantiate the ApoE4-associated 713 

dysregulation of MAM structures, which potentially results in disrupted mitochondrial 714 
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morphology and impaired energy production. Our working hypothesis postulates that ApoE4 715 

expression precipitates a decline in proteasomal activity, culminating in the accrual of 716 

dysfunctional mitochondria and a diminished capacity to eliminate these via autophagy. Drawing 717 

from our data on lysosomal components in ApoE4 and existing literature78, 123, we surmise that 718 

suboptimal endocytic regulation might directly impact autophagy and the proteasomal oversight 719 

of mitochondrial proteostasis. Conversely, ApoE2 expression is purportedly linked to enhanced 720 

proteasomal capability and autophagy through lysosomal degradation, resulting in fortified 721 

mitochondrial proteostasis. Our objective is to delve deeper into these discoveries and authenticate 722 

our hypothesis across various ApoE models. 723 

Liver Proteostasis Changes Compared to Brain 724 

ApoE is an important lipid transporter that is expressed and integral to many parts of the body 725 

beyondthe brain. Previous literature has shown that despite ApoE2’s protective effect against 726 

Alzheimer’s Disease, it increases risk for cardiovascular health66. This leads us to question whether 727 

the mechanism by which ApoE2 protects against Alzheimer’s Disease may in turn be detrimental 728 

and disease causing to other tissue. To determine whether ApoE does indeed elicit a global 729 

response across tissue, we tested and analyzed the liver tissue from our experimental mice in the 730 

same manner as the brain. 731 

The changes in ApoE2/E3 liver proteostasis and ApoE2/E3 brain proteostasis were not 732 

equivalent. Although many trends were similar between brain and liver, few changes were 733 

statistically significant in the liver. Mitochondrial protein localization, transportation, and 734 

organization had shared proteostasis changes between tissues, but general trends from other 735 

ontological changes suggest mitochondrion turnover to be reduced in the liver compared to the 736 

brain (See Figure S2).  737 
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ApoE4/E3 liver and ApoE4/E3 brain proteostasis changes were also not the same. This is 738 

principally due to significant proteostasis changes among the endosome, metabolism, and 739 

proteasome pathways in the brain, and that most of which were not significant in the liver (see 740 

table S5). However, comparisons between the ApoE4 liver and brain contained several of the same 741 

proteostasis changes for mitochondria, suggesting there may be some degree of shared effects due 742 

to ApoE4. 743 

Thus, while some cellular pathways may be affected similarly, a global effect specific to ApoE 744 

allele is not supported by our data. We propose the lack of a global ApoE effect is because most 745 

tissues have a large number of apolipoproteins participating in lipid transport 9, 66. The brain has 746 

limited apolipoproteins compared to other tissues, in that it is limited to only the apolipoproteins 747 

it creates (primarily ApoE and ApoJ). This is due to the blood-brain-barrier, which prevents 748 

apolipoprotein transfer between the brain and the rest of the body. Since lipid trafficking in the 749 

liver has access to multiple apoliproproteins we posit that this may dilute the effect of ApoE 750 

isoforms on the pathways within liver tissue.  751 

CONCLUSION: 752 

In this study, we demonstrated how combining protein abundance and turnover rate unveils 753 

novel insights into the cellular mechanisms governing synthesis and degradation. Utilizing 754 

multifaceted proteomics data, we tracked ontology-level variations among distinct ApoE 755 

genotypes in healthy adult mice. Our findings present in vivo evidence that harmonizes with 756 

existing literature, identifying how ApoE4 interrupts endosomal trafficking leading to autophagy 757 

and proteasome activity defects and lower mitochondrial quality in the brain. Concurrently, our 758 

data suggests that ApoE2 enhances brain mitochondrial health by amplifying turnover in the brain 759 

(Figure 6). 760 
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ASSOCIATED CONTENT: 761 

SUPPORTING INFORMATION: 762 

Figure S1. Detailed workflow chart describing both the mouse model and stages of analysis. 763 

   Figure S2: Kinetic model of protein homeostasis identifying the common sources and sinks of 764 

protein in a cell 765 

Figure S3.  Abundance and turnover FCs for ontologies related to endolysosomal processes in 766 

A) E2vsE3 and B) E4vsE3. 767 

Figure S4.  Abundance and turnover FCs for ontologies related to mitochondrial components in 768 

A) E2vsE3 and B) E4vsE3. 769 

Figure S5.  Abundance and turnover FCs for ontologies related to cellular metabolism in A) 770 

E2vsE3 and B) E4vsE3. 771 

Figure S6. Abundance and turnover FCs for ontologies rela ted to protein degradation in A) 772 

E2vsE3 and B) E4vsE3. 773 

Figure S7. Model for comparison of the ApoE2 brain and liver homeostasis shifts relative to 774 

ApoE3.  The ApoE2 brain model (left, blue), is the same as in Figure 6.  The green model (right) 775 

shows the modifications in ApoE2 liver tissue. 776 

Figure S8. Model for comparison of the ApoE4 brain and liver homeostasis shifts relative to 777 

ApoE3. The ApoE4 brain model (right, red), is the same as in Figure 6.  The green model (left) 778 

shows the modifications in ApoE4 liver tissue. 779 

 780 

The data generated in this investigation can be accessed via the ProteomeXchange Consortium 781 
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via the PRIDE partner repository124 (http://www.proteomexchange.org/) with the accession 782 

number PXD044460. The repository includes the raw LC-MS files used for both quantitative and 783 

kinetic files used in data analysis. In addition, Peaks Studio (Bioinformics Solutions Inc.) outputs 784 

containing peptide and protein level identification data for both quantitative and kinetic 785 

measurements are included in the repository.   786 

Project Name: Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis 787 

Adaptations in Mouse Brain  788 

 Project accession: PXD044460 789 

  790 

The output files from Deuterater software including turnover rate values are found within the 791 

repository while the code is found here (https://github.com/JC-Price/DeuteRater/releases). 792 

Lastly, the code used in the ontology analysis can be found by following this link to the GitHub 793 

repository (https://github.com/natepine/ApoE_Proteomics.git). 794 

The following files are available free of charge via the Internet  795 

.xls file containing Tables S1-S5 and data for all quantifiable proteins and measurable ontologies. 796 

.pdf file containing supplementary figures S1-S7, including a diagram that explains the mouse 797 

model in addition to box plots with additional ontologies. 798 
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